1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Koyanagi S, Tanimura Y. Hierarchical equations of motion for multiple baths (HEOM-MB) and their application to Carnot cycle. J Chem Phys 2024; 161:162501. [PMID: 39440758 DOI: 10.1063/5.0232073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
We have developed a computer code for the thermodynamic hierarchical equations of motion derived from a spin subsystem coupled to multiple Drude baths at different temperatures, which are connected to or disconnected from the subsystem as a function of time. The code can simulate the reduced dynamics of the subsystem under isothermal, isentropic, thermostatic, and entropic conditions. The extensive and intensive thermodynamic variables are calculated as physical observables, and Gibbs and Helmholtz energies are evaluated as intensive and extensive work. The energy contribution of the system-bath interaction is evaluated separately from the subsystem using the hierarchical elements of the hierarchical equations of motion. The accuracy of the calculated results for the equilibrium distribution and the two-body correlation functions is assessed by contrasting the results with those obtained from the time-convolution-less Redfield equation. It is shown that the Lindblad master equation is inappropriate for the thermodynamic description of a spin-boson system. Non-Markovian effects in thermostatic processes are investigated by sequentially turning on and off the baths at different temperatures with different switching times and system-bath coupling. In addition, the Carnot cycle is simulated under quasi-static conditions. To analyze the work performed for the subsystem in the cycle, thermodynamic work diagrams are plotted as functions of intensive and extensive variables. The C++ source codes are provided as supplementary material.
Collapse
Affiliation(s)
- Shoki Koyanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Novoderezhkin VI. Modeling of excitation dynamics in large-size molecular systems: Hierarchical equations with compartmentalization. J Chem Phys 2024; 161:164102. [PMID: 39435830 DOI: 10.1063/5.0228232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
We describe the new method that can be useful for calculation of the excitation dynamics in large molecular arrays that can be split into compartments with weak exciton coupling between them. In this method, the dynamics within each compartment is evaluated nonperturbatively using hierarchical equations of motion (HEOM), whereas transfers between the exciton states belonging to different compartments are treated by the generalized Förster (gF) theory. In a combined HEOM-gF approach, the number of equations increases linearly when adding new compartments as opposed to pure HEOM, where a depth of hierarchy exhibits strong non-linear grows when scaling the total number of molecules. Comparing the combined HEOM-gF method with an exact HEOM solution enabled us to estimate the parameters corresponding to a validity range of the proposed theory. The possibility of using the method for modeling of energy transfers in photosynthetic antenna supercomplexes is discussed.
Collapse
Affiliation(s)
- Vladimir I Novoderezhkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia
| |
Collapse
|
4
|
Valzelli A, Boschetti A, Mattiotti F, Kargol A, Green C, Borgonovi F, Celardo GL. Large Scale Simulations of Photosynthetic Antenna Systems: Interplay of Cooperativity and Disorder. J Phys Chem B 2024; 128:9643-9655. [PMID: 39351757 DOI: 10.1021/acs.jpcb.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Large-scale simulations of light-matter interaction in natural photosynthetic antenna complexes containing more than one hundred thousands of chlorophyll molecules, comparable with natural size, have been performed. Photosynthetic antenna complexes present in Green sulfur bacteria and Purple bacteria have been analyzed using a radiative non-Hermitian Hamiltonian, well-known in the field of quantum optics, instead of the widely used dipole-dipole Frenkel Hamiltonian. This approach allows us to study ensembles of emitters beyond the small volume limit (system size much smaller than the absorbed wavelength), where the Frenkel Hamiltonian fails. When analyzed on a large scale, such structures display superradiant states much brighter than their single components. An analysis of the robustness to static disorder and dynamical (thermal) noise shows that exciton coherence in the whole photosynthetic complex is larger than the coherence found in its parts. This provides evidence that the photosynthetic complex as a whole plays a predominant role in sustaining coherences in the system even at room temperature. Our results allow a better understanding of natural photosynthetic antennae and could drive experiments to verify how the response to electromagnetic radiation depends on the size of the photosynthetic antenna.
Collapse
Affiliation(s)
- Alessia Valzelli
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze, 50139 Firenze, Italy
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze e CSDC, 50019 Sesto Fiorentino,Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50019 Sesto Fiorentino,Italy
| | - Alice Boschetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Università degli Studi di Firenze, 50019 Sesto Fiorentino,Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Torino, Italy
| | - Francesco Mattiotti
- CESQ and ISIS (UMR 7006), aQCess, University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Armin Kargol
- Department of Physics, Loyola University New Orleans, New Orleans, Louisiana 70118, United States
| | - Coleman Green
- Department of Physics, Loyola University New Orleans, New Orleans, Louisiana 70118, United States
| | - Fausto Borgonovi
- Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, 25133 Brescia,Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano,Italy
| | - G Luca Celardo
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze e CSDC, 50019 Sesto Fiorentino,Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50019 Sesto Fiorentino,Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Università degli Studi di Firenze, 50019 Sesto Fiorentino,Italy
| |
Collapse
|
5
|
Guan W, Bao P, Peng J, Lan Z, Shi Q. mpsqd: A matrix product state based Python package to simulate closed and open system quantum dynamics. J Chem Phys 2024; 161:122501. [PMID: 39324531 DOI: 10.1063/5.0226214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
We introduce a Python package based on matrix product states (MPS) to simulate both the time-dependent Schrödinger equation (TDSE) and the hierarchical equations of motion (HEOM). The wave function in the TDSE or the reduced density operator/auxiliary density operators in the HEOM are represented using MPS. A matrix product operator (MPO) is then constructed to represent the Hamiltonian in the TDSE or the generalized Liouvillian in the HEOM. The fourth-order Runge-Kutta method and the time-dependent variational principle are used to propagate the MPS. Several examples, including the nonadiabatic interconversion dynamics of the pyrazine molecule, excitation energy transfer dynamics in molecular aggregates and photosynthetic light-harvesting complexes, the spin-boson model, a laser driven two-state model, the Holstein model, and charge transport in the Anderson impurity model, are presented to demonstrate the capability of the package.
