1
|
O'Neill N, Schran C, Cox SJ, Michaelides A. Crumbling crystals: on the dissolution mechanism of NaCl in water. Phys Chem Chem Phys 2024; 26:26933-26942. [PMID: 39417378 PMCID: PMC11483817 DOI: 10.1039/d4cp03115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Dissolution of ionic salts in water is ubiquitous, particularly for NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface area to volume of the crystal. Overall, dissolution comprises a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights contribute to the general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement.
Collapse
Affiliation(s)
- Niamh O'Neill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| |
Collapse
|
2
|
Tan J, Wang M, Zhang J, Ye S. Determination of the Thickness of Interfacial Water by Time-Resolved Sum-Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18573-18580. [PMID: 38051545 DOI: 10.1021/acs.langmuir.3c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The physics and chemistry of a charged interface are governed by the structure of the electrical double layer (EDL). Determination of the interfacial water thickness (diw) of the charged interface is crucial to quantitatively describe the EDL structure, but it can be utilized with very scarce experimental methods. Here, we propose and verify that the vibrational relaxation time (T1) of the OH stretching mode at 3200 cm-1, obtained by time-resolved sum frequency generation vibrational spectroscopy with ssp polarizations, provides an effective tool to determine diw. By investigating the T1 values at the SiO2/NaCl solution interface, we established a time-space (T1-diw) relationship. We find that water has a T1 lifetime of ≥0.5 ps for diw ≤ 3 Å, while it displays bulk-like dynamics with T1 ≤ 0.2 ps for diw ≥ 9 Å. T1 decreases as diw increases from ∼3 Å to 9 Å. The hydration water at the DPPG lipid bilayer and LK15β protein interfaces has a thickness of ≥9 Å and shows a bulk-like feature. The time-space relationship will provide a novel tool to pattern the interfacial topography and heterogeneity in Ångstrom-depth resolution by imaging the T1 values.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
3
|
Hande VR, Chakrabarty S. How Far Is "Bulk Water" from Interfaces? Depends on the Nature of the Surface and What We Measure. J Phys Chem B 2022; 126:1125-1135. [PMID: 35104127 DOI: 10.1021/acs.jpcb.1c08603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using systematic molecular dynamics (MD) simulations, we revisit the question: At what distance from an interface do the properties of "bulk water" get recovered? We have considered three different kinds of interfaces: nonpolar (hydrophobic; isooctane-water interface), charged (negative; AOT bilayer), and polar (zwitterionic; POPC bilayer). In order to interrogate the extent of perturbation of the interfacial water molecules as a function of the distance from the interface, we utilize a diverse range of structural and dynamical parameters. To capture the structural perturbations, we look into local density (translational order), local tetrahedral order parameter, and dipolar orientation of the water molecules. We also explore the anisotropic diffusion of the water molecules in the direction perpendicular to the interface as well as the planar diffusion parallel to the interface in a distance dependent manner. In addition, the orientational time correlation functions have been computed to understand the extent of slowdown in the rotational dynamics. As expected, the electrostatic field emanating from the charged AOT interface seems to have the highest long-range effect on the orientational order and dynamics of the water molecules, whereas specific interactions like hydrogen bonding and electrostatic interaction lead to significant trapping and kinetic slowdown for both AOT and POPC (zwitterionic) very close to the interface. Our analysis highlights that not only the length-scale of perturbation depends on the nature of the interfaces and specific interactions but also the type of water property that we measure/calculate. Different water properties seem to have widely different length-scale of perturbation. Orientational order parameters seem to be perturbed to a much longer length-scale as compared to translational order parameters. The global orientational order of water can be perturbed even up to ∼4-5 nm near the negatively charged AOT surface in the absence of any extra electrolyte. This observation has significant implication toward the interpretation of experimental measurements as well since different spectroscopic techniques would probe different parameters or water properties with possible mutual disagreement and inconsistency between different types of measurements. Thus, our study provides a broader and unifying perspective toward the aspect of "context dependent" structural and dynamical perturbation of "interfacial water".
