1
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
2
|
Menozzi L, Yang W, Feng W, Yao J. Sound out the impaired perfusion: Photoacoustic imaging in preclinical ischemic stroke. Front Neurosci 2022; 16:1055552. [PMID: 36532279 PMCID: PMC9751426 DOI: 10.3389/fnins.2022.1055552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Acoustically detecting the optical absorption contrast, photoacoustic imaging (PAI) is a highly versatile imaging modality that can provide anatomical, functional, molecular, and metabolic information of biological tissues. PAI is highly scalable and can probe the same biological process at various length scales ranging from single cells (microscopic) to the whole organ (macroscopic). Using hemoglobin as the endogenous contrast, PAI is capable of label-free imaging of blood vessels in the brain and mapping hemodynamic functions such as blood oxygenation and blood flow. These imaging merits make PAI a great tool for studying ischemic stroke, particularly for probing into hemodynamic changes and impaired cerebral blood perfusion as a consequence of stroke. In this narrative review, we aim to summarize the scientific progresses in the past decade by using PAI to monitor cerebral blood vessel impairment and restoration after ischemic stroke, mostly in the preclinical setting. We also outline and discuss the major technological barriers and challenges that need to be overcome so that PAI can play a more significant role in preclinical stroke research, and more importantly, accelerate its translation to be a useful clinical diagnosis and management tool for human strokes.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel) 2022; 12:life12040588. [PMID: 35455079 PMCID: PMC9028050 DOI: 10.3390/life12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Photo-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution. The detection of acoustic waves produced by a pulsed laser source yields a high scaling range, from organ level photo-acoustic tomography to sub-cellular or even molecular imaging. This review discusses significant novel technical solutions utilising photo-acoustics and their applications in the fields of biomedicine and life sciences.
Collapse
|
4
|
Kim H, Kim JY, Cho S, Ahn J, Kim Y, Kim H, Kim C. Performance comparison of high-speed photoacoustic microscopy: opto-ultrasound combiner versus ring-shaped ultrasound transducer. Biomed Eng Lett 2022; 12:147-153. [PMID: 35529340 PMCID: PMC9046515 DOI: 10.1007/s13534-022-00218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic microscopy (PAM) embedded with a 532 nm pulse laser is widely used to visualize the microvascular structures in both small animals and humans in vivo. An opto-ultrasound combiner (OUC) is often utilized in high-speed PAM to confocally align the optical and acoustic beams to improve the system's sensitivity. However, acoustic impedance mismatch in the OUC results in little improvement in the sensitivity. Alternatively, a ring-shaped ultrasound transducer (RUT) can also accomplish the confocal configuration. Here, we compare the performance of OUC and RUT modules through ultrasound pulse-echo tests and PA imaging experiments. The signal-to-noise ratios (SNRs) of the RUT-based system were 15 dB, 12 dB, and 7 dB higher when compared to the OUC-based system for ultrasound pulse-echo test, PA phantom imaging test, and PA in-vivo imaging test, respectively. In addition, the RUT-based system could image the microvascular structures of small parts of a mouse body in a few seconds with minimal loss in SNR. Thus, with increased sensitivity, improved image details, and fast image acquisition, we believe the RUT-based systems could play a significant role in the design of future fast-PAM systems.
Collapse
Affiliation(s)
- Hyojin Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seonghee Cho
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Yeonggeun Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Hyungham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
5
|
Mirg S, Chen H, Turner KL, Gheres KW, Liu J, Gluckman BJ, Drew PJ, Kothapalli SR. Awake mouse brain photoacoustic and optical imaging through a transparent ultrasound cranial window. OPTICS LETTERS 2022; 47:1121-1124. [PMID: 35230306 DOI: 10.1364/ol.450648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) can map the cerebral vasculature at capillary-level resolution. However, the OR-PAM setup's bulky imaging head makes awake mouse brain imaging challenging and inhibits its integration with other optical neuroimaging modalities. Moreover, the glass cranial windows used for optical microscopy are unsuitable for OR-PAM due to the acoustic impedance mismatch between the glass plate and the tissue. To overcome these challenges, we propose a lithium niobate based transparent ultrasound transducer (TUT) as a cranial window on a thinned mouse skull. The TUT cranial window simplifies the imaging head considerably due to its dual functionality as an optical window and ultrasound transducer. The window remains stable for six weeks, with no noticeable inflammation and minimal bone regrowth. The TUT window's potential is demonstrated by imaging the awake mouse cerebral vasculature using OR-PAM, intrinsic optical signal imaging, and two-photon microscopy. The TUT cranial window can potentially also be used for ultrasound stimulation and simultaneous multimodal imaging of the awake mouse brain.