Collapse
Affiliation(s)
- Weizhong Guan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Bao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China and School of Environment, South China Normal University, Guangzhou 510006, China
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China and School of Environment, South China Normal University, Guangzhou 510006, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Takahashi H, Borrelli R. Tensor-Train Format Hierarchical Equations of Motion Formalism: Charge Transfer in Organic Semiconductors via Dissipative Holstein Models. J Chem Theory Comput 2024. [PMID: 39152908 DOI: 10.1021/acs.jctc.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Hierarchical Equations of Motion (HEOM) in the Tensor-Train (TT) representation is applied to study the charge-transfer dynamics in organic semiconductors (OSCs). The theoretical formulation as well as the basic computational aspects of HEOM-TT are discussed in detail. Charge transfer in OSCs is modeled using dissipative polaronic models that incorporate the effects of both high- and low-frequency molecular vibrations, and it is simulated in a fully quantum and nonperturbative manner, which has not been studied intensively. The capability of treating complex electron-vibrational systems is examined by analyzing and comparing the numerical behavior of the time-dependent variational approach and the time-Alternating Minimal Energy methods and by calculating the current autocorrelation function and diffusivity across various models. Our results indicate that the HEOM-TT framework offers a robust tool for the detailed analysis of complex polaronic systems, suggesting its potential for broader applications.
Collapse
|
7
|
Huang C, Bai S, Shi Q. Simulation of the Pump-Probe Spectra and Excitation Energy Relaxation of the B850 Band of the LH2 Complex in Purple Bacteria. J Phys Chem B 2024; 128:7467-7475. [PMID: 39059418 DOI: 10.1021/acs.jpcb.4c02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ultrafast spectroscopic techniques have been vital in studying excitation energy transfer (EET) in photosynthetic light harvesting complexes. In this paper, we simulate the pump-probe spectra of the B850 band of the light harvesting complex 2 (LH2) of purple bacteria, by using the hierarchical equation of motion method and the optical response function approach. The ground state bleach, stimulated emission, and excited state absorption components of the pump-probe spectra are analyzed in detail. The laser pulse-induced population dynamics are also simulated to help understand the main features of the pump-probe spectra and the EET process. It is shown that the excitation energy relaxation is an ultrafast process with multiple time scales. The first 40 fs of the pump-probe spectra is dominated by the relaxation of the k = ±1 states to both the k = 0 and higher energy states. Dynamics on a longer time scale around 200 fs reflects the relaxation of higher energy states to the k = 0 state.
Collapse
Affiliation(s)
- Chenghong Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun,Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun,Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun,Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Humphries BS, Kinslow JC, Green D, Jones GA. Role of Quantum Information in HEOM Trajectories. J Chem Theory Comput 2024; 20:5383-5395. [PMID: 38889316 PMCID: PMC11238535 DOI: 10.1021/acs.jctc.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Open quantum systems often operate in the non-Markovian regime where a finite history of a trajectory is intrinsic to its evolution. The degree of non-Markovianity for a trajectory may be measured in terms of the amount of information flowing from the bath back into the system. In this study, we consider how information flows through the auxiliary density operators (ADOs) in the hierarchical equations of motion. We consider three cases for a range of baths, underdamped, intermediate, and overdamped. By understanding how information flows, we are able to determine the relative importance of different ADOs within the hierarchy. We show that ADOs sharing a common Matsubara axis behave similarly, while ADOs on different Matsubara axes behave differently. Using this knowledge, we are able to truncate hierarchies significantly, thus reducing the computation time, while obtaining qualitatively similar results. This is illustrated by comparing 2D electronic spectra for a molecule with an underdamped vibration subsumed into the bath spectral density.
Collapse
Affiliation(s)
- Ben S. Humphries
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Joshua C. Kinslow
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Dale Green
- Physics,
Faculty of Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Garth A. Jones
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
9
|
Lorenzoni N, Cho N, Lim J, Tamascelli D, Huelga SF, Plenio MB. Systematic Coarse Graining of Environments for the Nonperturbative Simulation of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 132:100403. [PMID: 38518302 DOI: 10.1103/physrevlett.132.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 03/24/2024]
Abstract
Conducting precise electronic-vibrational dynamics simulations of molecular systems poses significant challenges when dealing with realistic environments composed of numerous vibrational modes. Here, we introduce a technique for the construction of effective phonon spectral densities that capture accurately open-system dynamics over a finite time interval of interest. When combined with existing nonperturbative simulation tools, our approach can reduce significantly the computational costs associated with many-body open-system dynamics.
Collapse
Affiliation(s)
- Nicola Lorenzoni
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Namgee Cho
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Susana F Huelga
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| |
Collapse
|
10
|
Varvelo L, Lynd JK, Citty B, Kühn O, Raccah DIGB. Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray. J Phys Chem Lett 2023; 14:3077-3083. [PMID: 36947483 PMCID: PMC10069740 DOI: 10.1021/acs.jpclett.3c00086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The photosynthetic apparatus of plants and bacteria combine atomically precise pigment-protein complexes with dynamic membrane architectures to control energy transfer on the 10-100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to enhance exciton transport, though the influence of artificial packing on the excited-state dynamics in these biohybrid materials is not fully understood. Here, we use the adaptive hierarchy of pure states (adHOPS) to perform a formally exact simulation of excitation energy transfer within artificial aggregates of light-harvesting complex 2 (LH2) with a range of packing densities. We find that LH2 aggregates support a remarkable exciton diffusion length ranging from 100 nm at a biological packing density to 300 nm at the densest packing previously suggested in an artificial aggregate. The unprecedented scale of these formally exact calculations also underscores the efficiency with which adHOPS simulates excited-state processes in molecular materials.
Collapse
Affiliation(s)
- Leonel Varvelo
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| | - Jacob K. Lynd
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| | - Brian Citty
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| | - Oliver Kühn
- Institute
of Physics, University of Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany
| | - Doran I. G. B. Raccah
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| |
Collapse
|
11
|
Curti M, Maffeis V, Teixeira Alves Duarte LG, Shareef S, Hallado LX, Curutchet C, Romero E. Engineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling. Protein Sci 2023; 32:e4579. [PMID: 36715022 PMCID: PMC9951196 DOI: 10.1002/pro.4579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
In photosynthesis, pigment-protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalization over multiple pigments ("excitons") and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realizing efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimized via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modeling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore-protein complexes with advanced functionalities.