Collapse
Affiliation(s)
- Vrushali R Hande
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
4
|
Abstract
Structures and processes at water/metal interfaces play an important technological role in electrochemical energy conversion and storage, photoconversion, sensors, and corrosion, just to name a few. However, they are also of fundamental significance as a model system for the study of solid-liquid interfaces, which requires combining concepts from the chemistry and physics of crystalline materials and liquids. Particularly interesting is the fact that the water-water and water-metal interactions are of similar strength so that the structures at water/metal interfaces result from a competition between these comparable interactions. Because water is a polar molecule and water and metal surfaces are both polarizable, explicit consideration of the electronic degrees of freedom at water/metal interfaces is mandatory. In principle, ab initio molecular dynamics simulations are thus the method of choice to model water/metal interfaces, but they are computationally still rather demanding. Here, ab initio simulations of water/metal interfaces will be reviewed, starting from static systems such as the adsorption of single water molecules, water clusters, and icelike layers, followed by the properties of liquid water layers at metal surfaces. Technical issues such as the appropriate first-principles description of the water-water and water-metal interactions will be discussed, and electrochemical aspects will be addressed. Finally, more approximate but numerically less demanding approaches to treat water at metal surfaces from first-principles will be briefly discussed.
Collapse
Affiliation(s)
- Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany.,Electrochemical Energy Storage, Helmholtz Institute Ulm (HIU), 89069 Ulm, Germany
| | - Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
5
|
Kronberg R, Laasonen K. Dynamics and Surface Propensity of H + and OH - within Rigid Interfacial Water: Implications for Electrocatalysis. J Phys Chem Lett 2021; 12:10128-10134. [PMID: 34636561 PMCID: PMC8543677 DOI: 10.1021/acs.jpclett.1c02493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Facile solvent reorganization promoting ion transfer across the solid-liquid interface is considered a prerequisite for efficient electrocatalysis. We provide first-principles insight into this notion by examining water self-ion dynamics at a highly rigid NaCl(100)-water interface. Through extensive density functional theory molecular dynamics simulations, we demonstrate for both acidic and alkaline solutions that Grotthuss dynamics is not impeded by a rigid water structure. Conversely, decreased proton transfer barriers and a striking propensity of H3O+ and OH- for stationary interfacial water are found. Differences in the ideal hydration structure of the ions, however, distinguish their behavior at the water contact layer. While hydronium can maintain its optimal solvation, the preferentially hypercoordinated hydroxide is repelled from the immediate vicinity of the surface due to interfacial coordination reduction. This has implications for alkaline hydrogen electrosorption in which the formation of undercoordinated OH- at the surface is proposed to contribute to the observed sluggish kinetics.
Collapse
|
6
|
Liu F, Sun D. Ion Distribution and Hydration Structure at Solid-Liquid Interface between NaCl Crystal and Its Solution. ACS OMEGA 2019; 4:18692-18698. [PMID: 31737830 PMCID: PMC6854578 DOI: 10.1021/acsomega.9b02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The interface structure between NaCl crystal and its solution has been investigated at the saturated concentration of 298 K by molecular dynamics simulations. We have found that there are many fine structures at this complex interface. Near the surface of crystal, most of Na+ only coordinate with water molecules, while almost all Cl- coordinate with Na+ in addition to water molecules. An ion coordinating with more water molecules is farther away from the epitaxial position of lattice. As approaching to the interface, the first hydration shell of ions has the tendency of being ordered, while the orientation of dipole of water molecules in the first hydration shell becomes more disordered than that in the solution. Generally, the first hydration shell of Na+ is less affected by nearest Cl-, whereas the first hydration shell of Cl- is significantly affected by nearest Na+.
