• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624960)   Today's Articles (2786)   Subscriber (49461)
For: Sun Q, Liu W, Xiao Y, Cheng L. Exact two-component relativistic theory for nuclear magnetic resonance parameters. J Chem Phys 2009;131:081101. [DOI: 10.1063/1.3216471] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]  Open
Number Cited by Other Article(s)
1
Harsha G, Abraham V, Zgid D. Challenges with relativistic GW calculations in solids and molecules. Faraday Discuss 2024. [PMID: 39101408 DOI: 10.1039/d4fd00043a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
2
Abraham V, Harsha G, Zgid D. Relativistic Fully Self-Consistent GW for Molecules: Total Energies and Ionization Potentials. J Chem Theory Comput 2024;20:4579-4590. [PMID: 38778459 DOI: 10.1021/acs.jctc.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
3
Liu W. Unified construction of relativistic Hamiltonians. J Chem Phys 2024;160:084111. [PMID: 38415836 DOI: 10.1063/5.0188794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]  Open
4
Franzke YJ, Holzer C. Exact two-component theory becoming an efficient tool for NMR shieldings and shifts with spin-orbit coupling. J Chem Phys 2023;159:184102. [PMID: 37937936 DOI: 10.1063/5.0171509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 11/09/2023]  Open
5
Bruder F, Franzke YJ, Weigend F. Paramagnetic NMR Shielding Tensors Based on Scalar Exact Two-Component and Spin-Orbit Perturbation Theory. J Phys Chem A 2022;126:5050-5069. [PMID: 35857421 DOI: 10.1021/acs.jpca.2c03579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
6
Quantum Chemical Approaches to the Calculation of NMR Parameters: From Fundamentals to Recent Advances. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
7
Franzke YJ, Yu JM. Quasi-Relativistic Calculation of EPR g Tensors with Derivatives of the Decoupling Transformation, Gauge-Including Atomic Orbitals, and Magnetic Balance. J Chem Theory Comput 2022;18:2246-2266. [PMID: 35354319 DOI: 10.1021/acs.jctc.1c01175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
8
Gillhuber S, Franzke YJ, Weigend F. Paramagnetic NMR Shielding Tensors and Ring Currents: Efficient Implementation and Application to Heavy Element Compounds. J Phys Chem A 2021;125:9707-9723. [PMID: 34723533 DOI: 10.1021/acs.jpca.1c07793] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Franzke YJ, Mack F, Weigend F. NMR Indirect Spin-Spin Coupling Constants in a Modern Quasi-Relativistic Density Functional Framework. J Chem Theory Comput 2021;17:3974-3994. [PMID: 34151571 DOI: 10.1021/acs.jctc.1c00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
10
Sun S, Li X. Relativistic Effects in Magnetic Circular Dichroism: Restricted Magnetic Balance and Temperature Dependence. J Chem Theory Comput 2020;16:4533-4542. [DOI: 10.1021/acs.jctc.0c00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Liu W. Essentials of relativistic quantum chemistry. J Chem Phys 2020;152:180901. [DOI: 10.1063/5.0008432] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Zhang Y, Suo B, Wang Z, Zhang N, Li Z, Lei Y, Zou W, Gao J, Peng D, Pu Z, Xiao Y, Sun Q, Wang F, Ma Y, Wang X, Guo Y, Liu W. BDF: A relativistic electronic structure program package. J Chem Phys 2020;152:064113. [DOI: 10.1063/1.5143173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Zou W, Guo G, Suo B, Liu W. Analytic Energy Gradients and Hessians of Exact Two-Component Relativistic Methods: Efficient Implementation and Extensive Applications. J Chem Theory Comput 2020;16:1541-1554. [DOI: 10.1021/acs.jctc.9b01120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Wodyński A, Kaupp M. Density Functional Calculations of Electron Paramagnetic Resonance g- and Hyperfine-Coupling Tensors Using the Exact Two-Component (X2C) Transformation and Efficient Approximations to the Two-Electron Spin-Orbit Terms. J Phys Chem A 2019;123:5660-5672. [PMID: 31184482 DOI: 10.1021/acs.jpca.9b03979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
15
Franzke YJ, Weigend F. NMR Shielding Tensors and Chemical Shifts in Scalar-Relativistic Local Exact Two-Component Theory. J Chem Theory Comput 2019;15:1028-1043. [DOI: 10.1021/acs.jctc.8b01084] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Wolf ME, Zhang B, Turney JM, Schaefer HF. A comparison between hydrogen and halogen bonding: the hypohalous acid–water dimers, HOX⋯H2O (X = F, Cl, Br). Phys Chem Chem Phys 2019;21:6160-6170. [DOI: 10.1039/c9cp00422j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
17
Hayami M, Seino J, Nakai H. Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant. J Chem Phys 2018;148:114109. [DOI: 10.1063/1.5016581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Franzke YJ, Middendorf N, Weigend F. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory. J Chem Phys 2018;148:104110. [DOI: 10.1063/1.5022153] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Liu W, Xiao Y. Relativistic time-dependent density functional theories. Chem Soc Rev 2018;47:4481-4509. [DOI: 10.1039/c8cs00175h] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Autschbach J. Relativistic Effects on Electron–Nucleus Hyperfine Coupling Studied with an Exact 2-Component (X2C) Hamiltonian. J Chem Theory Comput 2017;13:710-718. [DOI: 10.1021/acs.jctc.6b01014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
21
Bučinský L, Jayatilaka D, Grabowsky S. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth. J Phys Chem A 2016;120:6650-69. [PMID: 27434184 DOI: 10.1021/acs.jpca.6b05769] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
22
Repisky M, Komorovsky S, Bast R, Ruud K. Relativistic Calculations of Nuclear Magnetic Resonance Parameters. GAS PHASE NMR 2016. [DOI: 10.1039/9781782623816-00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