Collapse
Affiliation(s)
- Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRSUniversité Lyon 1LyonFrance
| | | | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Luisa Xiomara Hallado
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'AlimentacióUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB)BarcelonaSpain
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| |
Collapse
|
12
|
Zhong K, Nguyen HL, Do TN, Tan HS, Knoester J, Jansen TLC. An efficient time-domain implementation of the multichromophoric Förster resonant energy transfer method. J Chem Phys 2023; 158:064103. [PMID: 36792497 DOI: 10.1063/5.0136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The excitation energy transfer (EET) process for photosynthetic antenna complexes consisting of subunits, each comprised of multiple chromophores, remains challenging to describe. The multichromophoric Förster resonance energy transfer theory is a popular method to describe the EET process in such systems. This paper presents a new time-domain method for calculating energy transfer based on the combination of multichromophoric Förster resonance energy transfer theory and the Numerical Integration of the Schrödinger Equation method. After validating the method on simple model systems, we apply it to the Light-Harvesting antenna 2 (LH2) complex, a light harvesting antenna found in purple bacteria. We use a simple model combining the overdamped Brownian oscillators to describe the dynamic disorder originating from the environmental fluctuations and the transition charge from the electrostatic potential coupling model to determine the interactions between chromophores. We demonstrate that with this model, both the calculated spectra and the EET rates between the two rings within the LH2 complex agree well with experimental results. We further find that the transfer between the strongly coupled rings of neighboring LH2 complexes can also be well described with our method. We conclude that our new method accurately describes the EET rate for biologically relevant multichromophoric systems, which are similar to the LH2 complex. Computationally, the new method is very tractable, especially for slow processes. We foresee that the method can be applied to efficiently calculate transfer in artificial systems as well and may pave the way for calculating multidimensional spectra of extensive multichromophoric systems in the future.
Collapse
Affiliation(s)
- Kai Zhong
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hoang Long Nguyen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thanh Nhut Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
13
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
14
|
Kundu S, Dani R, Makri N. B800-to-B850 relaxation of excitation energy in bacterial light harvesting: All-state, all-mode path integral simulations. J Chem Phys 2022; 157:015101. [DOI: 10.1063/5.0093828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report fully quantum mechanical simulations of excitation energy transfer within the peripheral light harvesting complex (LH2) of Rhodopseudomonas molischianum at room temperature. The exciton–vibration Hamiltonian comprises the 16 singly excited bacteriochlorophyll states of the B850 (inner) ring and the 8 states of the B800 (outer) ring with all available electronic couplings. The electronic states of each chromophore couple to 50 intramolecular vibrational modes with spectroscopically determined Huang–Rhys factors and to a weakly dissipative bath that models the biomolecular environment. Simulations of the excitation energy transfer following photoexcitation of various electronic eigenstates are performed using the numerically exact small matrix decomposition of the quasiadiabatic propagator path integral. We find that the energy relaxation process in the 24-state system is highly nontrivial. When the photoexcited state comprises primarily B800 pigments, a rapid intra-band redistribution of the energy sharply transitions to a significantly slower relaxation component that transfers 90% of the excitation energy to the B850 ring. The mixed character B850* state lacks the slow component and equilibrates very rapidly, providing an alternative energy transfer channel. This (and also another partially mixed) state has an anomalously large equilibrium population, suggesting a shift to lower energy by virtue of exciton–vibration coupling. The spread of the vibrationally dressed states is smaller than that of the eigenstates of the bare electronic Hamiltonian. The total population of the B800 band is found to decay exponentially with a 1/ e time of 0.5 ps, which is in good agreement with experimental results.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Bose A, Walters PL. Tensor Network Path Integral Study of Dynamics in B850 LH2 Ring with Atomistically Derived Vibrations. J Chem Theory Comput 2022; 18:4095-4108. [PMID: 35732015 DOI: 10.1021/acs.jctc.2c00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently introduced multisite tensor network path integral (MS-TNPI) allows simulation of extended quantum systems coupled to dissipative media. We use MS-TNPI to simulate the exciton transport and the absorption spectrum of a B850 bacteriochlorophyll (BChl) ring. The MS-TNPI network is extended to account for the ring topology of the B850 system. Accurate molecular-dynamics-based description of the molecular vibrations and the protein scaffold is incorporated through the framework of Feynman-Vernon influence functional. To relate the present work with the excitonic picture, an exploration of the absorption spectrum is done by simulating it using approximate and topologically consistent transition dipole moment vectors. Comparison of these numerically exact MS-TNPI absorption spectra are shown with second-order cumulant approximations. The effect of temperature on both the exact and the approximate spectra is also explored.
Collapse
Affiliation(s)
- Amartya Bose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Peter L Walters
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Humphries BS, Green D, Jones GA. The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer. J Chem Phys 2022; 156:084103. [DOI: 10.1063/5.0077404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We elucidate the influence of the system–bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method.
Collapse
Affiliation(s)
- Ben S. Humphries
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Dale Green
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Garth A. Jones
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
17
|
Li T, Yan Y, Shi Q. A low-temperature quantum Fokker-Planck equation that improvesthe numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. J Chem Phys 2022; 156:064107. [DOI: 10.1063/5.0082108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tianchu Li
- Institute of Chemistry Chinese Academy of Sciences, China
| | | | - Qiang Shi
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, China
| |
Collapse
|
18
|
Onizhuk M, Sohoni S, Galli G, Engel GS. Spatial Patterns of Light-Harvesting Antenna Complex Arrangements Tune the Transfer-to-Trap Efficiency of Excitons in Purple Bacteria. J Phys Chem Lett 2021; 12:6967-6973. [PMID: 34283617 DOI: 10.1021/acs.jpclett.1c01537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In photosynthesis, the efficiency with which a photogenerated exciton reaches the reaction center is dictated by chromophore energies and the arrangement of chromophores in the supercomplex. Here, we explore the interplay between the arrangement of light-harvesting antennae and the efficiency of exciton transport in purple bacterial photosynthesis. Using a Miller-Abrahams-based exciton hopping model, we compare different arrangements of light-harvesting proteins on the intracytoplasmic membrane. We find that arrangements with aggregated LH1s have a higher efficiency than arrangements with randomly distributed LH1s in a wide range of physiological light fluences. This effect is robust to the introduction of defects on the intracytoplasmic membrane. Our result explains the absence of species with aggregated LH1 arrangements in low-light niches and the large increase seen in the expression of LH1 dimer complexes in high fluences. We suggest that the effect seen in our study is an adaptive strategy toward solar light fluence across different purple bacterial species.
