1
|
Gustin P, Prasad A. EnduroBone: A 3D printed bioreactor for extended bone tissue culture. HARDWAREX 2024; 18:e00535. [PMID: 38690152 PMCID: PMC11059325 DOI: 10.1016/j.ohx.2024.e00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
Studies of the effects of external stimuli on bone tissue, disease transmission mechanisms, and potential medication discoveries benefit from long-term tissue viability ex vivo. By simulating the in-vivo environment, bioreactors are essential for studying bone cellular activity throughout biological processes. We present the development of an automated 3D-printed bioreactor EnduroBone designed to sustain the ex-vivo viability of 10 mm diameter cancellous bone cores for an extended period. The device is supplied with two critical parameters for maintaining bone tissue viability: closed-loop continuous flow perfusion of 1 mL/min for nutrient diffusion and waste removal and direct mechanical stimulation with cyclic compression at 13.2 RPM (revolutions per minute) to promote cell viability which can lead to improved tissue stability during ex vivo culturing. The bioreactor addresses several limitations of existing systems and provides a versatile open-source platform for bone cancer research, orthopedic device testing, and other related applications. To validate the bioreactor, fresh swine samples were cultured ex-vivo, and their cell viability was determined to be maintained for up to 28 days. Periodic cell viability assessment through live/dead cell staining and confocal imaging at the start (0 days) and at several time points throughout the culture period (7, 14, 21, and 28 days) was used to demonstrate EnduroBone effectiveness in sustaining bone cell health for the extended period tested.
Collapse
Affiliation(s)
- Paula Gustin
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
- Biologcial Science Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Zhang J, Griesbach J, Ganeyev M, Zehnder AK, Zeng P, Schädli GN, Leeuw AD, Lai Y, Rubert M, Mueller R. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication 2022; 14. [PMID: 35617929 DOI: 10.1088/1758-5090/ac73b9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading has been shown to influence various osteogenic responses of bone-derived cells and bone formation in vivo. However, the influence of mechanical stimulation on the formation of bone organoid in vitro is not clearly understood. Here, 3D bioprinted human mesenchymal stem cells (hMSCs)-laden graphene oxide composite scaffolds were cultured in a novel cyclic-loading bioreactors for up to 56 days. Our results showed that mechanical loading from day 1 (ML01) significantly increased organoid mineral density, organoid stiffness, and osteoblast differentiation compared with non-loading and mechanical loading from day 21. Importantly, ML01 stimulated collagen I maturation, osteocyte differentiation, lacunar-canalicular network formation and YAP expression on day 56. These finding are the first to reveal that long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Such 3D bone organoids may serve as a human-specific alternative to animal testing for the study of bone pathophysiology and drug screening.
Collapse
Affiliation(s)
- Jianhua Zhang
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Julia Griesbach
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| | - Marsel Ganeyev
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Anna-Katharina Zehnder
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Peng Zeng
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Gian Nutal Schädli
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Anke de Leeuw
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Shenzhen, 518055, CHINA
| | - Marina Rubert
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| | - Ralph Mueller
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| |
Collapse
|
3
|
Lin CY, Kang JH. Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4224. [PMID: 34361418 PMCID: PMC8347989 DOI: 10.3390/ma14154224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022]
Abstract
Mechanical properties are crucial parameters for scaffold design for bone tissue engineering; therefore, it is important to understand the definitions of the mechanical properties of bones and relevant analysis methods, such that tissue engineers can use this information to properly design the mechanical properties of scaffolds for bone tissue engineering. The main purpose of this article is to provide a review and practical guide to understand and analyze the mechanical properties of compact bone that can be defined and extracted from the stress-strain curve measured using uniaxial tensile test until failure. The typical stress-strain curve of compact bone measured using uniaxial tensile test until failure is a bilinear, monotonically increasing curve. The associated mechanical properties can be obtained by analyzing this bilinear stress-strain curve. In this article, a computer programming code for analyzing the bilinear stress-strain curve of compact bone for quantifying the associated mechanical properties is provided, such that the readers can use this computer code to perform the analysis directly. In addition to being applied to compact bone, the information provided by this article can also be applied to quantify the mechanical properties of any material having a bilinear stress-strain curve, such as a whole bone, some metals and biomaterials. The information provided by this article can be applied by tissue engineers, such that they can have a reference to properly design the mechanical properties of scaffolds for bone tissue engineering. The information can also be applied by researchers in biomechanics and orthopedics to compare the mechanical properties of bones in different physiological or pathological conditions.