Collapse
|
6
|
Yang X, Chen YH, Xia F, Sawan M. Photoacoustic imaging for monitoring of stroke diseases: A review. PHOTOACOUSTICS 2021; 23:100287. [PMID: 34401324 PMCID: PMC8353507 DOI: 10.1016/j.pacs.2021.100287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Stroke is the leading cause of death and disability after ischemic heart disease. However, there is lacking a non-invasive long-time monitoring technique for stroke diagnosis and therapy. The photoacoustic imaging approach reconstructs images of an object based on the energy excitation by optical absorption and its conversion to acoustic waves, due to corresponding thermoelastic expansion, which has optical resolution and acoustic propagation. This emerging functional imaging method is a non-invasive technique. Due to its precision, this method is particularly attractive for stroke monitoring purpose. In this paper, we review the achievements of this technology and its applications on stroke, as well as the development status in both animal and human applications. Also, various photoacoustic systems and multi-modality photoacoustic imaging are introduced as for potential clinical applications. Finally, the challenges of photoacoustic imaging for monitoring stroke are discussed.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yun-Hsuan Chen
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Fen Xia
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
- Corresponding author at: CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
7
|
Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.
Collapse
Affiliation(s)
- Joon-Mo Yang
- Center for Photoacoustic Medical Instruments, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Cheol-Min Ghim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
8
|
Baik JW, Kim JY, Cho S, Choi S, Kim J, Kim C. Super Wide-Field Photoacoustic Microscopy of Animals and Humans In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:975-984. [PMID: 31484110 DOI: 10.1109/tmi.2019.2938518] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Acoustic-resolution photoacoustic micro-scopy (AR-PAM) is an emerging biomedical imaging modality that combines superior optical sensitivity and fine ultrasonic resolution in an optical quasi-diffusive regime (~1-3 mm in tissues). AR-PAM has been explored for anatomical, functional, and molecular information in biological tissues. Heretofore, AR-PAM systems have suffered from a limited field-of-view (FOV) and/or slow imaging speed, which have precluded them from routine preclinical and clinical applications. Here, we demonstrate an advanced AR-PAM system that overcomes both limitations of previous AR-PAM systems. The new AR-PAM system demonstrates a super wide-field scanning that utilized a 1-axis water-proofing microelectromechanical systems (MEMS) scanner integrated with two linear stepper motor stages. We achieved an extended FOV of 36 ×80 mm2 by mosaicking multiple volumetric images of 36 ×2.5 mm2 with a total acquisition time of 224 seconds. For one volumetric data (i.e., 36 ×2.5 mm2), the B-scan imaging speed over the short axis (i.e., 2.5 mm) was 83 Hz in humans. The 3D volumetric image was also provided by using MEMS mirror scanning along the X-axis and stepper-motor scanning along the Y-axis. The super-wide FOV mosaic image was realized by registering and merging all individual volumetric images. Finally, we obtained multi-plane whole-body in-vivo PA images of small animals, illustrating distinct multi-layered structures including microvascular networks and internal organs. Importantly, we also visualized microvascular networks in human fingers, palm, and forearm successfully. This advanced MEMS-AR-PAM system could potentially enable hitherto not possible wide preclinical and clinical applications.
Collapse
|
9
|
Luo X, Li X, Wang C, Pang W, Wang B, Huang Z. Acoustic-resolution-based photoacoustic microscopy with non-coaxial arrangements and a multiple vertical scan for high lateral resolution in-depth. APPLIED OPTICS 2019; 58:9305-9309. [PMID: 31873610 DOI: 10.1364/ao.58.009305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In conventional acoustic-resolution-based photoacoustic microscopy (ARPAM), a focused ultrasound transducer is placed coaxially with the laser beam to obtain the generated ultrasound signals. The information from deep regions can be greatly affected by the shallow targets. More importantly, in ARPAM the irreconcilable conflict between the lateral resolution and depth of fields has always been a major factor that lowers the imaging quality. In this work, an ARPAM system was developed, in which a non-coaxial arrangement of light illumination and acoustic detection was adopted to alleviate the influence of the tissue surface on the deep targets, and a focal zone integral algorithm was applied with a multiple scanning scheme to improve the lateral resolution. The system can achieve a consistent high lateral resolution of 0.5 mm over a large range in the axial direction. Both the phantom experiment and the chicken embryo in vivo results indicate that the proposed method can provide more in-depth information compared with the conventional ARPAM method. With the development of high repetition lasers and the advancement of image scanning technologies, the proposed method may play an important role in cerebral vascular imaging, superficial tumor imaging, and other related biomedical imaging applications.