Collapse
Affiliation(s)
- Mykyta Onizhuk
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Siddhartha Sohoni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Giulia Galli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Zheng F, Chen L, Gao J, Zhao Y. Fully Quantum Modeling of Exciton Diffusion in Mesoscale Light Harvesting Systems. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3291. [PMID: 34198704 PMCID: PMC8232211 DOI: 10.3390/ma14123291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
It has long been a challenge to accurately and efficiently simulate exciton-phonon dynamics in mesoscale photosynthetic systems with a fully quantum mechanical treatment due to extensive computational resources required. In this work, we tackle this seemingly intractable problem by combining the Dirac-Frenkel time-dependent variational method with Davydov trial states and implementing the algorithm in graphic processing units. The phonons are treated on the same footing as the exciton. Tested with toy models, which are nanoarrays of the B850 pigments from the light harvesting 2 complexes of purple bacteria, the methodology is adopted to describe exciton diffusion in huge systems containing more than 1600 molecules. The superradiance enhancement factor extracted from the simulations indicates an exciton delocalization over two to three pigments, in agreement with measurements of fluorescence quantum yield and lifetime in B850 systems. With fractal analysis of the exciton dynamics, it is found that exciton transfer in B850 nanoarrays exhibits a superdiffusion component for about 500 fs. Treating the B850 ring as an aggregate and modeling the inter-ring exciton transfer as incoherent hopping, we also apply the method of classical master equations to estimate exciton diffusion properties in one-dimensional (1D) and two-dimensional (2D) B850 nanoarrays using derived analytical expressions of time-dependent excitation probabilities. For both coherent and incoherent propagation, faster energy transfer is uncovered in 2D nanoarrays than 1D chains, owing to availability of more numerous propagating channels in the 2D arrangement.
Collapse
Affiliation(s)
- Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany;
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str., 38, 01187 Dresden, Germany;
| | - Jianbo Gao
- Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
20
|
Ueno S, Tanimura Y. Modeling and Simulating the Excited-State Dynamics of a System with Condensed Phases: A Machine Learning Approach. J Chem Theory Comput 2021; 17:3618-3628. [PMID: 33999606 DOI: 10.1021/acs.jctc.1c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Simulating the irreversible quantum dynamics of exciton- and electron-transfer problems poses a nontrivial challenge. Because the irreversibility of the system dynamics is a result of quantum thermal activation and dissipation caused by the surrounding environment, it is necessary to include infinite environmental degrees of freedom in the simulation. Because the capabilities of full quantum dynamics simulations that include the surrounding molecular degrees of freedom are limited, employing a system-bath model is a practical approach. In such a model, the dynamics of excitons or electrons are described by a system Hamiltonian, while the other degrees of freedom that arise from the environmental molecules are described by a harmonic oscillator bath (HOB) and system-bath interaction parameters. By extending on a previous study of molecular liquids [ J. Chem. Theory Comput. 2020, 16, 2099], here, we construct a system-bath model for exciton- and electron-transfer problems by means of a machine learning approach. We determine both the system and system-bath interaction parameters, including the spectral distribution of the bath, using the electronic excitation energies obtained from a quantum mechanics/molecular mechanics (QM/MM) simulation that is conducted as a function of time. Using the analytical expressions of optical response functions, we calculate linear and two-dimensional electronic spectra (2DES) for indocarbocyanine dimers in methanol. From these results, we demonstrate the capability of our approach to elucidate the nonequilibrium exciton dynamics of a quantum system in a nonintuitive manner.
Collapse
|
21
|
Borrelli R, Dolgov S. Expanding the Range of Hierarchical Equations of Motion by Tensor-Train Implementation. J Phys Chem B 2021; 125:5397-5407. [DOI: 10.1021/acs.jpcb.1c02724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Sergey Dolgov
- University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| |
Collapse
|
22
|
Tanimura Y. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J Chem Phys 2021; 153:020901. [PMID: 32668942 DOI: 10.1063/5.0011599] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An open quantum system refers to a system that is further coupled to a bath system consisting of surrounding radiation fields, atoms, molecules, or proteins. The bath system is typically modeled by an infinite number of harmonic oscillators. This system-bath model can describe the time-irreversible dynamics through which the system evolves toward a thermal equilibrium state at finite temperature. In nuclear magnetic resonance and atomic spectroscopy, dynamics can be studied easily by using simple quantum master equations under the assumption that the system-bath interaction is weak (perturbative approximation) and the bath fluctuations are very fast (Markovian approximation). However, such approximations cannot be applied in chemical physics and biochemical physics problems, where environmental materials are complex and strongly coupled with environments. The hierarchical equations of motion (HEOM) can describe the numerically "exact" dynamics of a reduced system under nonperturbative and non-Markovian system-bath interactions, which has been verified on the basis of exact analytical solutions (non-Markovian tests) with any desired numerical accuracy. The HEOM theory has been used to treat systems of practical interest, in particular, to account for various linear and nonlinear spectra in molecular and solid state materials, to evaluate charge and exciton transfer rates in biological systems, to simulate resonant tunneling and quantum ratchet processes in nanodevices, and to explore quantum entanglement states in quantum information theories. This article presents an overview of the HEOM theory, focusing on its theoretical background and applications, to help further the development of the study of open quantum dynamics.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Janković V, Mančal T. Nonequilibrium steady-state picture of incoherent light-induced excitation harvesting. J Chem Phys 2020; 153:244110. [PMID: 33380098 DOI: 10.1063/5.0029918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We formulate a comprehensive theoretical description of excitation harvesting in molecular aggregates photoexcited by weak incoherent radiation. An efficient numerical scheme that respects the continuity equation for excitation fluxes is developed to compute the nonequilibrium steady state (NESS) arising from the interplay between excitation generation, excitation relaxation, dephasing, trapping at the load, and recombination. The NESS is most conveniently described in the so-called preferred basis in which the steady-state excitonic density matrix is diagonal. The NESS properties are examined by relating the preferred-basis description to the descriptions in the site or excitonic bases. Focusing on a model photosynthetic dimer, we find that the NESS in the limit of long trapping time is quite similar to the excited-state equilibrium in which the stationary coherences originate from the excitation-environment entanglement. For shorter trapping times, we demonstrate how the properties of the NESS can be extracted from the time-dependent description of an incoherently driven but unloaded dimer. This relation between stationary and time-dependent pictures is valid, provided that the trapping time is longer than the decay time of dynamic coherences accessible in femtosecond spectroscopy experiments.