Collapse
|
7
|
Guo J, Bian K, Lin Z, Jiang Y. Perspective: Structure and dynamics of water at surfaces probed by scanning tunneling microscopy and spectroscopy. J Chem Phys 2017; 145:160901. [PMID: 27802647 DOI: 10.1063/1.4964668] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The detailed and precise understanding of water-solid interaction largely relies on the development of atomic-scale experimental techniques, among which scanning tunneling microscopy (STM) has proven to be a noteworthy example. In this perspective, we review the recent advances of STM techniques in imaging, spectroscopy, and manipulation of water molecules. We discuss how those newly developed techniques are applied to probe the structure and dynamics of water at solid surfaces with single-molecule and even submolecular resolution, paying particular attention to the ability of accessing the degree of freedom of hydrogen. In the end, we present an outlook on the directions of future STM studies of water-solid interfaces as well as the challenges faced by this field. Some new scanning probe techniques beyond STM are also envisaged.
Collapse
Affiliation(s)
- Jing Guo
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ke Bian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Zeren Lin
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
8
|
Golze D, Hutter J, Iannuzzi M. Wetting of water on hexagonal boron nitride@Rh(111): a QM/MM model based on atomic charges derived for nano-structured substrates. Phys Chem Chem Phys 2015; 17:14307-16. [PMID: 25430062 DOI: 10.1039/c4cp04638b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The wetting of water on corrugated and flat hexagonal boron nitride (h-BN) monolayers on Rh(111) is studied within a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. Water is treated by QM methods, whereas the interactions between liquid and substrate are described at the MM level. The electrostatic properties of the substrate are reproduced by assigning specifically generated partial charges to each MM atom. We propose a method to determine restrained electrostatic potential (RESP) charges that can be applied to periodic systems. Our approach is based on the Gaussian and plane waves algorithm and allows an easy tuning of charges for nano-structured substrates. We have successfully applied it to reproduce the electrostatic potential of the corrugated and flat h-BN/Rh(111) known as nanomesh. Molecular dynamics simulations of water films in contact with these substrates are performed and structural and dynamic properties of the interfaces are analyzed. Based on this analysis and on the interaction energies between water film and substrate, we found that the corrugated nanomesh is slightly more hydrophilic. On a macroscopic scale, we expect a smaller contact angle for a droplet on the corrugated surface.
Collapse
Affiliation(s)
- Dorothea Golze
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
9
|
Sakong S, Naderian M, Mathew K, Hennig RG, Groß A. Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J Chem Phys 2015; 142:234107. [DOI: 10.1063/1.4922615] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Maryam Naderian
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Kiran Mathew
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Richard G. Hennig
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069 Ulm, Germany
| |
Collapse
|
10
|
Forster-Tonigold K, Groß A. Dispersion corrected RPBE studies of liquid water. J Chem Phys 2015; 141:064501. [PMID: 25134582 DOI: 10.1063/1.4892400] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The structure of liquid water has been addressed by ab initio molecular dynamics simulations based on density functional theory. Exchange-correlation effects have been described by the popular PBE and RPBE functionals within the generalized gradient approximation as these functionals also yield satisfactory results for metals which is important to model electrochemical interfaces from first principles. In addition, dispersive interactions are included by using dispersion-corrected schemes. It turns out that the dispersion-corrected RPBE functional reproduces liquid water properties quite well in contrast to the PBE functional. This is caused by the replacement of the over-estimated directional hydrogen-bonding in the PBE functional by non-directional dispersive interactions.