23
Zhao R, Zhang Y, Xiao Y, Liu W. Exact two-component relativistic energy band theory and application. J Chem Phys 2016;144:044105. [DOI: 10.1063/1.4940140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Liu W. Big picture of relativistic molecular quantum mechanics. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv081] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
25
Yoshizawa T, Hada M. Gauge-origin dependence of NMR shielding constants in the Douglas–Kroll–Hess method. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
26
Xiao Y, Zhang Y, Liu W. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals. J Chem Phys 2014;141:164110. [DOI: 10.1063/1.4898631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
27
Cheng L, Gauss J. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory. J Chem Phys 2014;141:164107. [DOI: 10.1063/1.4897254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
28
Li Z, Xiao Y, Liu W. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties. J Chem Phys 2014;141:054111. [DOI: 10.1063/1.4891567] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
29
Autschbach J. Relativistic calculations of magnetic resonance parameters: background and some recent developments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014;372:20120489. [PMID: 24516182 DOI: 10.1098/rsta.2012.0489] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
30
Cheng L, Gauss J, Stanton JF. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. J Chem Phys 2013;139:054105. [DOI: 10.1063/1.4816130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]  Open
31
Malček M, Bučinský L, Biskupič S, Jayatilaka D. The quasirelativistic contact interaction and effective electron and spin densities at the nucleus: A model based on weighting the electron density with the finite Gaussian nucleus model. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
32
Demissie TB, Repisky M, Komorovsky S, Isaksson J, Svendsen JS, Dodziuk H, Ruud K. Four-component relativistic chemical shift calculations of halogenated organic compounds. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
33
Yoshizawa T, Sakaki S. NMR shielding constants of CuX, AgX, and AuX (X = F, Cl, Br, and I) investigated by density functional theory based on the Douglas-Kroll-Hess Hamiltonian. J Comput Chem 2013;34:1013-23. [DOI: 10.1002/jcc.23224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 11/11/2022]
34
Sun Q, Xiao Y, Liu W. Exact two-component relativistic theory for NMR parameters: General formulation and pilot application. J Chem Phys 2012;137:174105. [DOI: 10.1063/1.4764042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]  Open
35
NMR espectroscopic parameters of HX and Si(Sn)X4 (X=H, F, Cl, Br and I) and SnBr4−nIn model compounds. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
36
Bučinský L, Biskupič S, Jayatilaka D. Study of the picture change error at the 2nd order Douglas Kroll Hess level of theory. Electron and spin density and structure factors of the Bis[bis(methoxycarbimido) aminato] copper (II) complex. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
37
Fully relativistic theories and methods for NMR parameters. Theor Chem Acc 2012. [DOI: 10.1007/s00214-011-1080-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
38
Liu W. Perspectives of relativistic quantum chemistry: the negative energy cat smiles. Phys Chem Chem Phys 2011;14:35-48. [PMID: 22080186 DOI: 10.1039/c1cp21718f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
39
Saue T. Relativistic Hamiltonians for chemistry: a primer. Chemphyschem 2011;12:3077-94. [PMID: 22076930 DOI: 10.1002/cphc.201100682] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 11/06/2022]
40
Arcisauskaite V, Melo JI, Hemmingsen L, Sauer SPA. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods. J Chem Phys 2011;135:044306. [DOI: 10.1063/1.3608153] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
41
Picture change error correction in the radial distributions of canonical orbital densities and total electron density of radon atom: the effect of the size of nucleus and the basis set limit. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0918-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
42
Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations. Theor Chem Acc 2011. [DOI: 10.1007/s00214-010-0876-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
43
Roukala J, Maldonado AF, Vaara J, Aucar GA, Lantto P. Relativistic effects on group-12 metal nuclear shieldings. Phys Chem Chem Phys 2011;13:21016-25. [DOI: 10.1039/c1cp22043h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
44
Bučinský L, Biskupič S, Jayatilaka D. Picture change error correction of radon atom electron density. J Chem Phys 2010;133:174125. [DOI: 10.1063/1.3489351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
45
Hamaya S, Fukui H. Dirac–Hartree–Fock Perturbation Calculation of Magnetic Shielding Using the External Field-Dependent Restricted Magnetic Balance Condition. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
46
Liu W. Ideas of relativistic quantum chemistry. Mol Phys 2010. [DOI: 10.1080/00268971003781571] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
47
Seino J, Hada M. Magnetic shielding constants calculated by the infinite-order Douglas–Kroll–Hess method with electron-electron relativistic corrections. J Chem Phys 2010;132:174105. [DOI: 10.1063/1.3413529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]  Open
48
Cheng L, Xiao Y, Liu W. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals. J Chem Phys 2010;131:244113. [PMID: 20059060 DOI: 10.1063/1.3283036] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA