1
|
Rajaram A, Yip LCM, Milej D, Suwalski M, Kewin M, Lo M, Carson JJL, Han V, Bhattacharya S, Diop M, de Ribaupierre S, St. Lawrence K. Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sci 2020; 10:E452. [PMID: 32679665 PMCID: PMC7407524 DOI: 10.3390/brainsci10070452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Post-hemorrhagic ventricular dilatation (PHVD) is characterized by a build-up of cerebral spinal fluid (CSF) in the ventricles, which increases intracranial pressure and compresses brain tissue. Clinical interventions (i.e., ventricular taps, VT) work to mitigate these complications through CSF drainage; however, the timing of these procedures remains imprecise. This study presents Neonatal NeuroMonitor (NNeMo), a portable optical device that combines broadband near-infrared spectroscopy (B-NIRS) and diffuse correlation spectroscopy (DCS) to provide simultaneous assessments of cerebral blood flow (CBF), tissue saturation (StO2), and the oxidation state of cytochrome c oxidase (oxCCO). In this study, NNeMo was used to monitor cerebral hemodynamics and metabolism in PHVD patients selected for a VT. Across multiple VTs in four patients, no significant changes were found in any of the three parameters: CBF increased by 14.6 ± 37.6% (p = 0.09), StO2 by 1.9 ± 4.9% (p = 0.2), and oxCCO by 0.4 ± 0.6 µM (p = 0.09). However, removing outliers resulted in significant, but small, increases in CBF (6.0 ± 7.7%) and oxCCO (0.1 ± 0.1 µM). The results of this study demonstrate NNeMo's ability to provide safe, non-invasive measurements of cerebral perfusion and metabolism for neuromonitoring applications in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
| | - Marcus Lo
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
| | - Jeffrey J. L. Carson
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Victor Han
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON N6A 3K7, Canada; (V.H.); (S.B.)
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON N6A 3K7, Canada; (V.H.); (S.B.)
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Sandrine de Ribaupierre
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| |
Collapse
|
2
|
Kewin M, Rajaram A, Milej D, Abdalmalak A, Morrison L, Diop M, St Lawrence K. Evaluation of hyperspectral NIRS for quantitative measurements of tissue oxygen saturation by comparison to time-resolved NIRS. BIOMEDICAL OPTICS EXPRESS 2019; 10:4789-4802. [PMID: 31565525 PMCID: PMC6757477 DOI: 10.1364/boe.10.004789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 05/17/2023]
Abstract
Near-infrared spectroscopy (NIRS) is considered ideal for brain monitoring during preterm infancy because it is non-invasive and provides a continuous measure of tissue oxygen saturation (StO2). Hyperspectral NIRS (HS NIRS) is an inexpensive, quantitative modality that can measure tissue optical properties and oxygen saturation (StO2) by differential spectroscopy. In this study, experiments were conducted using newborn piglets to measure StO2 across a range of oxygenation levels from hyperoxia to hypoxia by HS and time-resolved (TR) NIRS for validation. A strong correlation between StO2 measurements from the two techniques was observed (R2 = 0.98, average slope of 1.02 ± 0.28); however, the HS-NIRS estimates were significantly higher than the corresponding TR-NIRS values. These regression results indicate that HS NIRS could become a clinically feasible method for monitoring StO2 in preterm infants.
Collapse
Affiliation(s)
- Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Laura Morrison
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
3
|
Khalid M, Milej D, Rajaram A, Abdalmalak A, Morrison L, Diop M, St. Lawrence K. Development of a stand-alone DCS system for monitoring absolute cerebral blood flow. BIOMEDICAL OPTICS EXPRESS 2019; 10:4607-4620. [PMID: 31565512 PMCID: PMC6757462 DOI: 10.1364/boe.10.004607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/23/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a noninvasive optical technique for monitoring cerebral blood flow (CBF). This work presents a stand-alone DCS system capable of monitoring absolute CBF by incorporating a quantitative dynamic contrast-enhanced (DCE) technique. Multi-distance data were acquired to measure the tissue optical properties and to perform DCE experiments. Feasibility of the technique was assessed in piglets in which the optical properties were measured independently by time-resolved near-infrared spectroscopy. A strong linear correlation was observed between CBF values derived using the two sets of optical properties, demonstrating that this hybrid DCS approach can provide real-time monitoring of absolute CBF.