Collapse
|
10
|
A Robust Method for Adjustment of Laser Speckle Contrast Imaging during Transcranial Mouse Brain Visualization. PHOTONICS 2019. [DOI: 10.3390/photonics6030080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Laser speckle imaging (LSI) is a well-known and useful approach for the non-invasive visualization of flows and microcirculation localized in turbid scattering media, including biological tissues (such as brain vasculature, skin capillaries etc.). Despite an extensive use of LSI for brain imaging, the LSI technique has several critical limitations. One of them is associated with inability to resolve a functionality of vessels. This limitation also leads to the systematic error in the quantitative interpretation of values of speckle contrast obtained for different vessel types, such as sagittal sinus, arteries, and veins. Here, utilizing a combined use of LSI and fluorescent intravital microscopy (FIM), we present a simple and robust method to overcome the limitations mentioned above for the LSI approach. The proposed technique provides more relevant, abundant, and valuable information regarding perfusion rate ration between different types of vessels that makes this method highly useful for in vivo brain surgical operations.
Collapse
|
11
|
Li T, Liu CJ, Akkin T. Contrast-enhanced serial optical coherence scanner with deep learning network reveals vasculature and white matter organization of mouse brain. NEUROPHOTONICS 2019; 6:035004. [PMID: 31338386 PMCID: PMC6646884 DOI: 10.1117/1.nph.6.3.035004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/02/2019] [Indexed: 06/01/2023]
Abstract
Optical coherence tomography provides volumetric reconstruction of brain structure with micrometer resolution. Gray matter and white matter can be highlighted using conventional and polarization-based contrasts; however, vasculature in ex-vivo fixed brain has not been investigated at large scale due to lack of intrinsic contrast. We present contrast enhancement to visualize the vasculature by perfusing titanium dioxide particles transcardially into the mouse vascular system. The brain, after dissection and fixation, is imaged by a serial optical coherence scanner. Accumulation of particles in blood vessels generates distinguishable optical signals. Among these, the cross-polarization images reveal the vasculature organization remarkably well. The conventional and polarization-based contrasts are still available for probing the gray matter and white matter structures. The segmentation and reconstruction of the vasculature are presented by using a deep learning algorithm. Axonal fiber pathways in the mouse brain are delineated by utilizing the retardance and optic axis orientation contrasts. This is a low-cost method that can be further developed to study neurovascular diseases and brain injury in animal models.
Collapse
Affiliation(s)
- Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Chao J. Liu
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| |
Collapse
|
12
|
Abstract
Fuelled by innovation, optical microscopy plays a critical role in the life sciences and medicine, from basic discovery to clinical diagnostics. However, optical microscopy is limited by typical penetration depths of a few hundred micrometres for in vivo interrogations in the visible spectrum. Optoacoustic microscopy complements optical microscopy by imaging the absorption of light, but it is similarly limited by penetration depth. In this Review, we summarize progress in the development and applicability of optoacoustic mesoscopy (OPAM); that is, optoacoustic imaging with acoustic resolution and wide-bandwidth ultrasound detection. OPAM extends the capabilities of optical imaging beyond the depths accessible to optical and optoacoustic microscopy, and thus enables new applications. We explain the operational principles of OPAM, its placement as a bridge between optoacoustic microscopy and optoacoustic macroscopy, and its performance in the label-free visualization of tissue pathophysiology, such as inflammation, oxygenation, vascularization and angiogenesis. We also review emerging applications of OPAM in clinical and biological imaging.
Collapse
|
13
|
Jeon S, Park J, Managuli R, Kim C. A Novel 2-D Synthetic Aperture Focusing Technique for Acoustic-Resolution Photoacoustic Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:250-260. [PMID: 30072316 DOI: 10.1109/tmi.2018.2861400] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Acoustic-resolution photoacoustic microscopy (AR-PAM) is a promising technology for vascular or tumor-targeted molecular imaging. Unique advantages of AR-PM are its non-invasive, non-ionizing real-time, and deeper imaging depth. AR-PAM typically uses an ultrasound transducer with a high acoustic numerical aperture (NA) to enable deeper imaging depth. While high NA achieves good lateral resolution in the focal plane but significantly degrades the lateral resolution in the out-of-focus region. Synthetic aperture focusing technique (SAFT) has been introduced to overcome this out-of-focus degradation by synthesizing the correlated signals. Several 2-D SAFTs have been also reported to improve degraded resolution in all directions. However, the resolution enhancement of the previously reported 2-D SAFTs are suboptimal and are not equivalent to the 1-D SAFT performance under an ideal condition with the sample orientation perpendicular to the synthetic aperture direction. In this paper, we present a new 2-D SAFT called 2-D directional SAFT that improves the lateral resolution significantly and we compare our results against 1-D SAFT under ideal condition. We applied this algorithm to phantom and in vivo images to show the improvement in image quality. We also implement this algorithm in a graphical processing unit to achieve high performance to show the practicality of implementing this new algorithm in a system.