Collapse
Affiliation(s)
- Veljko Janković
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
24
|
Yan Y, Xing T, Shi Q. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. J Chem Phys 2020; 153:204109. [DOI: 10.1063/5.0027962] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| |
Collapse
|
25
|
Kundu S, Makri N. Real-Time Path Integral Simulation of Exciton-Vibration Dynamics in Light-Harvesting Bacteriochlorophyll Aggregates. J Phys Chem Lett 2020; 11:8783-8789. [PMID: 33001649 DOI: 10.1021/acs.jpclett.0c02760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanism of excitation energy transfer in photoexcited bacteriochlorophyll (BChl) aggregates poses intriguing questions, which have important implications for the observed efficiency of photosynthesis. We investigate this process through fully quantum mechanical calculations of exciton-vibration dynamics in chains and rings of BChl a molecules, with parameters characterizing the B850 ring of the LH2 complex of photosynthetic bacteria. The calculations are performed using the modular path integral methodology, which allows the exact treatment of 50 intramolecular vibrations on each pigment using parameters obtained from spectroscopic Huang-Rhys factors with computational effort that scales linearly with aggregate length. Our results indicate that the interplay between electronic and vibrational time scales leads to the rapid suppression but not the overdamping of electronic coherence, which facilitates the spreading of excitation energy throughout the aggregate.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Yan Y, Liu Y, Xing T, Shi Q. Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light‐harvesting complexes using the nonperturbative reduced dynamics method. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| |
Collapse
|
27
|
Bose A, Makri N. All-Mode Quantum–Classical Path Integral Simulation of Bacteriochlorophyll Dimer Exciton-Vibration Dynamics. J Phys Chem B 2020; 124:5028-5038. [DOI: 10.1021/acs.jpcb.0c03032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Amartya Bose
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Schelter I, Foerster JM, Gardiner AT, Roszak AW, Cogdell RJ, Ullmann GM, de Queiroz TB, Kümmel S. Assessing density functional theory in real-time and real-space as a tool for studying bacteriochlorophylls and the light-harvesting complex 2. J Chem Phys 2019; 151:134114. [DOI: 10.1063/1.5116779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Ingo Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| | - Johannes M. Foerster
- Theoretical Physics IV and Computational Biochemistry, University of Bayreuth, Bayreuth, Germany
| | | | - Aleksander W. Roszak
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
29
|
Irgen-Gioro S, Gururangan K, Saer RG, Blankenship RE, Harel E. Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II. Chem Sci 2019; 10:10503-10509. [PMID: 32055373 PMCID: PMC7003877 DOI: 10.1039/c9sc03501j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/08/2019] [Indexed: 11/21/2022] Open
Abstract
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna–Matthews–Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (<100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll a (BChla) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport.
Collapse
Affiliation(s)
- Shawn Irgen-Gioro
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA
| | - Karthik Gururangan
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA
| | - Rafael G Saer
- Department of Biology , Washington University in St. Louis , One Brookings Dr St. Louis , MO 63130 , USA
| | - Robert E Blankenship
- Department of Biology , Washington University in St. Louis , One Brookings Dr St. Louis , MO 63130 , USA
| | - Elad Harel
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA.,Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , USA .
| |
Collapse
|
30
|
Rathbone HW, Davis JA, Michie KA, Goodchild SC, Robertson NO, Curmi PMG. Coherent phenomena in photosynthetic light harvesting: part two-observations in biological systems. Biophys Rev 2018; 10:1443-1463. [PMID: 30242555 PMCID: PMC6233342 DOI: 10.1007/s12551-018-0456-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022] Open
Abstract
Considerable debate surrounds the question of whether or not quantum mechanics plays a significant, non-trivial role in photosynthetic light harvesting. Many have proposed that quantum superpositions and/or quantum transport phenomena may be responsible for the efficiency and robustness of energy transport present in biological systems. The critical experimental observations comprise the observation of coherent oscillations or "quantum beats" via femtosecond laser spectroscopy, which have been observed in many different light harvesting systems. Part Two of this review aims to provide an overview of experimental observations of energy transfer in the most studied light harvesting systems. Length scales, derived from crystallographic studies, are combined with energy and time scales of the beats observed via spectroscopy. A consensus is emerging that most long-lived (hundreds of femtoseconds) coherent phenomena are of vibrational or vibronic origin, where the latter may result in coherent excitation transport within a protein complex. In contrast, energy transport between proteins is likely to be incoherent in nature. The question of whether evolution has selected for these non-trivial quantum phenomena may be an unanswerable question, as dense packings of chromophores will lead to strong coupling and hence non-trivial quantum phenomena. As such, one cannot discern whether evolution has optimised light harvesting systems for high chromophore density or for the ensuing quantum effects as these are inextricably linked and cannot be switched off.
Collapse
Affiliation(s)
- Harry W Rathbone
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jeffery A Davis
- Centre for Quantum and Optical Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Katharine A Michie
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Sophia C Goodchild
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Neil O Robertson
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Paul M G Curmi
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
31
|
Volkov IL, Reveguk ZV, Serdobintsev PY, Ramazanov RR, Kononov AI. DNA as UV light-harvesting antenna. Nucleic Acids Res 2018; 46:3543-3551. [PMID: 29186575 PMCID: PMC6283424 DOI: 10.1093/nar/gkx1185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/23/2022] Open
Abstract
The ordered structure of UV chromophores in DNA resembles photosynthetic light-harvesting complexes in which quantum coherence effects play a major role in highly efficient directional energy transfer. The possible role of coherent excitons in energy transport in DNA remains debated. Meanwhile, energy transport properties are greatly important for understanding the mechanisms of photochemical reactions in cellular DNA and for DNA-based artificial nanostructures. Here, we studied energy transfer in DNA complexes formed with silver nanoclusters and with intercalating dye (acridine orange). Steady-state fluorescence measurements with two DNA templates (15-mer DNA duplex and calf thymus DNA) showed that excitation energy can be transferred to the clusters from 21 and 28 nucleobases, respectively. This differed from the DNA-acridine orange complex for which energy transfer took place from four neighboring bases only. Fluorescence up-conversion measurements showed that the energy transfer took place within 100 fs. The efficient energy transport in the Ag-DNA complexes suggests an excitonic mechanism for the transfer, such that the excitation is delocalized over at least four and seven stacked bases, respectively, in one strand of the duplexes stabilizing the clusters. This result demonstrates that the exciton delocalization length in some DNA structures may not be limited to just two bases.