Collapse
Affiliation(s)
- Mahro Khalid
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Laura Morrison
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
4
|
Gerega A, Milej D, Weigl W, Kacprzak M, Liebert A. Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes. BIOMEDICAL OPTICS EXPRESS 2018; 9:2974-2993. [PMID: 29984079 PMCID: PMC6033559 DOI: 10.1364/boe.9.002974] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 05/23/2023]
Abstract
An optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for the clinical assessment of brain perfusion at the bedside. We report on multiwavelength time-resolved diffuse reflectance spectroscopy measurements carried out on the head of a healthy adult during the intravenous administration of a bolus of ICG. Intracerebral and extracerebral changes in absorption were estimated from an analysis of changes in statistical moments (total number of photons, mean time of flight and variance) of the distributions of times of flight (DTOF) of photons recorded simultaneously at 16 wavelengths from the range of 650-850 nm using sensitivity factors estimated by diffusion approximation based on a layered model of the studied medium. We validated the proposed method in a series of phantom experiments and in-vivo measurements. The results obtained show that changes in the concentration of the ICG can be assessed as a function of time of the experiment and depth in the tissue. Thus, the separation of changes in ICG concentration appearing in intra- and extracerebral tissues can be estimated from optical data acquired at a single source-detector pair of fibers/fiber bundles positioned on the surface of the head.
Collapse
Affiliation(s)
- Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences Trojdena 4, 02-109 Warsaw, Poland
| | - Daniel Milej
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences Trojdena 4, 02-109 Warsaw, Poland
- Department of Medical Biophysics, Western University, London, Ontario N6A 5C1, Canada
- Imaging Division, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Wojciech Weigl
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Michal Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences Trojdena 4, 02-109 Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
5
|
Rajaram A, Bale G, Kewin M, Morrison LB, Tachtsidis I, St. Lawrence K, Diop M. Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2588-2603. [PMID: 30258675 PMCID: PMC6154190 DOI: 10.1364/boe.9.002588] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 05/23/2023]
Abstract
Preterm infants born with very low birth weights are at a high risk of brain injury, in part because the premature brain is believed to be prone to periods of low cerebral blood flow (CBF). Tissue damage is likely to occur if reduction in CBF is sufficient to impair cerebral energy metabolism for extended periods. Therefore, a neuromonitoring method that can detect reductions in CBF, large enough to affect metabolism, could alert the neonatal intensive care team before injury occurs. In this report, we present the development of an optical system that combines diffuse correlation spectroscopy (DCS) for monitoring CBF and broadband near-infrared spectroscopy (B-NIRS) for monitoring the oxidation state of cytochrome c oxidase (oxCCO) - a key biomarker of oxidative metabolism. The hybrid instrument includes a multiplexing system to enable concomitant DCS and B-NIRS measurements while avoiding crosstalk between the two subsystems. The ability of the instrument to monitor dynamic changes in CBF and oxCCO was demonstrated in a piglet model of neonatal hypoxia-ischemia (HI). Experiments conducted in eight animals, including two controls, showed that oxCCO exhibited a delayed response to ischemia while CBF and tissue oxygenation (StO2) responses were instantaneous. These findings suggest that simultaneous neuromonitoring of perfusion and metabolism could provide critical information regarding clinically significant hemodynamic events prior to the onset of brain injury.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Gemma Bale
- Medical Physics & Biomedical Engineering, University College London, Gower St., Bloomsbury, London, WC1E 6BT, United Kingdom
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Laura B. Morrison
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
| | - Ilias Tachtsidis
- Medical Physics & Biomedical Engineering, University College London, Gower St., Bloomsbury, London, WC1E 6BT, United Kingdom
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| |
Collapse
|
6
|
Diop M, Kishimoto J, Toronov V, Lee DSC, St. Lawrence K. Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants. BIOMEDICAL OPTICS EXPRESS 2015; 6:3907-18. [PMID: 26504641 PMCID: PMC4605050 DOI: 10.1364/boe.6.003907] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 05/23/2023]
Abstract
Neonatal neuromonitoring is a major clinical focus of near-infrared spectroscopy (NIRS) and there is an increasing interest in measuring cerebral blood flow (CBF) and oxidative metabolism (CMRO2) in addition to the classic tissue oxygenation saturation (StO2). The purpose of this study was to assess the ability of broadband NIRS combined with diffusion correlation spectroscopy (DCS) to measured changes in StO2, CBF and CMRO2 in preterm infants undergoing pharmaceutical treatment of patent ductus arteriosus. CBF was measured by both DCS and contrast-enhanced NIRS for comparison. No significant difference in the treatment-induced CBF decrease was found between DCS (27.9 ± 2.2%) and NIRS (26.5 ± 4.3%). A reduction in StO2 (70.5 ± 2.4% to 63.7 ± 2.9%) was measured by broadband NIRS, reflecting the increase in oxygen extraction required to maintain CMRO2. This study demonstrates the applicability of broadband NIRS combined with DCS for neuromonitoring in this patient population.