Collapse
|
14
|
Photoacoustic microscopy: principles and biomedical applications. Biomed Eng Lett 2018; 8:203-213. [PMID: 30603203 DOI: 10.1007/s13534-018-0067-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022] Open
Abstract
Photoacoustic microscopy (PAM) has become an increasingly popular technology for biomedical applications, providing anatomical, functional, and molecular information. In this concise review, we first introduce the basic principles and typical system designs of PAM, including optical-resolution PAM and acoustic-resolution PAM. The major imaging characteristics of PAM, i.e. spatial resolutions, penetration depth, and scanning approach are discussed in detail. Then, we introduce the major biomedical applications of PAM, including anatomical imaging across scales from cellular level to organismal level, label-free functional imaging using endogenous biomolecules, and molecular imaging using exogenous contrast agents. Lastly, we discuss the technical and engineering challenges of PAM in the translation to potential clinical impacts.
Collapse
|
15
|
Maronpot RR, Nyska A, Troth SP, Gabrielson K, Sysa-Shah P, Kalchenko V, Kuznetsov Y, Harmelin A, Schiffenbauer YS, Bonnel D, Stauber J, Ramot Y. Regulatory Forum Opinion Piece*: Imaging Applications in Toxicologic Pathology-Recommendations for Use in Regulated Nonclinical Toxicity Studies. Toxicol Pathol 2018. [PMID: 28641506 DOI: 10.1177/0192623317710014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Available imaging systems for use in preclinical toxicology studies increasingly show utility as important tools in the toxicologic pathologist's armamentarium, permit longitudinal evaluation of functional and morphological changes in tissues, and provide important information such as organ and lesion volume not obtained by conventional toxicology study parameters. Representative examples of practical imaging applications in toxicology research and preclinical studies are presented for ultrasound, positron emission tomography/single-photon emission computed tomography, optical, magnetic resonance imaging, and matrix-assisted laser desorption ionization-imaging mass spectrometry imaging. Some of the challenges for making imaging systems good laboratory practice-compliant for regulatory submission are presented. Use of imaging data on a case-by-case basis as part of safety evaluation in regulatory submissions is encouraged.
Collapse
Affiliation(s)
| | - Abraham Nyska
- 2 Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, Israel
| | - Sean P Troth
- 3 Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kathleen Gabrielson
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- 4 Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vyacheslav Kalchenko
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- 5 Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Yuval Ramot
- 8 Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
16
|
Stylogiannis A, Prade L, Buehler A, Aguirre J, Sergiadis G, Ntziachristos V. Continuous wave laser diodes enable fast optoacoustic imaging. PHOTOACOUSTICS 2018; 9:31-38. [PMID: 29387537 PMCID: PMC5772504 DOI: 10.1016/j.pacs.2017.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Pulsed laser diodes may offer a smaller, less expensive alternative to conventional optoacoustic laser sources; however they do not provide pulse rates faster than a few tens of kHz and emit at wavelengths only within the near-infrared region. We investigated whether continuous wave (CW) laser diodes, which are available in visible and near-infrared regions, can be good optoacoustic light sources when overdriven with a peak current >40-fold higher than the CW absolute maximum. We found that overdriven CW diodes provided ∼10 ns pulses of ∼200 nJ/pulse and repetition rates higher than 600 kHz without being damaged, outperforming many pulsed laser diodes. Using this system, we obtained images of phantoms and mouse ear and human arm in vivo, confirming their use in optoacoustic imaging and sensing.
Collapse
Key Words
- CNR, contrast to background ration
- COD, catastrophic optical damage
- CW, continuous wave
- Current drivers
- DAQ, data acquisition card
- FWHM, full width at half maximum
- Light sources
- Light-emitting diodes
- MIP, maximum intensity projection
- NIR, near-infrared
- Near-infrared
- OPO, optical parametric oscillator
- PLD, pulsed laser diode
- Photoacoustic
- SNR, signal-to-noise ratio
- TTL, transistor-transistor-logic
- UST, ultrasound transducer
- VIS, visible
- Visible
Collapse
Affiliation(s)
- Antonios Stylogiannis
- Institute of Biological and Medical Imaging, Technische Universität München, Munich, Germany and Helmholtz Zentrum München, Neuherberg, Germany
| | - Ludwig Prade
- Institute of Biological and Medical Imaging, Technische Universität München, Munich, Germany and Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Buehler
- Institute of Biological and Medical Imaging, Technische Universität München, Munich, Germany and Helmholtz Zentrum München, Neuherberg, Germany
| | - Juan Aguirre
- Institute of Biological and Medical Imaging, Technische Universität München, Munich, Germany and Helmholtz Zentrum München, Neuherberg, Germany
| | - George Sergiadis
- Institute of Biological and Medical Imaging, Technische Universität München, Munich, Germany and Helmholtz Zentrum München, Neuherberg, Germany
- Department for Electrical and Computer Engineering, Aristotle University, 54124 Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Technische Universität München, Munich, Germany and Helmholtz Zentrum München, Neuherberg, Germany
- Corresponding author.
| |
Collapse
|
17
|
Erfanzadeh M, Kumavor PD, Zhu Q. Laser scanning laser diode photoacoustic microscopy system. PHOTOACOUSTICS 2018; 9:1-9. [PMID: 29201646 PMCID: PMC5699884 DOI: 10.1016/j.pacs.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 05/05/2023]
Abstract
The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.