Collapse
Affiliation(s)
| | - Axel Groß
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, D-89069 Ulm, Germany
| |
Collapse
|
11
|
Chen JC, Reischl B, Spijker P, Holmberg N, Laasonen K, Foster AS. Ab initio Kinetic Monte Carlo simulations of dissolution at the NaCl-water interface. Phys Chem Chem Phys 2014; 16:22545-54. [PMID: 25227553 DOI: 10.1039/c4cp02375g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have used ab initio molecular dynamics (AIMD) simulations to study the interaction of water with the NaCl surface. As expected, we find that water forms several ordered hydration layers, with the first hydration layer having water molecules aligned so that oxygen atoms are on average situated above Na sites. In an attempt to understand the dissolution of NaCl in water, we have then combined AIMD with constrained barrier searches, to calculate the dissolution energetics of Na(+) and Cl(-) ions from terraces, steps, corners and kinks of the (100) surface. We find that the barrier heights show a systematic reduction from the most stable flat terrace sites, through steps to the smallest barriers for corner and kink sites. Generally, the barriers for removal of Na(+) ions are slightly lower than for Cl(-) ions. Finally, we use our calculated barriers in a Kinetic Monte Carlo as a first order model of the dissolution process.
Collapse
Affiliation(s)
- Jian-Cheng Chen
- COMP Centre of Excellence and Department of Applied Physics, Aalto University, FI-00076 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
He ZH, Li XB, Zhu WJ, Liu LM, Ji GF. Effect of water on gas explosions: combined ReaxFF and ab initio MD calculations. RSC Adv 2014. [DOI: 10.1039/c4ra04178j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Chen J, Guo J, Meng X, Peng J, Sheng J, Xu L, Jiang Y, Li XZ, Wang EG. An unconventional bilayer ice structure on a NaCl(001) film. Nat Commun 2014; 5:4056. [PMID: 24874452 DOI: 10.1038/ncomms5056] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/07/2014] [Indexed: 12/27/2022] Open
Abstract
Water-solid interactions are of broad importance both in nature and technology. The hexagonal bilayer model based on the Bernal-Fowler-Pauling ice rules has been widely adopted to describe water structuring at interfaces. Using a cryogenic scanning tunnelling microscope, here we report a new type of two-dimensional ice-like bilayer structure built from cyclic water tetramers on an insulating NaCl(001) film, which is completely beyond this conventional bilayer picture. A novel bridging mechanism allows the interconnection of water tetramers to form chains, flakes and eventually a two-dimensional extended ice bilayer containing a regular array of Bjerrum D-type defects. Ab initio density functional theory calculations substantiate this bridging growth mode and reveal a striking proton-disordered ice structure. The formation of the periodic Bjerrum defects with unusually high density may have a crucial role as H donor sites in directing multilayer ice growth and in catalysing heterogeneous chemical reactions on water-coated salt surfaces.
Collapse
Affiliation(s)
- Ji Chen
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China [2]
| | - Jing Guo
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China [2]
| | - Xiangzhi Meng
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China [2]
| | - Jinbo Peng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Jiming Sheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Limei Xu
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China [2] Collaborative Innovation Center of Quantum Matter, Beijing 100871, P.R. China
| | - Ying Jiang
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China [2] Collaborative Innovation Center of Quantum Matter, Beijing 100871, P.R. China
| | - Xin-Zheng Li
- 1] Collaborative Innovation Center of Quantum Matter, Beijing 100871, P.R. China [2] School of Physics, Peking University, Beijing 100871, P.R. China
| | - En-Ge Wang
- 1] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China [2] Collaborative Innovation Center of Quantum Matter, Beijing 100871, P.R. China
| |
Collapse
|
14
|
Kobayashi K, Liang Y, Sakka T, Matsuoka T. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water. J Chem Phys 2014; 140:144705. [DOI: 10.1063/1.4870417] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
15
|
Holmberg N, Chen JC, Foster AS, Laasonen K. Dissolution of NaCl nanocrystals: an ab initio molecular dynamics study. Phys Chem Chem Phys 2014; 16:17437-46. [DOI: 10.1039/c4cp00635f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaCl nanocrystal dissolution was investigated in atomistic detail revealing a difference in the solvation of two different ionic species.