Collapse
Affiliation(s)
- Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, 252 Wuxing Str., Taipei 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Str., Taipei 11031, Taiwan
- Research Center of Artificial Intelligence in Medicine, Taipei Medical University, 250 Wuxing Str., Taipei 11031, Taiwan
| |
Collapse
|
4
|
Lim D, Renteria ES, Sime DS, Ju YM, Kim JH, Criswell T, Shupe TD, Atala A, Marini FC, Gurcan MN, Soker S, Hunsberger J, Yoo JJ. Bioreactor design and validation for manufacturing strategies in tissue engineering. Biodes Manuf 2021; 5:43-63. [PMID: 35223131 PMCID: PMC8870603 DOI: 10.1007/s42242-021-00154-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fields of regenerative medicine and tissue engineering offer new therapeutic options to restore, maintain or improve tissue function following disease or injury. To maximize the biological function of a tissue-engineered clinical product, specific conditions must be maintained within a bioreactor to allow the maturation of the product in preparation for implantation. Specifically, the bioreactor should be designed to mimic the mechanical, electrochemical and biochemical environment that the product will be exposed to in vivo. Real-time monitoring of the functional capacity of tissue-engineered products during manufacturing is a critical component of the quality management process. The present review provides a brief overview of bioreactor engineering considerations. In addition, strategies for bioreactor automation, in-line product monitoring and quality assurance are discussed.
Collapse
Affiliation(s)
- Diana Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Eric S. Renteria
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Drake S. Sime
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas D. Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Frank C. Marini
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Metin N. Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Joshua Hunsberger
- RegenMed Development Organization (ReMDO), Winston Salem, NC 27106, USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
Morrissey J, Mesquita FCP, Hochman-Mendez C, Taylor DA. Whole Heart Engineering: Advances and Challenges. Cells Tissues Organs 2021; 211:395-405. [PMID: 33640893 DOI: 10.1159/000511382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Bioengineering a solid organ for organ replacement is a growing endeavor in regenerative medicine. Our approach - recellularization of a decellularized cadaveric organ scaffold with human cells - is currently the most promising approach to building a complex solid vascularized organ to be utilized in vivo, which remains the major unmet need and a key challenge. The 2008 publication of perfusion-based decellularization and partial recellularization of a rat heart revolutionized the tissue engineering field by showing that it was feasible to rebuild an organ using a decellularized extracellular matrix scaffold. Toward the goal of clinical translation of bioengineered tissues and organs, there is increasing recognition of the underlying need to better integrate basic science domains and industry. From the perspective of a research group focusing on whole heart engineering, we discuss the current approaches and advances in whole organ engineering research as they relate to this multidisciplinary field's 3 major pillars: organ scaffolds, large numbers of cells, and biomimetic bioreactor systems. The success of whole organ engineering will require optimization of protocols to produce biologically-active scaffolds for multiple organ systems, and further technological innovation both to produce the massive quantities of high-quality cells needed for recellularization and to engineer a bioreactor with physiologic stimuli to recapitulate organ function. Also discussed are the challenges to building an implantable vascularized solid organ.
Collapse
Affiliation(s)
- Jacquelynn Morrissey
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | - Fernanda C P Mesquita
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | - Camila Hochman-Mendez
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | | |
Collapse
|
6
|
Balestri W, Morris RH, Hunt JA, Reinwald Y. Current Advances on the Regeneration of Musculoskeletal Interfaces. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:548-571. [PMID: 33176607 DOI: 10.1089/ten.teb.