Collapse
Affiliation(s)
- Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Patrick D. Kumavor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Corresponding author.
| |
Collapse
|
18
|
Luo X, Peng K, Wang B, Wang T, Xiao J. [Focal zone integral and multiple axial scanning based acoustic resolution photoacoustic microscopy with high lateral resolution in-depth]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2018; 35:115-122. [PMID: 29745610 PMCID: PMC10307544 DOI: 10.7507/1001-5515.201609072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 06/08/2023]
Abstract
Acoustic resolution photoacoustic microscopy (ARPAM) combines the advantages of high optical contrast, and high ultrasonic spatial resolution and penetration. However, in photoacoustic microscopy (PAM), the information from deep regions can be greatly affected by the shallow targets, and most importantly, the irreconcilable conflict between the lateral resolution and depth of fields has always be a major factor that limits the imaging quality. In this work, an ARPAM system was developed, in which a non-coaxial arrangement of light illumination and acoustic detection was adopted to alleviate the influence of the tissue surface on the deep targets, and a novel focal zone integral algorithm was applied with multiple axial scanning to improve the lateral resolution. Phantom experiment results show that, the build system can maintain a consistent high lateral resolution of 0.6 mm over a large range in axial direction, which is close to the theoretical calculations. The following tumor imaging results on nude mice indicate that, the proposed method can provide more in-depth information compared with the conventional back detection ARPAM method. With the development of fast repetition lasers and image scanning technologies, the proposed method may play an important role in cerebral vascular imaging, cervical cancer photoacoustic endoscopic detection, and superficial tumor imaging.
Collapse
Affiliation(s)
- Xiaofei Luo
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, P.R.China
| | - Kuan Peng
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, P.R.China
| | - Bo Wang
- College of Biology, Hunan University, Changsha 410082, P.R.China
| | - Tianshuang Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, P.R.China
| | - Jiaying Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083,
| |
Collapse
|
19
|
Pushing the Boundaries of Neuroimaging with Optoacoustics. Neuron 2017; 96:966-988. [DOI: 10.1016/j.neuron.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
20
|
Kneipp M, Turner J, Estrada H, Rebling J, Shoham S, Razansky D. Effects of the murine skull in optoacoustic brain microscopy. JOURNAL OF BIOPHOTONICS 2016; 9:117-23. [PMID: 25919801 DOI: 10.1002/jbio.201400152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 05/20/2023]
Abstract
Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments.
Collapse
Affiliation(s)
- Moritz Kneipp
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany
| | - Jake Turner
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany
| | - Héctor Estrada
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Rebling
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany
| | - Shy Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany.
| |
Collapse
|
21
|
Subochev P, Orlova A, Shirmanova M, Postnikova A, Turchin I. Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study. BIOMEDICAL OPTICS EXPRESS 2015; 6:631-8. [PMID: 25780752 PMCID: PMC4354594 DOI: 10.1364/boe.6.000631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 05/18/2023]
Abstract
We propose the use of thermoelastic (TE) excitation of an ultrasonic (US) detector by backscattered laser radiation as a means of upgrading a single-modality photoacoustic (PA) microscope to dual-modality PA/US imaging at minimal cost. The upgraded scanning head of our dual-modality microscope consists of a fiber bundle with 14 output arms and a 32MHz polyvinylidene difluoride (PVDF) detector with a 34 MHz bandwidth (-6 dB level), 12.7 mm focal length, and a 0.25 numerical aperture. A single optical pulse delivered through the fiber bundle to the biotissue being investigated, in combination with a metalized surface on the PVDF detector allows us to obtain both PA and US A-scans. To demonstrate the in vivo capabilities of the proposed method we present the results of bimodal imaging of the brain of a newborn rat, a mouse tail and a mouse tumor.