Collapse
Affiliation(s)
- Mamadou Diop
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Jessica Kishimoto
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | | | - David S. C. Lee
- Department of Neonatology, London Health Sciences Centre, London, ON, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
7
|
Caldwell M, Hapuarachchi T, Highton D, Elwell C, Smith M, Tachtsidis I. BrainSignals Revisited: Simplifying a Computational Model of Cerebral Physiology. PLoS One 2015; 10:e0126695. [PMID: 25961297 PMCID: PMC4427507 DOI: 10.1371/journal.pone.0126695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Multimodal monitoring of brain state is important both for the investigation of healthy cerebral physiology and to inform clinical decision making in conditions of injury and disease. Near-infrared spectroscopy is an instrument modality that allows non-invasive measurement of several physiological variables of clinical interest, notably haemoglobin oxygenation and the redox state of the metabolic enzyme cytochrome c oxidase. Interpreting such measurements requires the integration of multiple signals from different sources to try to understand the physiological states giving rise to them. We have previously published several computational models to assist with such interpretation. Like many models in the realm of Systems Biology, these are complex and dependent on many parameters that can be difficult or impossible to measure precisely. Taking one such model, BrainSignals, as a starting point, we have developed several variant models in which specific regions of complexity are substituted with much simpler linear approximations. We demonstrate that model behaviour can be maintained whilst achieving a significant reduction in complexity, provided that the linearity assumptions hold. The simplified models have been tested for applicability with simulated data and experimental data from healthy adults undergoing a hypercapnia challenge, but relevance to different physiological and pathophysiological conditions will require specific testing. In conditions where the simplified models are applicable, their greater efficiency has potential to allow their use at the bedside to help interpret clinical data in near real-time.
Collapse
Affiliation(s)
- Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tharindi Hapuarachchi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - David Highton
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Clare Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Martin Smith
- Neurocritical Care Unit, University College Hospitals, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
8
|
Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014; 85 Pt 1:6-27. [PMID: 23684868 DOI: 10.1016/j.neuroimage.2013.05.004] [Citation(s) in RCA: 1035] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/12/2013] [Accepted: 05/03/2013] [Indexed: 01/09/2023] Open
|
9
|
Weigl W, Milej D, Gerega A, Toczylowska B, Kacprzak M, Sawosz P, Botwicz M, Maniewski R, Mayzner-Zawadzka E, Liebert A. Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method. Neuroimage 2013; 85 Pt 1:555-65. [PMID: 23831529 DOI: 10.1016/j.neuroimage.2013.06.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to verify the usefulness of the time-resolved optical method utilizing diffusely reflected photons and fluorescence signals combined with intravenous injection of indocyanine green (ICG) in the assessment of brain perfusion in post-traumatic brain injury patients. The distributions of times of flight (DTOFs) of diffusely reflected photons were acquired together with the distributions of times of arrival (DTAs) of fluorescence photons. The data analysis methodology was based on the observation of delays between the signals of statistical moments (number of photons, mean time of flight and variance) of DTOFs and DTAs related to the inflow of ICG to the extra- and intracerebral tissue compartments. Eleven patients with brain hematoma, 15 patients with brain edema and a group of 9 healthy subjects were included in this study. Statistically significant differences between parameters obtained in healthy subjects and patients with brain hematoma and brain edema were observed. The best optical parameter to differentiate patients and control group was variance of the DTOFs or DTAs. Results of the study suggest that time-resolved optical monitoring of inflow of the ICG seems to be a promising tool for detecting cerebral perfusion insufficiencies in critically ill patients.
