1
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
2
|
Design and Fabrication of a Tunable Optofluidic Microlens Driven by an Encircled Thermo-Pneumatic Actuator. MICROMACHINES 2022; 13:mi13081189. [PMID: 36014111 PMCID: PMC9415834 DOI: 10.3390/mi13081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
This paper presents the design, simulation, fabrication, assembly, and testing of a miniature thermo-pneumatic optofluidic lens. The device comprises two separate zones for air heating and fluid pressing on a flexible membrane. A buried three-dimensional spiral microchannel connects the two zones without pumps or valves. The three-dimensional microfluidic structure is realized using a high-resolution three-dimensional printing technique. Multi-physics finite element simulations are introduced to assess the optimized air chamber design and the low-temperature gradient of the optical liquid. The tunable lens can be operated using a direct-current power supply. The temperature change with time is measured using an infrared thermal imager. The focal length ranges from 5 to 23 mm under a maximum voltage of 6 V. Because of the small size and robust actuation scheme, the device can potentially be integrated into miniature micro-optics devices for the fine-tuning of focal lengths.
Collapse
|
3
|
Tang J, Qiu G, Zhang X, Wang J. A 3D-cascade-microlens optofluidic chip for refractometry with adjustable sensitivity. LAB ON A CHIP 2021; 21:3784-3792. [PMID: 34581391 DOI: 10.1039/d1lc00570g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Refractive index (RI) sensing as a label-free and non-invasive method has been playing an important role in industrial metrology, biochemical detection, and environmental analysis. Due to the combined advantages of microoptics and microfluidics, optofluidic RI sensors have attracted growing interest. Despite a variety of prototypes of optofluidic RI sensors, comprehensive improvement in sensitivity, detection range, fabrication procedures and cost can still bring substantial benefits to the field. In this work, we fabricated a 3D-cascade-microlens optofluidic chip (3DCMOC) for RI sensing. Two-photon stereolithography was employed to fabricate the chip mold, with which the 3DCMOC could be easily manufactured via mold replication. By virtue of integrating four detection channels configured with different numbers (1, 3, 5, and 7) of cascaded microlenses within the 3DCMOC, adjustable sensitivity for RI sensing has been demonstrated through measuring standard sucrose solutions. It was found that the seven-microlens configuration achieved an excellent sensitivity (mean: 21 ± 5 AU·RIU (refractive index unit)-1) and resolution (mean: 3.8 × 10-5 ± 0.9 × 10-5 RIU) at a cost of a narrow linear dynamic range (LDR, 1.3326-1.3548). In contrast, the single-microlens configuration led to an extended LDR (1.3326-1.5120 tested) despite the lower sensitivity (mean: 2.6 ± 0.2 AU·RIU-1) and resolution (mean: 1.5 × 10-4 ± 0.1 × 10-4 RIU). Furthermore, the use of the 3DCMOC was investigated via real-time salinity sensing and analysis of urine specific gravity.
Collapse
Affiliation(s)
- Jiukai Tang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
4
|
Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosens Bioelectron 2020; 166:112447. [DOI: 10.1016/j.bios.2020.112447] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
|
5
|
Li C, Bai G, Zhang Y, Zhang M, Jian A. Optofluidics Refractometers. MICROMACHINES 2018; 9:E136. [PMID: 30424070 PMCID: PMC6187763 DOI: 10.3390/mi9030136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
Abstract
Refractometry is a classic analytical method in analytical chemistry and biosensing. By integrating advanced micro- and nano-optical systems with well-developed microfluidics technology, optofluidics are shown to be a powerful, smart and universal platform for refractive index sensing applications. This paper reviews recent work on optofluidic refractometers based on different sensing mechanisms and structures (e.g., photonic crystal/photonic crystal fibers, waveguides, whisper gallery modes and surface plasmon resonance), and traces the performance enhancement due to the synergistic integration of optics and microfluidics. A brief discussion of future trends in optofluidic refractometers, namely volume sensing and resolution enhancement, are also offered.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, No. 10, Xitucheng Road, Haidian District, Beijing 100876, China.
| | - Gang Bai
- MicroNano System Research Center, College of Information and Computer Science, Taiyuan University of Technology, Taiyuan 030024, China.