Collapse
Affiliation(s)
- Pavel Subochev
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod,
Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod,
Russia
| | - Marina Shirmanova
- Lobachevsky State University of Nizhny Novgorod, 19 Gagarin Avenue, Nizhniy Novgorod,
Russia
- Nizhny Novgorod State Medical Academy, Nizhniy Novgorod,
Russia
| | - Anna Postnikova
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod,
Russia
| | - Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov Street, Nizhniy Novgorod,
Russia
| |
Collapse
|
22
|
Lin L, Xia J, Wong TTW, Li L, Wang LV. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:016019. [PMID: 25611865 PMCID: PMC4302266 DOI: 10.1117/1.jbo.20.1.016019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 05/04/2023]
Abstract
Using internal illumination with an optical fiber in the oral cavity, we demonstrate, for the first time, photoacoustic computed tomography (PACT) of the deep brain of rats in vivo. The experiment was performed on a full-ring-array PACT system, with the capability of providing high-speed cross-sectional imaging of the brain. Compared with external illumination through the cranial skull, internal illumination delivers more light to the base of the brain. Consequently, in vivo photoacoustic images clearly reveal deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.
Collapse
Affiliation(s)
- Li Lin
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130, United States
| | - Jun Xia
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130, United States
- The State University of New York, University at Buffalo, Department of Biomedical Engineering, Buffalo, New York 14260, United States
| | - Terence T. W. Wong
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130, United States
| | - Lei Li
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri 63130, United States
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
23
|
Zhou Y, Xing W, Maslov KI, Cornelius LA, Wang LV. Handheld photoacoustic microscopy to detect melanoma depth in vivo. OPTICS LETTERS 2014; 39:4731-4. [PMID: 25121860 PMCID: PMC4160823 DOI: 10.1364/ol.39.004731] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed handheld photoacoustic microscopy (PAM) to detect melanoma and determine tumor depth in nude mice in vivo. Compared to our previous PAM system for melanoma imaging, a new light delivery mechanism is introduced to improve light penetration. We show that melanomas with 4.1 and 3.7 mm thicknesses can be successfully detected in phantom and in in vivo experiments, respectively. With its deep melanoma imaging ability and handheld design, this system can be tested for clinical melanoma diagnosis, prognosis, and surgical planning for patients at the bedside.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Wenxin Xing
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Konstantin I. Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, 660 S. Euclid, Campus Box 8123, St. Louis, Missouri 63110
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| |
Collapse
|
24
|
Transcranial optical vascular imaging (TOVI) of cortical hemodynamics in mouse brain. Sci Rep 2014; 4:5839. [PMID: 25059112 PMCID: PMC5394480 DOI: 10.1038/srep05839] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/09/2014] [Indexed: 12/03/2022] Open
Abstract
In vivo imaging of cerebral vasculature and blood flow provides highly valuable information for clinicians as well as researchers. Nevertheless, currently available methods are complex, time-consuming and expensive. Here, we present a novel, minimally invasive method for vascular imaging through the sufficiently transparent intact skull of young mice. Our method combines laser speckle and fluorescent imaging with dynamic color mapping and image fusion. Quickly generated wide-field images present clear visual information on blood flow and perfusion in the cerebral cortex and meninges. The ability of the method to visualize hemodynamic changes is demonstrated by induced occlusion of the middle cerebral artery. The compact and easily operated system comprises of several pieces of standard and affordable laboratory equipment. This simple, robust and inexpensive method may become an important tool for assessment of brain hemodynamics in preclinical studies.
Collapse
|
25
|
Yao J, Wang LV. Photoacoustic Brain Imaging: from Microscopic to Macroscopic Scales. NEUROPHOTONICS 2014; 1:1877516. [PMID: 25401121 PMCID: PMC4232215 DOI: 10.1117/1.nph.1.1.011003] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 05/12/2023]
Abstract
Human brain mapping has become one of the most exciting contemporary research areas, with major breakthroughs expected in the following decades. Modern brain imaging techniques have allowed neuroscientists to gather a wealth of anatomic and functional information about the brain. Among these techniques, by virtue of its rich optical absorption contrast, high spatial and temporal resolutions, and deep penetration, photoacoustic tomography (PAT) has attracted more and more attention, and is playing an increasingly important role in brain studies. In particular, PAT complements other brain imaging modalities by providing high-resolution functional and metabolic imaging. More importantly, PAT's unique scalability enables scrutinizing the brain at both microscopic and macroscopic scales, using the same imaging contrast. In this Review, we present the state-of-the-art PAT techniques for brain imaging, summarize representative neuroscience applications, outline the technical challenges in translating PAT to human brain imaging, and envision potential technological deliverables.