Collapse
Affiliation(s)
- W Weigl
- Medical University of Warsaw, I Department of Anesthesiology and Intensive Care, Warsaw, Poland; Warsaw Praski Hospital, Department of Intensive Care and Anesthesiology, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Diop M, St. Lawrence K. Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight. BIOMEDICAL OPTICS EXPRESS 2013; 4:447-59. [PMID: 23504445 PMCID: PMC3595088 DOI: 10.1364/boe.4.000447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/24/2013] [Accepted: 02/13/2013] [Indexed: 05/18/2023]
Abstract
Time-resolved (TR) techniques provide a means of discriminating photons based on their time-of-flight. Since early arriving photons have a lower probability of probing deeper tissue than photons with long time-of-flight, time-windowing has been suggested as a method for improving depth sensitivity. However, TR measurements also contain instrument contributions (instrument-response-function, IRF), which cause temporal broadening of the measured temporal point-spread function (TPSF) compared to the true distribution of times-of-flight (DTOF). The purpose of this study was to investigate the influence of the IRF on the depth sensitivity of TR measurements. TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved using a stable algorithm to recover the DTOFs. The microscopic Beer-Lambert law was applied to the TPSFs and DTOFs to obtain depth-resolved absorption changes. In contrast to the DTOF, the latest part of the TPSF was not the most sensitive to absorption changes in the lower layer, which was confirmed by computer simulations. The improved depth sensitivity of the DTOF was illustrated in a pig model of the adult human head. Specifically, it was shown that dynamic absorption changes obtained from the late part of the DTOFs recovered from TPSFs acquired by probes positioned on the scalp were similar to absorption changes measured directly on the brain. These results collectively demonstrate that this method improves the depth sensitivity of TR measurements by removing the effects of the IRF.
Collapse
Affiliation(s)
- Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
11
|
Yeganeh HZ, Toronov V, Elliott JT, Diop M, Lee TY, St. Lawrence K. Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations. BIOMEDICAL OPTICS EXPRESS 2012; 3:2761-70. [PMID: 23162714 PMCID: PMC3493236 DOI: 10.1364/boe.3.002761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/13/2012] [Accepted: 08/27/2012] [Indexed: 05/03/2023]
Abstract
We present a broad-band, continuous-wave spectral approach to quantify the baseline optical properties of tissue and changes in the concentration of a chromophore, which can assist to quantify the regional blood flow from dynamic contrast-enhanced near-infrared spectroscopy data. Experiments were conducted on phantoms and piglets. The baseline optical properties of tissue were determined by a multi-parameter wavelength-dependent data fit of a photon diffusion equation solution for a homogeneous medium. These baseline optical properties were used to find the changes in Indocyanine green concentration time course in the tissue. The changes were obtained by fitting the dynamic data at the peak wavelength of the chromophore absorption, which were used later to estimate the cerebral blood flow using a bolus tracking method.
Collapse
Affiliation(s)
- Hadi Zabihi Yeganeh
- Ryerson University, Department of Physics, 350 Victoria St.
Toronto, Ontario M5B 2K3, Canada
| | - Vladislav Toronov
- Ryerson University, Department of Physics, 350 Victoria St.
Toronto, Ontario M5B 2K3, Canada
| | - Jonathan T. Elliott
- Lawson Health Research Institute, Imaging Program, London,
Ontario N6A 4V2, Canada
| | - Mamadou Diop
- Lawson Health Research Institute, Imaging Program, London,
Ontario N6A 4V2, Canada
| | - Ting-Yim Lee
- Lawson Health Research Institute, Imaging Program, London,
Ontario N6A 4V2, Canada
- Imaging Research Laboratories, Robarts Research Institute,
London, Ontario N6A 5K8, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London,
Ontario N6A 4V2, Canada
| |
Collapse
|
12
|
Diop M, Verdecchia K, Lee TY, St Lawrence K. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements. BIOMEDICAL OPTICS EXPRESS 2011; 2:2068-81. [PMID: 21750781 PMCID: PMC3130590 DOI: 10.1364/boe.2.002068] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 05/18/2023]
Abstract
A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R(2) = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error).
Collapse
Affiliation(s)
- Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Kyle Verdecchia
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ting-Yim Lee
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6G 2V4, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
13
|
Cooper JA, Tichauer KM, Boulton M, Elliott J, Diop M, Arango M, Lee TY, St Lawrence K. Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion. J Appl Physiol (1985) 2011; 110:1691-8. [PMID: 21454747 DOI: 10.1152/japplphysiol.01458.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of intracranial aneurysms by surgical clipping carries a risk of intraoperative ischemia, caused mainly by prolonged temporary occlusion of cerebral arteries. The objective of this study was to develop a near-infrared spectroscopy (NIRS) technique for continuous monitoring of cerebral blood flow (CBF) during surgery. With this approach, cerebral hemodynamics prior to clipping are measured by a bolus-tracking method that uses indocyanine green as an intravascular contrast agent. The baseline hemodynamic measurements are then used to convert the continuous Hb difference (HbD) signal (HbD = oxyhemoglobin - deoxyhemoglobin) acquired during vessel occlusion to units of CBF. To validate the approach, HbD signal changes, along with the corresponding CBF changes, were measured in pigs following occlusion of the common carotid arteries or a middle cerebral artery. For both occlusion models, the predicted CBF change derived from the HbD signal strongly correlated with the measured change in CBF. Linear regression of the predicted and measured CBF changes resulted in a slope of 0.962 (R(2) = 0.909) following carotid occlusion and 0.939 (R(2) = 0.907) following middle cerebral artery occlusion. These results suggest that calibrating the HbD signal by baseline hemodynamic measurements provides a clinically feasible method of monitoring CBF changes during neurosurgery.