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regeneration of the musculoskeletal system has been widely investigated. There is now detailed knowledge about the organs composing this system. Research has also investigated the zones between individual tissues where physical, mechanical, and biochemical properties transition. However, the understanding of the regeneration of musculoskeletal interfaces is still lacking behind. Numerous disorders and injuries can degrade or damage tissue interfaces. Their inability to regenerate can delay the tissue repair and regeneration process, leading to graft instability, high morbidity, and pain. Moreover, the knowledge of the mechanism of tissue interface development is not complete. This review presents an overview of the most recent approaches of the regeneration of musculoskeletal interfaces, including the latest in vitro, preclinical, and clinical studies. Impact statement Interfaces between soft and hard tissues are ubiquitous within the body. These transition zones are crucial for joint motion, stabilisation and load transfer between tissues, but do not seem to regenerate well after injury or deterioration. The knowledge about their biology is vast, but little is known about their development. Various musculoskeletal disorders in combination with risk factors including aging and unhealthy lifestyle, can lead to local imbalances, misalignments, inflammation, pain and restricted mobility. Our manuscript reviews the current approaches taken to promote the regeneration of musculoskeletal interfaces through in vitro, pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert H Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - John A Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Yvonne Reinwald
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
7
|
Schädli GN, Vetsch JR, Baumann RP, de Leeuw AM, Wehrle E, Rubert M, Müller R. Time-lapsed imaging of nanocomposite scaffolds reveals increased bone formation in dynamic compression bioreactors. Commun Biol 2021; 4:110. [PMID: 33495540 PMCID: PMC7835377 DOI: 10.1038/s42003-020-01635-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Progress in bone scaffold development relies on cost-intensive and hardly scalable animal studies. In contrast to in vivo, in vitro studies are often conducted in the absence of dynamic compression. Here, we present an in vitro dynamic compression bioreactor approach to monitor bone formation in scaffolds under cyclic loading. A biopolymer was processed into mechanically competent bone scaffolds that incorporate a high-volume content of ultrasonically treated hydroxyapatite or a mixture with barium titanate nanoparticles. After seeding with human bone marrow stromal cells, time-lapsed imaging of scaffolds in bioreactors revealed increased bone formation in hydroxyapatite scaffolds under cyclic loading. This stimulatory effect was even more pronounced in scaffolds containing a mixture of barium titanate and hydroxyapatite and corroborated by immunohistological staining. Therefore, by combining mechanical loading and time-lapsed imaging, this in vitro bioreactor strategy may potentially accelerate development of engineered bone scaffolds and reduce the use of animals for experimentation. Schädli et al. present a bioreactor system that combines mechanical loading with longitudinal microCT imaging to assess bone mineralization in a poly(lactic-co-glycolic acid) (PLGA) scaffold reinforced with nanoparticles. This approach allows rapid and rigorous evaluation of engineered bone scaffolds performance in vitro and might reduce the use of animals for experimentation.
Collapse
Affiliation(s)
- Gian Nutal Schädli
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jolanda R Vetsch
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert P Baumann
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Anke M de Leeuw
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Armstrong JPK, Stevens MM. Emerging Technologies for Tissue Engineering: From Gene Editing to Personalized Medicine. Tissue Eng Part A 2019; 25:688-692. [PMID: 30794069 DOI: 10.1089/ten.tea.2019.0026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
IMPACT STATEMENT History has shown us how tissue engineering can be advanced by embracing technological innovation. In this perspective, we highlight some of the most promising emerging technologies and discuss how they can be integrated into existing tissue engineering protocols. The proposed technologies offer the opportunity to reshape how we currently design, engineer, and characterize tissue grafts for improved in vivo regeneration.
Collapse
Affiliation(s)
- James P K Armstrong
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
10
|
Zhao L, Zhao J, Yu J, Sun R, Zhang X, Hu S. In vivo investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits. Regen Med 2017. [PMID: 28621175 DOI: 10.2217/rme-2016-0157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: The aim of the study was to evaluate the efficacy of tissue-engineered periosteum (TEP) in repairing allogenic bone defects in the long term. Materials & methods: TEP was biofabricated with osteoinduced rabbit bone marrow mesenchymal stem cells and porcine small intestinal submucosa (SIS). A total of 24 critical sized defects were created bilaterally in radii of 12 New Zealand White rabbits. TEP/SIS was implanted into the defect site. Bone defect repair was evaluated with radiographic and histological examination at 4, 8 and 12 weeks. Results: Bone defects were structurally reconstructed in the TEP group with mature cortical bone and medullary canals, however this was not observed in the SIS group at 12 weeks. Conclusion: The TEP approach can effectively restore allogenic critical sized defects, and achieve maturity of long-bone structure in 12 weeks in rabbit models.