Collapse
Affiliation(s)
- Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| |
Collapse
|
26
|
Black KCL, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, Zhao Y, Cutler CS, Wang LV, Liu Y, Xia Y. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS NANO 2014; 8:4385-94. [PMID: 24766522 PMCID: PMC4358630 DOI: 10.1021/nn406258m] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radioactive (198)Au nanostructures with a similar size but different shapes and then compare their biodistribution, tumor uptake, and intratumoral distribution using a murine EMT6 breast cancer model. Specifically, we investigated Au nanospheres, nanodisks, nanorods, and cubic nanocages. After PEGylation, an aqueous suspension of the radioactive Au nanostructures was injected into a tumor-bearing mouse intravenously, and their biodistribution was measured from the γ radiation while their tumor uptake was directly imaged using the Cerenkov radiation. Significantly higher tumor uptake was observed for the Au nanospheres and nanodisks relative to the Au nanorods and nanocages at 24 h postinjection. Furthermore, autoradiographic imaging was performed on thin slices of the tumor after excision to resolve the intratumoral distributions of the nanostructures. While both the Au nanospheres and nanodisks were only observed on the surfaces of the tumors, the Au nanorods and nanocages were distributed throughout the tumors.
Collapse
Affiliation(s)
- Kvar C. L. Black
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yucai Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Hannah P. Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Xin Cai
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Wenxin Xing
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Bo Pang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yongfeng Zhao
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Cathy S. Cutler
- University of Missouri Research Reactor, Columbia, Missouri 65211, United States
| | - Lihong V. Wang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Address correspondence to ,
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Address correspondence to ,
| |
Collapse
|
27
|
Noreen R, Moenner M, Hwu Y, Petibois C. FTIR spectro-imaging of collagens for characterization and grading of gliomas. Biotechnol Adv 2012; 30:1432-46. [DOI: 10.1016/j.biotechadv.2012.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/23/2012] [Accepted: 03/06/2012] [Indexed: 01/07/2023]
|
28
|
Wang L, Maslov K, Xing W, Garcia-Uribe A, Wang LV. Video-rate functional photoacoustic microscopy at depths. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:106007. [PMID: 23224006 PMCID: PMC3461058 DOI: 10.1117/1.jbo.17.10.106007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 05/18/2023]
Abstract
We report the development of functional photoacoustic microscopy capable of video-rate high-resolution in vivo imaging in deep tissue. A lightweight photoacoustic probe is made of a single-element broadband ultrasound transducer, a compact photoacoustic beam combiner, and a bright-field light delivery system. Focused broadband ultrasound detection provides a 44-μm lateral resolution and a 28-μm axial resolution based on the envelope (a 15-μm axial resolution based on the raw RF signal). Due to the efficient bright-field light delivery, the system can image as deep as 4.8 mm in vivo using low excitation pulse energy (28 μJ per pulse, 0.35 mJ/cm² on the skin surface). The photoacoustic probe is mounted on a fast-scanning voice-coil scanner to acquire 40 two-dimensional (2-D) B-scan images per second over a 9-mm range. High-resolution anatomical imaging is demonstrated in the mouse ear and brain. Via fast dual-wavelength switching, oxygen dynamics of mouse cardio-vasculature is imaged in realtime as well.
Collapse
Affiliation(s)
- Lidai Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899
| | - Konstantin Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899
| | - Wenxin Xing
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899
| | - Alejandro Garcia-Uribe
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899
- Address all correspondence to: Lihong V. Wang, Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899. Tel: (314) 935-6152; Fax: (314) 935-7448; E-mail:
| |
Collapse
|
29
|
Chatni MR, Yao J, Danielli A, Favazza CP, Maslov KI, Wang LV. Functional photoacoustic microscopy of pH. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:100503. [PMID: 22029342 PMCID: PMC3210191 DOI: 10.1117/1.3644495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/24/2011] [Accepted: 09/09/2011] [Indexed: 05/19/2023]
Abstract
pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.
Collapse
Affiliation(s)
- Muhammad Rameez Chatni
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Photoacoustic imaging, which is based on the photoacoustic effect, has developed extensively over the last decade. Possessing many attractive characteristics such as the use of nonionizing electromagnetic waves, good resolution and contrast, portable instrumention, and the ability to partially quantitate the signal, photoacoustic techniques have been applied to the imaging of cancer, wound healing, disorders in the brain, and gene expression, among others. As a promising structural, functional, and molecular imaging modality for a wide range of biomedical applications, photoacoustic imaging can be categorized into two types of systems: photoacoustic tomography (PAT), which is the focus of this article, and photoacoustic microscopy (PAM). We first briefly describe the endogenous (e.g., hemoglobin and melanin) and the exogenous (e.g., indocyanine green [ICG], various gold nanoparticles, single-walled carbon nanotubes [SWNTs], quantum dots [QDs], and fluorescent proteins) contrast agents for photoacoustic imaging. Next, we discuss in detail the applications of nontargeted photoacoustic imaging. Recently, molecular photoacoustic (MPA) imaging has gained significant interest, and a few proof-of-principle studies have been reported. We summarize the current state of the art of MPA imaging, including the imaging of gene expression and the combination of photoacoustic imaging with other imaging modalities. Last, we point out obstacles facing photoacoustic imaging. Although photoacoustic imaging will likely continue to be a highly vibrant research field for years to come, the key question of whether MPA imaging could provide significant advantages over nontargeted photoacoustic imaging remains to be answered in the future.