Collapse
Affiliation(s)
- Nico Holmberg
- Department of Chemistry
- Aalto University
- FI-00076 Aalto, Finland
| | - Jian-Cheng Chen
- Department of Applied Physics
- Aalto University
- FI-00076 Aalto, Finland
- COMP Centre of Excellence in Computational Nanoscience
- Aalto University
| | - Adam S. Foster
- Department of Applied Physics
- Aalto University
- FI-00076 Aalto, Finland
- COMP Centre of Excellence in Computational Nanoscience
- Aalto University
| | - Kari Laasonen
- Department of Chemistry
- Aalto University
- FI-00076 Aalto, Finland
- COMP Centre of Excellence in Computational Nanoscience
- Aalto University
| |
Collapse
|
16
|
Wu HZ, Liu LM, Zhao SJ. The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys Chem Chem Phys 2014; 16:3299-304. [DOI: 10.1039/c3cp54333a] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Klimeš J, Bowler DR, Michaelides A. Understanding the role of ions and water molecules in the NaCl dissolution process. J Chem Phys 2013; 139:234702. [DOI: 10.1063/1.4840675] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Chakraborty D, Patey G. Evidence that crystal nucleation in aqueous NaCl solution Occurs by the two-step mechanism. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Golze D, Iannuzzi M, Nguyen MT, Passerone D, Hutter J. Simulation of Adsorption Processes at Metallic Interfaces: An Image Charge Augmented QM/MM Approach. J Chem Theory Comput 2013; 9:5086-97. [DOI: 10.1021/ct400698y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dorothea Golze
- Institute of Physical Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Institute of Physical Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Manh-Thuong Nguyen
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy
| | - Daniele Passerone
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Jürg Hutter
- Institute of Physical Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
20
|
|
21
|
Li JY, Liu LM, Jin B, Liang H, Yu HJ, Zhang HC, Chu SJ, Peng RF. Ab initio molecular dynamics simulation on the formation process of He@C₆₀ synthesized by explosion. J Mol Model 2013; 19:1705-10. [PMID: 23296568 DOI: 10.1007/s00894-012-1737-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The applications of endohedral non-metallic fullerenes are limited by their low production rate. Recently, an explosive method developed in our group shows promise to prepare He@C₆₀ at fairly high yield, but the mechanism of He inserting into C₆₀ cage at explosive conditions was not clear. Here, ab initio molecular dynamics analysis has been used to simulate the collision between C₆₀ molecules at high-temperature and high-pressure induced by explosion. The results show that defects formed on the fullerene cage by collidsion can effectively decrease the reaction barrier for the insertion of He into C₆₀, and the self-healing capability of the defects was also observed.
Collapse
Affiliation(s)
- Jian-Ying Li
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang YJ, Hu P, Ma XL. Mn ion dissolution from MnS: a density functional theory study. Phys Chem Chem Phys 2013; 15:17112-7. [DOI: 10.1039/c3cp52472h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Nadler R, Sanz JF. Effect of dispersion correction on the Au(1 1 1)-H2O interface: A first-principles study. J Chem Phys 2012; 137:114709. [DOI: 10.1063/1.4752235] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
24
|
Gillan MJ, Manby FR, Towler MD, Alfè D. Assessing the accuracy of quantum Monte Carlo and density functional theory for energetics of small water clusters. J Chem Phys 2012; 136:244105. [DOI: 10.1063/1.4730035] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
25
|
Zhang C, Carloni P. Salt effects on water/hydrophobic liquid interfaces: a molecular dynamics study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:124109. [PMID: 22395223 DOI: 10.1088/0953-8984/24/12/124109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigate structural and dynamical properties of NaCl and KCl solution/n-decane interfaces. We find that K(+) and Cl(-) ions localize close to the interface and modify the orientations of both first-layer and second-layer water molecules in the interfacial region. Na(+) and Cl(-) ions are also localized; however, they do not affect the orientation significantly. NaCl salts cause an increase of the surface tension and the residence time of interfacial water molecules. They also decrease the residence time of interfacial n-decane molecules. KCl salt has similar effects, although to a smaller extent. These findings may help us to better understand biological interfaces in physiological solutions.