Collapse
Affiliation(s)
- Ivan L Volkov
- St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Pavel Yu Serdobintsev
- St. Petersburg State University, St. Petersburg 199034, Russia
- St. Petersburg State Polytechnic University, St. Petersburg 195251, Russia
| | | | | |
Collapse
|
32
|
Blau SM, Bennett DIG, Kreisbeck C, Scholes GD, Aspuru-Guzik A. Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport. Proc Natl Acad Sci U S A 2018; 115:E3342-E3350. [PMID: 29588417 PMCID: PMC5899487 DOI: 10.1073/pnas.1800370115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms controlling excitation energy transport (EET) in light-harvesting complexes remain controversial. Following the observation of long-lived beats in 2D electronic spectroscopy of PC645, vibronic coherence, the delocalization of excited states between pigments supported by a resonant vibration, has been proposed to enable direct excitation transport from the highest-energy to the lowest-energy pigments, bypassing a collection of intermediate states. Here, we instead show that for phycobiliprotein PC645 an incoherent vibronic transport mechanism is at play. We quantify the solvation dynamics of individual pigments using ab initio quantum mechanics/molecular mechanics (QM/MM) nuclear dynamics. Our atomistic spectral densities reproduce experimental observations ranging from absorption and fluorescence spectra to the timescales and selectivity of down-conversion observed in transient absorption measurements. We construct a general model for vibronic dimers and establish the parameter regimes of coherent and incoherent vibronic transport. We demonstrate that direct down-conversion in PC645 proceeds incoherently, enhanced by large reorganization energies and a broad collection of high-frequency vibrations. We suggest that a similar incoherent mechanism is appropriate across phycobiliproteins and represents a potential design principle for nanoscale control of EET.
Collapse
Affiliation(s)
- Samuel M Blau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Doran I G Bennett
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Bio-Inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada
| | - Christoph Kreisbeck
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Gregory D Scholes
- Bio-Inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;
- Bio-Inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada
| |
Collapse
|
33
|
Zhang PP, Bentley CDB, Eisfeld A. Flexible scheme to truncate the hierarchy of pure states. J Chem Phys 2018; 148:134103. [DOI: 10.1063/1.5022225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- P.-P. Zhang
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - C. D. B. Bentley
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - A. Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| |
Collapse
|
34
|
Somoza AD, Sun KW, Molina RA, Zhao Y. Dynamics of coherence, localization and excitation transfer in disordered nanorings. Phys Chem Chem Phys 2018; 19:25996-26013. [PMID: 28920601 DOI: 10.1039/c7cp03171h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled supramolecular aggregates are excellent candidates for the design of efficient excitation transport devices. Both artificially prepared and natural photosynthetic aggregates in plants and bacteria present an important degree of disorder that is supposed to hinder excitation transport. Besides, molecular excitations couple to nuclear motion affecting excitation transport in a variety of ways. We present an exhaustive study of exciton dynamics in disordered nanorings with long-range interactions under the influence of a phonon bath taking the LH2 system of purple bacteria as a model. Nuclear motion is explicitly taken into account by employing the Davydov ansatz description of the polaron and quantum dynamics are obtained using a time-dependent variational method. We reveal an optimal exciton-phonon coupling that suppresses disorder-induced localization and facilitate excitation de-trapping. This excitation transfer enhancement, mediated by environmental phonons, is attributed to energy relaxation toward extended, low-energy excitons provided by the precise LH2 geometry with anti-parallel dipoles and long-range interactions. An analysis of localization and spectral statistics is followed by dynamic measures of coherence and localization, transfer efficiency and superradiance. Linear absorption, 2D photon-echo spectra and diffusion measures of the exciton are examined to monitor the diffusive behavior as a function of the strengths of disorder and exciton-phonon coupling.
Collapse
Affiliation(s)
- Alejandro D Somoza
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | | | |
Collapse
|
35
|
Sakamoto S, Tanimura Y. Exciton-Coupled Electron Transfer Process Controlled by Non-Markovian Environments. J Phys Chem Lett 2017; 8:5390-5394. [PMID: 29039960 DOI: 10.1021/acs.jpclett.7b01535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We theoretically investigate an exciton-coupled electron transfer (XCET) process that is conversion of an exciton into a charge transfer state. This conversion happens in an exciton transfer (XT) process, and the electron moves away in an electron transfer (ET) process in multiple environments (baths). This XCET process plays an essential role in the harvesting of solar energy in biological and photovoltaic materials. We develop a practical theoretical model to study the efficiency of the XCET process that occurs either in consecutive or concerted processes under the influence of non-Markovian baths. The role of quantum coherence in the XT-ET system and the baths is investigated using reduced hierarchal equations of motion (HEOM). This model includes independent baths for each XT and ET state, in addition to a XCET bath for the conversion process. We found that, while quantum system-bath coherence is important in the XT and ET processes, coherence between the XT and ET processes must be suppressed in order to realize that an efficient irreversible XCET process through the weak off-diagonal interaction between the XT and ET bridge sites arises from an XCET bath.