Collapse
|
31
|
Abstract
Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2-3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical implementation, and a range of clinical and preclinical applications are reviewed.
Collapse
Affiliation(s)
- Paul Beard
- Department of Medical Physics and Bioengineering , University College London , Gower Street, London WC1E 6BT , UK
| |
Collapse
|
32
|
Abstract
Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2-3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical implementation, and a range of clinical and preclinical applications are reviewed.
Collapse
Affiliation(s)
- Paul Beard
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
33
|
Favazza CP, Cornelius LA, Wang LV. In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:026004. [PMID: 21361688 PMCID: PMC3056315 DOI: 10.1117/1.3536522] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microcirculation is an important component of the cardiovascular system and can be used to assess systemic cardiovascular health. Numerous studies have investigated cutaneous microcirculation as an indicator of cardiovascular related diseases. Such research has shown promising results; however, there are many limitations regarding the employed measurement techniques, such as poor depth and spatial resolution and measurement versatility. Here we show the results of functional cutaneous microvascular experiments measured with photoacoustic microscopy, which provides high spatial resolution and multiparameter measurements. In a set of experiments, microvascular networks located in the palms of volunteers were perturbed by periodic ischemic events, and the subsequent hemodynamic response to the stimulus was recorded. Results indicate that during periods of arterial occlusion, the relative oxygen saturation of the capillary vessels decreased below resting levels, and temporarily increased above resting levels immediately following the occlusion. Furthermore, a hyperemic reaction to the occlusions was measured, and the observation agreed well with similar measurements using more conventional imaging techniques. Due to its exceptional capability to functionally image vascular networks with high spatial resolution, photoacoustic microscopy could be a beneficial biomedical tool to assess microvascular functioning and applied to patients with diseases that affect cardiovascular health. © 2011 Society of Photo-Optical Instrumentation Engineers.
Collapse
Affiliation(s)
- Christopher P Favazza
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
34
|
Kim C, Favazza C, Wang LV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 2010; 110:2756-82. [PMID: 20210338 PMCID: PMC2872199 DOI: 10.1021/cr900266s] [Citation(s) in RCA: 514] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chulhong Kim
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899
| | - Christopher Favazza
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899
| | - Lihong V. Wang
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899
| |
Collapse
|
35
|
Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV. Real-time photoacoustic tomography of cortical hemodynamics in small animals. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:010509. [PMID: 20210422 PMCID: PMC2839793 DOI: 10.1117/1.3302807] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
For the first time, the hemodynamics within the entire cerebral cortex of a mouse were studied by using photoacoustic tomography (PAT) in real time. The PAT system, based on a 512-element full-ring ultrasound array, received photoacoustic signals primarily from a slice of 2-mm thickness. This system can provide high-resolution brain vasculature images. We also monitored the fast wash-in process of a photoacoustic contrast agent in the mouse brain. Our results demonstrated that PAT is a powerful imaging modality that can be potentially used to study small animal neurofunctional activities.
Collapse
|
36
|
Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV. Real-time photoacoustic tomography of cortical hemodynamics in small animals. JOURNAL OF BIOMEDICAL OPTICS 2010. [PMID: 20210422 DOI: 10.1117/12.842159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For the first time, the hemodynamics within the entire cerebral cortex of a mouse were studied by using photoacoustic tomography (PAT) in real time. The PAT system, based on a 512-element full-ring ultrasound array, received photoacoustic signals primarily from a slice of 2-mm thickness. This system can provide high-resolution brain vasculature images. We also monitored the fast wash-in process of a photoacoustic contrast agent in the mouse brain. Our results demonstrated that PAT is a powerful imaging modality that can be potentially used to study small animal neurofunctional activities.
Collapse
|
37
|
Stein EW, Maslov K, Wang LV. Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:020502. [PMID: 19405708 PMCID: PMC2676448 DOI: 10.1117/1.3095799] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photoacoustic microscopy (PAM) has been used to obtain high-resolution, noninvasive images of the in vivo mouse brain. In this work, we exploit the high-depth and temporal resolutions of PAM to noninvasively image the blood-oxygenation dynamics of multiple cortex vessels in the mouse brain simultaneously in response to controlled hypoxic and hyperoxic challenges. These results confirm the ability of PAM to track blood oxygenation in the mouse brain, a critical aspect of imaging brain activity through the hemodynamic response.
Collapse
|