Collapse
Affiliation(s)
- Lin Zhao
- Orthopaedic Department, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500, China
| | - Junli Zhao
- Department of Nephrology, Shanghai ZhouPu Hospital, Shanghai 201318, China
| | - Jiajia Yu
- Orthopaedic Institute, the Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Rui Sun
- Orthopaedic Institute, the Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xiaofeng Zhang
- Orthopaedic Department, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500, China
| | - Shuhua Hu
- Orthopaedic Department, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500, China
| |
Collapse
|
11
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
12
|
Forrestal DP, Klein TJ, Woodruff MA. Challenges in engineering large customized bone constructs. Biotechnol Bioeng 2017; 114:1129-1139. [PMID: 27858993 DOI: 10.1002/bit.26222] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/18/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023]
Abstract
The ability to treat large tissue defects with customized, patient-specific scaffolds is one of the most exciting applications in the tissue engineering field. While an increasing number of modestly sized tissue engineering solutions are making the transition to clinical use, successfully scaling up to large scaffolds with customized geometry is proving to be a considerable challenge. Managing often conflicting requirements of cell placement, structural integrity, and a hydrodynamic environment supportive of cell culture throughout the entire thickness of the scaffold has driven the continued development of many techniques used in the production, culturing, and characterization of these scaffolds. This review explores a range of technologies and methods relevant to the design and manufacture of large, anatomically accurate tissue-engineered scaffolds with a focus on the interaction of manufactured scaffolds with the dynamic tissue culture fluid environment. Biotechnol. Bioeng. 2017;114: 1129-1139. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David P Forrestal
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Travis J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Maria A Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
13
|
Bouet G, Marchat D, Cruel M, Malaval L, Vico L. In VitroThree-Dimensional Bone Tissue Models: From Cells to Controlled and Dynamic Environment. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:133-56. [DOI: 10.1089/ten.teb.2013.0682] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guenaelle Bouet
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - David Marchat
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR 5307, Saint-Etienne, France
| | - Magali Cruel
- University of Lyon, LTDS, UMR CNRS 5513, Ecole Centrale de Lyon, Ecully, France
| | - Luc Malaval
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
14
|
Vetsch JR, Paulsen SJ, Müller R, Hofmann S. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater 2015; 13:277-85. [PMID: 25463486 DOI: 10.1016/j.actbio.2014.11.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022]
Abstract
Fetal bovine serum (FBS) is a common media supplement used in tissue engineering (TE) cultures. The chemical composition of FBS is known to be highly variable between different brands, types or batches and can have a significant impact on cell function. This study investigated the influence of four different FBS types in osteogenic or control medium on mineralization of acellular and cell-seeded silk fibroin (SF) scaffolds. In bone TE, mineralized tissue is considered as the final product of a successful cell culture. Calcium assays and micro-computed tomography scans revealed spontaneous mineralization on SF scaffolds with certain FBS types, even without cells present. In contrast, cell-mediated mineralization was found under osteogenic conditions only. Fourier transform infrared spectroscopy analysis demonstrated a similar ion composition of the mineralization present in scaffolds, whether cell-mediated or spontaneous. These results were confirmed by scanning electron microscopy. This study shows clear evidence for the influence of FBS type on mineralization on SF scaffolds. The suitability of FBS medium supplementation in TE studies is highly questionable with regard to reproducibility of studies and comparability of obtained results. For future TE studies, alternatives to conventional FBS such as defined FBS or serum-free media should be considered, as suggested decades ago.
Collapse
|
15
|
Steinert M, Kratz M, Jaedicke V, Hofmann MR, Jones DB. Development and evaluation of a device for simultaneous uniaxial compression and optical imaging of cartilage samples in vitro. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:104301. [PMID: 25362424 DOI: 10.1063/1.4898669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we present a system that allows imaging of cartilage tissue via optical coherence tomography (OCT) during controlled uniaxial unconfined compression of cylindrical osteochondral cores in vitro. We describe the system design and conduct a static and dynamic performance analysis. While reference measurements yield a full scale maximum deviation of 0.14% in displacement, force can be measured with a full scale standard deviation of 1.4%. The dynamic performance evaluation indicates a high accuracy in force controlled mode up to 25 Hz, but it also reveals a strong effect of variance of sample mechanical properties on the tracking performance under displacement control. In order to counterbalance these disturbances, an adaptive feed forward approach was applied which finally resulted in an improved displacement tracking accuracy up to 3 Hz. A built-in imaging probe allows on-line monitoring of the sample via OCT while being loaded in the cultivation chamber. We show that cartilage topology and defects in the tissue can be observed and demonstrate the visualization of the compression process during static mechanical loading.