Collapse
Affiliation(s)
- Chao Zhang
- Computational Biophysics Lab, German Research School for Simulation Sciences, 52425 Jülich, Germany
| | | |
Collapse
|
26
|
Nadler R, Sanz JF. First-principles molecular dynamics simulations of the H2O / Cu(111) interface. J Mol Model 2011; 18:2433-42. [DOI: 10.1007/s00894-011-1260-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022]
|
27
|
Starr DE, Pan D, Newberg JT, Ammann M, Wang EG, Michaelides A, Bluhm H. Acetone adsorption on ice investigated by X-ray spectroscopy and density functional theory. Phys Chem Chem Phys 2011; 13:19988-96. [DOI: 10.1039/c1cp21493d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Hu XL, Carrasco J, Klimeš J, Michaelides A. Trends in water monomer adsorption and dissociation on flat insulating surfaces. Phys Chem Chem Phys 2011; 13:12447-53. [DOI: 10.1039/c1cp20846b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Laref S, Li Y, Bocquet ML, Delbecq F, Sautet P, Loffreda D. Nature of adhesion of condensed organic films on platinum by first-principles simulations. Phys Chem Chem Phys 2011; 13:11827-37. [DOI: 10.1039/c0cp02285c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Liu LM, Laio A, Michaelides A. Initial stages of salt crystal dissolution determined with ab initio molecular dynamics. Phys Chem Chem Phys 2011; 13:13162-6. [DOI: 10.1039/c1cp21077g] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Bonnaud PA, Coasne B, Pellenq RJM. Molecular simulation of water confined in nanoporous silica. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:284110. [PMID: 21399282 DOI: 10.1088/0953-8984/22/28/284110] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper reports on a molecular simulation study of the thermodynamics, structure and dynamics of water confined at ambient temperature in hydroxylated silica nanopores of a width H = 10 and 20 Å. The adsorption isotherms for water in these nanopores resemble those observed for experimental samples; the adsorbed amount increases continuously in the multilayer adsorption regime until a jump occurs due to capillary condensation of the fluid within the pore. Strong layering of water in the vicinity of the silica surfaces is observed as marked density oscillations are observed up to 8 Å from the surface in the density profiles for confined water. Our results indicate that water molecules within the first adsorbed layer tend to adopt a H-down orientation with respect to the silica substrate. For all pore sizes and adsorbed amounts, the self-diffusivity of confined water is lower than the bulk, due to the hydrophilic interaction between the water molecules and the hydroxylated silica surface. Our results also suggest that the self-diffusivity of confined water is sensitive to the adsorbed amount.
Collapse
Affiliation(s)
- P A Bonnaud
- Centre Interdisciplinaire des Nanosciences de Marseille, CNRS and Aix-Marseille Université, Campus de Luminy, F-13288 Marseille Cedex 9, France
| | | | | |
Collapse
|
32
|
Zhou S. New free energy density functional and application to core-softened fluid. J Chem Phys 2010; 132:194112. [DOI: 10.1063/1.3435206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
33
|
Leung K, Nielsen IMB, Criscenti LJ. Elucidating the Bimodal Acid−Base Behavior of the Water−Silica Interface from First Principles. J Am Chem Soc 2009; 131:18358-65. [DOI: 10.1021/ja906190t] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kevin Leung
- Sandia National Laboratories, MS 1415 and 1322, Albuquerque, New Mexico 87185 and Sandia National Laboratories, MS 9158, Livermore, California 94551
| | - Ida M. B. Nielsen
- Sandia National Laboratories, MS 1415 and 1322, Albuquerque, New Mexico 87185 and Sandia National Laboratories, MS 9158, Livermore, California 94551
| | - Louise J. Criscenti
- Sandia National Laboratories, MS 1415 and 1322, Albuquerque, New Mexico 87185 and Sandia National Laboratories, MS 9158, Livermore, California 94551
| |
Collapse
|