Collapse
Affiliation(s)
- Joel A Cooper
- Imaging Division, Lawson Health Research Institute, 268 Grosvenor St., London, ON, Canada N6A 4V2
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Diop M, Tichauer KM, Elliott JT, Migueis M, Lee TY, St Lawrence K. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:057004. [PMID: 21054120 DOI: 10.1117/1.3488626] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79±0.06, an intercept of -2.2±2.5 ml∕100 g∕min, and an R2 of 0.810±0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.
Collapse
Affiliation(s)
- Mamadou Diop
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada N6A 4V2.
| | | | | | | | | | | |
Collapse
|
15
|
Tichauer KM, Elliott JT, Hadway JA, Lee DS, Lee TY, St. Lawrence K. Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets. J Appl Physiol (1985) 2010; 109:878-85. [DOI: 10.1152/japplphysiol.01432.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Improving neurological care of neonates has been impeded by the absence of suitable techniques for measuring cerebral hemodynamics and energy metabolism at the bedside. Currently, near-infrared spectroscopy (NIRS) appears to be the technology best suited to fill this gap, and techniques have been proposed to measure both cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2). We have developed a fast and reliable bolus-tracking method of determining CMRO2 that combines measurements of CBF and cerebral venous oxygenation [venous oxygen saturation (CSvO2)]. However, this method has never been validated at different levels of arterial oxygenation [arterial oxygen saturation (SaO2)], which can be highly variable in the clinical setting. In this study, NIRS measurements of CBF, CSvO2, and CMRO2 were obtained over a range of SaO2 in newborn piglets ( n = 12); CSvO2 values measured directly from sagittal sinus blood samples were collected for validation. Two alternative NIRS methods that measure CSvO2 by manipulating venous oxygenation (i.e., head tilt and partial venous occlusion methods) were also employed for comparison. Statistically significant correlations were found between each NIRS technique and sagittal sinus blood oxygenation ( P < 0.05). Correlation slopes were 1.03 ( r = 0.91), 0.73 ( r = 0.73), and 0.73 ( r = 0.81) for the bolus-tracking, head tilt, and partial venous occlusion methods, respectively. The bolus-tracking technique displayed the best correlation under hyperoxic (SaO2 = 99.9 ± 0.03%) and normoxic (SaO2 = 86.9 ± 6.6%) conditions and was comparable to the other techniques under hypoxic conditions (SaO2 = 40.7 ± 9.9%). The reduced precision of the bolus-tracking method under hypoxia was attributed to errors in CSvO2 measurement that were magnified at low SaO2 levels. In conclusion, the bolus-tracking technique of measuring CSvO2, and therefore CMRO2, is accurate and robust for an SaO2 > 50% but provides reduced accuracy under more severe hypoxic levels.
Collapse
Affiliation(s)
- Kenneth M. Tichauer
- Imaging Division, Lawson Health Research Institute,
- Department of Medical Biophysics, University of Western Ontario,
| | - Jonathan T. Elliott
- Imaging Division, Lawson Health Research Institute,
- Department of Medical Biophysics, University of Western Ontario,
| | - Jennifer A. Hadway
- Imaging Division, Lawson Health Research Institute,
- Imaging Research Laboratories, Robarts Research Institute, and
| | - David S. Lee
- Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ting-Yim Lee
- Imaging Division, Lawson Health Research Institute,
- Department of Medical Biophysics, University of Western Ontario,
- Imaging Research Laboratories, Robarts Research Institute, and
| | - Keith St. Lawrence
- Imaging Division, Lawson Health Research Institute,
- Department of Medical Biophysics, University of Western Ontario,
| |
Collapse
|
16
|
Elliott JT, Diop M, Tichauer KM, Lee TY, St Lawrence K. Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:037014. [PMID: 20615043 DOI: 10.1117/1.3449579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r(2)=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL min(-1)100 g(-1) (CI(0.95): -19.63 mL min(-1)100 g(-1)-13.9 mL min(-1)100 g(-1)). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.
Collapse
Affiliation(s)
- Jonathan T Elliott
- University of Western Ontario, Department of Medical Biophysics, London, Ontario N6A 3K7, Canada.
| | | | | | | | | |
Collapse
|