- Key Laboratory of Advanced Transducers and Intelligent Control System, Shanxi Province and Ministry of Education, Taiyuan 030024, China.
| | - Yunxiao Zhang
- MicroNano System Research Center, College of Information and Computer Science, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Min Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, No. 10, Xitucheng Road, Haidian District, Beijing 100876, China.
| | - Aoqun Jian
- MicroNano System Research Center, College of Information and Computer Science, Taiyuan University of Technology, Taiyuan 030024, China.
- Key Laboratory of Advanced Transducers and Intelligent Control System, Shanxi Province and Ministry of Education, Taiyuan 030024, China.
| |
Collapse
|
6
|
Zhu JM, Shi Y, Zhu XQ, Yang Y, Jiang FH, Sun CJ, Zhao WH, Han XT. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator. LAB ON A CHIP 2017; 17:4025-4030. [PMID: 29090721 DOI: 10.1039/c7lc01016h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Real-time detection of phosphate has significant meaning in marine environmental monitoring and forecasting the occurrence of harmful algal blooms. Conventional monitoring instruments are dependent on artificial sampling and laboratory analysis. They have various shortcomings for real-time applications because of the large equipment size and high production cost, with low target selectivity and the requirement of time-consuming procedures to obtain the detection results. We propose an optofluidic miniaturized analysis chip combined with micro-resonators to achieve real-time phosphate detection. The quantitative water-soluble components are controlled by the flow rate of the phosphate solution, chromogenic agent A (ascorbic acid solution) and chromogenic agent B (12% ammonium molybdate solution, 80% concentrated sulfuric acid and 8% antimony potassium tartrate solution with a volume ratio of 80 : 18 : 2). Subsequently, an on-chip Fabry-Pérot microcavity is formed with a pair of aligned coated fiber facets. With the help of optical feedback, the absorption of phosphate can be enhanced, which can avoid the disadvantages of the macroscale absorption cells in traditional instruments. It can also overcome the difficulties of traditional instruments in terms of size, parallel processing of numerous samples and real-time monitoring, etc. The absorption cell length is shortened to 300 μm with a detection limit of 0.1 μmol L-1. The time required for detection is shortened from 20 min to 6 seconds. Predictably, microsensors based on optofluidic technology will have potential in the field of marine environmental monitoring.
Collapse
Affiliation(s)
- J M Zhu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bitarafan MH, DeCorby RG. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. SENSORS 2017; 17:s17081748. [PMID: 28758967 PMCID: PMC5579499 DOI: 10.3390/s17081748] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.
Collapse
Affiliation(s)
- Mohammad H Bitarafan
- ECE department, University of Alberta, 9107-116 St. NW, Edmonton, AB T6G 2V4, Canada.
| | - Ray G DeCorby
- ECE department, University of Alberta, 9107-116 St. NW, Edmonton, AB T6G 2V4, Canada.
| |
Collapse
|
8
|
Fang C, Dai B, Xu Q, Zhuo R, Wang Q, Wang X, Zhang D. Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave. OPTICS EXPRESS 2017; 25:888-897. [PMID: 28157977 DOI: 10.1364/oe.25.000888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents an in-plane hydrodynamically reconfigurable optofluidic microlens, which is formed by the laminar flow of two streams of a low-refractive-index fluid and two streams of a high-refractive-index fluid in the two microchannels connecting to an expansion chamber where the microlens finally forms. In the expansion chamber, the stream of high-refractive-index fluid, acting as core, is sandwiched by the two streams of low-refractive-index fluid, acting as cladding. The interfaces between the streams can be flexibly manipulated by controlling the flow rate ratio between the two fluids in real time. Thus, the biconvex and biconcave microlens with different curvatures can be formed. By adjusting the microlens, the light beam can be continuously manipulated from focusing to collimation and then to divergence. In the experiment, a wide focus tuning range from 2.75 (focusing) to -1.21 mm (diverging) via collimation is achieved.