Collapse
Affiliation(s)
- Marian Steinert
- Department of Experimental Orthopaedics and Biomechanics, Philipps University Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Marita Kratz
- Department of Experimental Orthopaedics and Biomechanics, Philipps University Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Volker Jaedicke
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Martin R Hofmann
- Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - David B Jones
- Department of Experimental Orthopaedics and Biomechanics, Philipps University Marburg, Baldingerstr., 35043 Marburg, Germany
| |
Collapse
|
16
|
Costa PF, Martins A, Neves NM, Gomes ME, Reis RL. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:567-77. [PMID: 24673688 DOI: 10.1089/ten.teb.2013.0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone diseases and injuries are highly incapacitating and result in a high demand for tissue substitutes with specific biomechanical and structural features. Tissue engineering has already proven to be effective in regenerating bone tissue, but has not yet been able to become an economically viable solution due to the complexity of the tissue, which is very difficult to be replicated, eventually requiring the utilization of highly labor-intensive processes. Process automation is seen as the solution for mass production of cellularized bone tissue substitutes at an affordable cost by being able to reduce human intervention as well as reducing product variability. The combination of tools such as medical imaging, computer-aided fabrication, and bioreactor technologies, which are currently used in tissue engineering, shows the potential to generate automated production ecosystems, which will, in turn, enable the generation of commercially available products with widespread clinical application.
Collapse
Affiliation(s)
- Pedro F Costa
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
17
|
Guilak F, Butler DL, Goldstein SA, Baaijens FPT. Biomechanics and mechanobiology in functional tissue engineering. J Biomech 2014; 47:1933-40. [PMID: 24818797 DOI: 10.1016/j.jbiomech.2014.04.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 12/22/2022]
Abstract
The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of "functional tissue engineering" has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements.
Collapse
Affiliation(s)
- Farshid Guilak
- Departments of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710, USA.
| | - David L Butler
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Steven A Goldstein
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Frank P T Baaijens
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
18
|
Papantoniou I, Sonnaert M, Geris L, Luyten FP, Schrooten J, Kerckhofs G. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng Part C Methods 2013; 20:177-87. [PMID: 23800097 DOI: 10.1089/ten.tec.2013.0041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To successfully implement tissue-engineered (TE) constructs as part of a clinical therapy, it is necessary to develop quality control tools that will ensure accurate and consistent TE construct release specifications. Hence, advanced methods to monitor TE construct properties need to be further developed. In this study, we showed proof of concept for contrast-enhanced nanofocus computed tomography (CE-nano-CT) as a whole-construct imaging technique with a noninvasive potential that enables three-dimensional (3D) visualization and quantification of in vitro engineered extracellular matrix (ECM) in TE constructs. In particular, we performed a 3D qualitative and quantitative structural and spatial assessment of the in vitro engineered ECM, formed during static and perfusion bioreactor cell culture in 3D TE scaffolds, using two contrast agents, namely, Hexabrix® and phosphotungstic acid (PTA). To evaluate the potential of CE-nano-CT, a comparison was made to standardly used techniques such as Live/Dead viability/cytotoxicity, Picrosirius Red staining, and to net dry weight measurements of the TE constructs. When using Hexabrix as the contrast agent, the ECM volume fitted linearly with the net dry ECM weight independent from the flow rate used, thus suggesting that it stains most of the ECM. When using PTA as the contrast agent, comparing to net weight measurements showed that PTA only stains a part of the ECM. This was attributed to the binding specificity of this contrast agent. In addition, the PTA-stained CE-nano-CT data showed pronounced distinction between flow conditions when compared to Hexabrix, indicating culture-specific structural ECM differences. This novel type of information can contribute to optimize bioreactor culture conditions and potentially critical quality characteristics of TE constructs such as ECM quantity and homogeneity, facilitating the gradual transformation of TE constructs in well-characterized TE products.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- 1 Prometheus, Division of Skeletal Tissue Engineering , KU Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Vetsch JR, Müller R, Hofmann S. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. J Tissue Eng Regen Med 2013; 9:903-17. [DOI: 10.1002/term.1733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Jolanda Rita Vetsch
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| | - Ralph Müller
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| |
Collapse
|
20
|
Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J. Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng Part C Methods 2013. [PMID: 23198999 DOI: 10.1089/ten.tec.2012.0526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incorporation of Quality-by-Design (QbD) principles in tissue-engineering bioprocess development toward clinical use will ensure that manufactured constructs possess prerequisite quality characteristics addressing emerging regulatory requirements and ensuring the functional in vivo behavior. In this work, the QbD principles were applied on a manufacturing process step for the in vitro production of osteogenic three-dimensional (3D) hybrid scaffolds that involves cell matrix deposition on a 3D titanium (Ti) alloy scaffold. An osteogenic cell source (human periosteum-derived cells) cultured in a bioinstructive medium was used to functionalize regular Ti scaffolds in a perfusion bioreactor, resulting in an osteogenic hybrid carrier. A two-level three-factor fractional factorial design of experiments was employed to explore a range of production-relevant process conditions by simultaneously changing value levels of the following parameters: flow rate (0.5-2 mL/min), cell culture duration (7-21 days), and cell-seeding density (1.5×10(3)-3×10(3) cells/cm(2)). This approach allowed to evaluate the individual impact of the aforementioned process parameters upon key quality attributes of the produced hybrids, such as collagen production, mineralization level, and cell number. The use of a fractional factorial design approach helped create a design space in which hybrid scaffolds of predefined quality attributes may be robustly manufactured while minimizing the number of required experiments.