Collapse
Affiliation(s)
- Souichi Sakamoto
- Department of Chemistry, Graduate School of Science, Kyoto University , Sakyoku, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University , Sakyoku, Kyoto 606-8502, Japan
| |
Collapse
|
36
|
Hitchcock A, Hunter CN, Sener M. Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models. J Phys Chem B 2017; 121:3787-3797. [PMID: 28301162 DOI: 10.1021/acs.jpcb.6b12335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell doubling times of the purple bacterium Rhodobacter sphaeroides during photosynthetic growth are determined experimentally and computationally as a function of illumination. For this purpose, energy conversion processes in an intracytoplasmic membrane vesicle, the chromatophore, are described based on an atomic detail structural model. The cell doubling time and its illumination dependence are computed in terms of the return-on-investment (ROI) time of the chromatophore, determined computationally from the ATP production rate, and the mass ratio of chromatophores in the cell, determined experimentally from whole cell absorbance spectra. The ROI time is defined as the time it takes to produce enough ATP to pay for the construction of another chromatophore. The ROI time of the low light-growth chromatophore is 4.5-2.6 h for a typical illumination range of 10-100 μmol photons m-2 s-1, respectively, with corresponding cell doubling times of 8.2-3.9 h. When energy expenditure is considered as a currency, the benefit-to-cost ratio computed for the chromatophore as an energy harvesting device is 2-8 times greater than for photovoltaic and fossil fuel-based energy solutions and the corresponding ROI times are approximately 3-4 orders of magnitude shorter for the chromatophore than for synthetic systems.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, U.K
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Song K, Bai S, Shi Q. Effect of Pulse Shaping on Observing Coherent Energy Transfer in Single Light-Harvesting Complexes. J Phys Chem B 2016; 120:11637-11643. [PMID: 27749066 DOI: 10.1021/acs.jpcb.6b07025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental and theoretical studies have revealed that quantum coherence plays an important role in the excitation energy transfer in photosynthetic light-harvesting (LH) complexes. Inspired by the recent single-molecule two-color double-pump experiment, we theoretically investigate the effect of pulse shaping on observing coherent energy transfer in the single bacterial LH2 complex. It is found that quantum coherent energy transfer can be observed when the time delay and phase difference between the two laser pulses are controlled independently. However, when the two-color pulses are generated using the pulse-shaping method, how the laser pulses are prepared is crucial to the observation of quantum coherent energy transfer in single photosynthetic complexes.
Collapse
Affiliation(s)
- Kai Song
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun, Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun, Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun, Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
38
|
Zhang PP, Eisfeld A. Non-Perturbative Calculation of Two-Dimensional Spectra Using the Stochastic Hierarchy of Pure States. J Phys Chem Lett 2016; 7:4488-4494. [PMID: 27775345 DOI: 10.1021/acs.jpclett.6b02111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two-dimensional electronic spectroscopy has become an important experimental technique to obtain information on, for example, electronic coherences in large molecular complexes or vibronic couplings. For the correct interpretation of two-dimensional spectra, however, detailed theoretical calculations are required. Reliable theoretical calculations are impeded by large system sizes and large numbers of vibrational degrees of freedom that need to be explicitly taken into account. Here, we demonstrate that a numerical approach based on a stochastic hierarchy of pure states (HOPS) does allow the calculation of two-dimensional spectra, notwithstanding the stochasticity of the method. The number of coupled equations as well as the hierarchy depth shows a superior scaling with system size as compared to the previously developed hierarchical equations of motion (HEOM). Large systems thus become accessible for numerical calculation of two-dimensional spectra.
Collapse
Affiliation(s)
- Pan-Pan Zhang
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| |
Collapse
|
39
|
Baghbanzadeh S, Kassal I. Geometry, Supertransfer, and Optimality in the Light Harvesting of Purple Bacteria. J Phys Chem Lett 2016; 7:3804-3811. [PMID: 27610631 DOI: 10.1021/acs.jpclett.6b01779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The remarkable rotational symmetry of the photosynthetic antenna complexes of purple bacteria has long been thought to enhance their light harvesting and excitation energy transport. We study the role of symmetry by modeling hypothetical antennas whose symmetry is broken by altering the orientations of the bacteriochlorophyll pigments. We find that in both LH2 and LH1 complexes, symmetry increases energy transfer rates by enabling the cooperative, coherent process of supertransfer. The enhancement is particularly pronounced in the LH1 complex, whose natural geometry outperforms the average randomized geometry by 5.5 standard deviations, the most significant coherence-related enhancement found in a photosynthetic complex.
Collapse
Affiliation(s)
- Sima Baghbanzadeh
- Department of Physics, Sharif University of Technology , Tehran 11155-9161, Iran
- Centre for Engineered Quantum Systems and School of Mathematics and Physics, The University of Queensland , Brisbane Queensland 4072, Australia
- School of Physics, Institute for Research in Fundamental Sciences (IPM) , Tehran 19395-5531, Iran
| | - Ivan Kassal
- Centre for Engineered Quantum Systems and School of Mathematics and Physics, The University of Queensland , Brisbane Queensland 4072, Australia
| |
Collapse
|
40
|
Smyth C, Oblinsky DG, Scholes GD. B800-B850 coherence correlates with energy transfer rates in the LH2 complex of photosynthetic purple bacteria. Phys Chem Chem Phys 2016; 17:30805-16. [PMID: 25797525 DOI: 10.1039/c5cp00295h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Until recently, no analytical measure of many-body delocalization in open systems had been developed, yet such a measure enables characterization of how molecular excitons delocalize in photosynthetic light-harvesting complexes, and in turn helps us understand quantum coherent aspects of electronic energy transfer. In this paper we apply these measures to a model peripheral light-harvesting complex, LH2 from Rhodopseudomonas acidophila. We find how many chromophores collectively contribute to the "delocalization length" of an excitation within LH2 and how the coherent delocalization is distributed spatially. We also investigate to what extent this delocalization length is effective, by examining the impact of bipartite and multipartite entanglement in inter-ring energy transfer in LH2.
Collapse
Affiliation(s)
- Cathal Smyth
- Department of Physics, University of Toronto, Toronto, Canada
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544, USA.
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544, USA.