Collapse
Affiliation(s)
- Ioannis Papantoniou Ir
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
21
|
Popp JR, Roberts JJ, Gallagher DV, Anseth KS, Bryant SJ, Quinn TP. An Instrumented Bioreactor for Mechanical Stimulation and Real-Time, Nondestructive Evaluation of Engineered Cartilage Tissue. J Med Device 2012. [DOI: 10.1115/1.4006546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mechanical stimulation is essential for chondrocyte metabolism and cartilage matrix deposition. Traditional methods for evaluating developing tissue in vitro are destructive, time consuming, and expensive. Nondestructive evaluation of engineered tissue is promising for the development of replacement tissues. Here we present a novel instrumented bioreactor for dynamic mechanical stimulation and nondestructive evaluation of tissue mechanical properties and extracellular matrix (ECM) content. The bioreactor is instrumented with a video microscope and load cells in each well to measure tissue stiffness and an ultrasonic transducer for evaluating ECM content. Chondrocyte-laden hydrogel constructs were placed in the bioreactor and subjected to dynamic intermittent compression at 1 Hz and 10% strain for 1 h, twice per day for 7 days. Compressive modulus of the constructs, measured online in the bioreactor and offline on a mechanical testing machine, did not significantly change over time. Deposition of sulfated glycosaminoglycan (sGAG) increased significantly after 7 days, independent of loading. Furthermore, the relative reflection amplitude of the loaded constructs decreased significantly after 7 days, consistent with an increase in sGAG content. This preliminary work with our novel bioreactor demonstrates its capabilities for dynamic culture and nondestructive evaluation.
Collapse
Affiliation(s)
- Jenni R. Popp
- Materials Reliability Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| | - Justine J. Roberts
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Doug V. Gallagher
- Materials Reliability Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | - Timothy P. Quinn
- Materials Reliability Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| |
Collapse
|
22
|
Salter E, Goh B, Hung B, Hutton D, Ghone N, Grayson WL. Bone Tissue Engineering Bioreactors: A Role in the Clinic? TISSUE ENGINEERING PART B-REVIEWS 2012; 18:62-75. [DOI: 10.1089/ten.teb.2011.0209] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Erin Salter
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Brian Goh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ben Hung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Daphne Hutton
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Nalinkanth Ghone
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Warren L. Grayson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
23
|
Bioreactor system using noninvasive imaging and mechanical stretch for biomaterial screening. Ann Biomed Eng 2011; 39:1390-402. [PMID: 21298345 DOI: 10.1007/s10439-010-0243-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
Screening of biomaterial and tissue systems in vitro, for guidance of performance in vivo, remains a major requirement in the field of tissue engineering. It is critical to understand how culture stimulation affects both tissue construct maturation and function, with the goal of eliminating resource-intensive trial-and-error screening and better matching specifications for various in vivo needs. In this article a multifunctional and robust bioreactor design that addresses this need is presented. The design enables a range of mechanical inputs, durations, and frequencies to be applied in coordination with noninvasive optical assessments. A variety of biomaterial systems, including micro- and nano-fiber and porous sponge biomaterials, as well as cell-laden tissue engineering constructs were used in validation studies to demonstrate the versatility and utility of this new bioreactor design. The silk-based biomaterials highlighted in these studies offered several unique optical signatures for use in label-free nondestructive imaging that allowed for sequential profiling. Both short- and long-term culture studies were conducted to evaluate several practical scenarios of usage: on a short-term basis, the authors demonstrate that construct cellularity can be monitored by usage of nonpermanent dyes; on a more long-term basis, the authors show that cell ingrowth can be monitored by green-fluorescent protein (GFP)-labeling, and construct integrity probed with concurrent load/displacement data. The ability to nondestructively track cells, biomaterials, and new matrix formation without harvesting designated samples at each time point will lead to less resource-intensive studies and should enhance our understanding and the discovery of biomaterial designs related to functional tissue engineering.
Collapse
|