| |
Collapse
|
41
|
Sener M, Strumpfer J, Singharoy A, Hunter CN, Schulten K. Overall energy conversion efficiency of a photosynthetic vesicle. eLife 2016; 5. [PMID: 27564854 PMCID: PMC5001839 DOI: 10.7554/elife.09541] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/11/2016] [Indexed: 11/25/2022] Open
Abstract
The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI:http://dx.doi.org/10.7554/eLife.09541.001 Photosynthesis, or the conversion of light energy into chemical energy, is a process that powers almost all life on Earth. Plants and certain bacteria share similar processes to perform photosynthesis, though the purple bacterium Rhodobacter sphaeroides uses a photosynthetic system that is much less complex than that in plants. Light harvesting inside the bacterium takes place in up to hundreds of compartments called chromatophores. Each chromatophore in turn contains hundreds of cooperating proteins that together absorb the energy of sunlight and convert and store it in molecules of ATP, the universal energy currency of all cells. The chromatophore of primitive purple bacteria provides a model for more complex photosynthetic systems in plants. Though researchers had characterized its individual components over the years, less was known about the overall architecture of the chromatophore and how its many components work together to harvest light energy efficiently and robustly. This knowledge would provide insight into the evolutionary pressures that shaped the chromatophore and its ability to work efficiently at different light intensities. Sener et al. now present a highly detailed structural model of the chromatophore of purple bacteria based on the findings of earlier studies. The model features the position of every atom of the constituent proteins and is used to examine how energy is transferred and converted. Sener et al. describe the sequence of energy conversion steps and calculate the overall energy conversion efficiency, namely how much of the light energy arriving at the microorganism is stored as ATP. These calculations show that the chromatophore is optimized to produce chemical energy at low light levels typical of purple bacterial habitats, and dissipate excess energy to avoid being damaged under brighter light. The chromatophore’s architecture also displays robustness against perturbations of its components. In the future, the approach used by Sener et al. to describe light harvesting in this bacterial compartment can be applied to more complex systems, such as those in plants. DOI:http://dx.doi.org/10.7554/eLife.09541.002
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Johan Strumpfer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
42
|
Subotnik JE, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N. Understanding the Surface Hopping View of Electronic Transitions and Decoherence. Annu Rev Phys Chem 2016; 67:387-417. [DOI: 10.1146/annurev-physchem-040215-112245] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Amber Jain
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Brian Landry
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Andrew Petit
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Wenjun Ouyang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
43
|
Bellonzi N, Jain A, Subotnik JE. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability. J Chem Phys 2016; 144:154110. [DOI: 10.1063/1.4946810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amber Jain
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
44
|
Baghbanzadeh S, Kassal I. Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting. Phys Chem Chem Phys 2016; 18:7459-67. [PMID: 26899714 DOI: 10.1039/c6cp00104a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photosynthetic complexes improve the transfer of excitation energy from peripheral antennas to reaction centers in several ways. In particular, a downward energy funnel can direct excitons in the right direction, while coherent excitonic delocalization can enhance transfer rates through the cooperative phenomenon of supertransfer. However, isolating the role of purely coherent effects is difficult because any change to the delocalization also changes the energy landscape. Here, we show that the relative importance of the two processes can be determined by comparing the natural light-harvesting apparatus with counterfactual models in which the delocalization and the energy landscape are altered. Applied to the example of purple bacteria, our approach shows that although supertransfer does enhance the rates somewhat, the energetic funnelling plays the decisive role. Because delocalization has a minor role (and is sometimes detrimental), it is most likely not adaptive, being a side-effect of the dense chlorophyll packing that evolved to increase light absorption per reaction center.
Collapse
Affiliation(s)
- Sima Baghbanzadeh
- Department of Physics, Sharif University of Technology, Tehran, Iran and Centre for Engineered Quantum Systems, Centre for Quantum Computation and Communication Technology, and School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Ivan Kassal
- Centre for Engineered Quantum Systems, Centre for Quantum Computation and Communication Technology, and School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
45
|
Dijkstra AG, Tanimura Y. Linear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration. J Chem Phys 2016; 142:212423. [PMID: 26049443 DOI: 10.1063/1.4917025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study hole, electron, and exciton transports in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole, and exciton transfers can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional (2D) spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states during two different time periods.
Collapse
Affiliation(s)
- Arend G Dijkstra
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | |
Collapse
|
46
|
Iles-Smith J, Dijkstra AG, Lambert N, Nazir A. Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations. J Chem Phys 2016; 144:044110. [DOI: 10.1063/1.4940218] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Jake Iles-Smith
- Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2PG, United Kingdom
- Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Arend G. Dijkstra
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Ahsan Nazir
- Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
47
|
Jain A, Subotnik JE. Does Nonadiabatic Transition State Theory Make Sense Without Decoherence? J Phys Chem Lett 2015; 6:4809-4814. [PMID: 26631360 DOI: 10.1021/acs.jpclett.5b02148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We analyze thermal rate constants as computed with surface hopping dynamics and resolve certain inconsistencies that have permeated the literature. On one hand, according to Landry and Subotnik (J. Chem. Phys. 2012, 137, 22A513), without decoherence, direct dynamics with surface hopping overestimates the rate of relaxation for the spin-boson Hamiltonian. On the other hand, according to Jain and Subotnik (J. Chem. Phys. 2015, 143, 134107), without decoherence, a transition state theory with surface hopping underestimates spin-boson rate constants. In this Letter, we resolve this apparent contradiction. We show that, without decoherence, direct dynamics and transition state theory should not agree; agreement is guaranteed only with decoherence. We also show that, even though the effects of decoherence may be hidden for isoenergetic reactions, these decoherence failures are exposed for exothermic reactions. We believe these lessons are essential when interpreting surface hopping papers published in the literature without any decoherence corrections.
Collapse
Affiliation(s)
- Amber Jain
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
48
|
Jain A, Subotnik JE. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance. J Chem Phys 2015; 143:134107. [DOI: 10.1063/1.4930549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amber Jain
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
49
|
Schroeder CA, Caycedo-Soler F, Huelga SF, Plenio MB. Optical Signatures of Quantum Delocalization over Extended Domains in Photosynthetic Membranes. J Phys Chem A 2015; 119:9043-50. [PMID: 26256512 DOI: 10.1021/acs.jpca.5b04804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prospect of coherent dynamics and excitonic delocalization across several light-harvesting structures in photosynthetic membranes is of considerable interest, but challenging to explore experimentally. Here we demonstrate theoretically that the excitonic delocalization across extended domains involving several light-harvesting complexes can lead to unambiguous signatures in the optical response, specifically, linear absorption spectra. We characterize, under experimentally established conditions of molecular assembly and protein-induced inhomogeneities, the optical absorption in these arrays from polarized and unpolarized excitation, and demonstrate that it can be used as a diagnostic tool to determine the resonance coupling between iso-energetic light-harvesting structures. The knowledge of these couplings would then provide further insight into the dynamical properties of transfer, such as facilitating the accurate determination of Förster rates.
Collapse
Affiliation(s)
- Christopher A Schroeder
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany.,Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | - Felipe Caycedo-Soler
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Susana F Huelga
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| |
Collapse
|
50
|
Chen L, Shenai P, Zheng F, Somoza A, Zhao Y. Optimal Energy Transfer in Light-Harvesting Systems. Molecules 2015; 20:15224-72. [PMID: 26307957 PMCID: PMC6332264 DOI: 10.3390/molecules200815224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 01/25/2023] Open
Abstract
Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.
Collapse
Affiliation(s)
- Lipeng Chen
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Prathamesh Shenai
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Fulu Zheng
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Alejandro Somoza
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| |
Collapse
|