Collapse
|
9
|
Zhao HT, Yang Y, Chin LK, Chen HF, Zhu WM, Zhang JB, Yap PH, Liedberg B, Wang K, Wang G, Ser W, Liu AQ. Optofluidic lens with low spherical and low field curvature aberrations. LAB ON A CHIP 2016; 16:1617-24. [PMID: 27050492 DOI: 10.1039/c6lc00295a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper reports an optofluidic lens with low spherical and low field curvature aberrations through the desired refractive index profile by precisely controlling the mixing between ethylene glycol and deionized water in an optofluidic chip. The experimental results demonstrate that the spherical aberration is reduced to 19.5 μm and the full width at half maximum of the focal point is 7.8 μm with a wide divergence angle of 35 degrees. In addition, the optofluidic lens can focus light at different off-axis positions on the focal plane with Δx' < 6.8 μm and at opposite transverse positions with |Δy - Δy'| < 5.7 μm. This is the first demonstration of a special optofluidic lens that significantly reduces both the spherical and field curvature aberrations, which enhances the focusing power and facilitates multiple light source illumination using a single lens. It is anticipated to have high potential for applications such as on-chip light manipulation, sample illumination and multiplexed detection.
Collapse
Affiliation(s)
- H T Zhao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| | - Y Yang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - L K Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| | - H F Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| | - W M Zhu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| | - J B Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| | - P H Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - B Liedberg
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
| | - K Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan and College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - G Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| | - W Ser
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| | - A Q Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
| |
Collapse
|
10
|
Moghaddam MS, Latifi H, Shahraki H, Cheri MS. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer. APPLIED OPTICS 2015; 54:3010-3017. [PMID: 25967216 DOI: 10.1364/ao.54.003010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.
Collapse
|
11
|
Xiao G, Zhu Q, Shen Y, Li K, Liu M, Zhuang Q, Jin C. A tunable submicro-optofluidic polymer filter based on guided-mode resonance. NANOSCALE 2015; 7:3429-3434. [PMID: 25630880 DOI: 10.1039/c4nr07233b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Optical filters with reconfigurable spectral properties are highly desirable in a wide range of applications. We propose and experimentally demonstrate a tunable submicro-optofluidic polymer guided-mode resonance (PGMR) filter. The device is composed of a periodic grating sandwiched between a high index waveguide layer and a low index capping layer, which integrates submicro-fluidic channel arrays and a PGMR filter elegantly. A finite difference time domain (FDTD) method is employed to understand the spectral properties and determine appropriate device parameters. We fabricated the polymer guided-mode resonance filter with a method combining two-beam interference lithography, floating nanofilm transfer and thermal bonding techniques. Experimental results show that our tunable submicro-optofluidic PGMR filters can provide a broad spectral tuning range (13.181 nm), a narrow bandwidth (<2.504 nm), and a high reflection efficiency (>85%) in the visible region. Such submicro-optofluidic PGMR filters are highly compatible with existing nano/microfluidic technologies and would be valuable for the integrated flexible optical system.
Collapse
Affiliation(s)
- Guohui Xiao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang N, Tan F, Wan L, Wu M, Zhang X. Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis. BIOMICROFLUIDICS 2014; 8:054122. [PMID: 25584117 PMCID: PMC4290604 DOI: 10.1063/1.4899883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/14/2014] [Indexed: 05/05/2023]
Abstract
Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance.
Collapse
Affiliation(s)
| | | | - Li Wan
- Department of Applied Physics, The Hong Kong Polytechnic University , Hong Kong, China
| | - Mengchun Wu
- Department of Applied Physics, The Hong Kong Polytechnic University , Hong Kong, China
| | | |
Collapse
|
13
|
Chaitavon K, Sumriddetchkajorn S, Nukeaw J. Highly sensitive refractive index measurement with a sandwiched single-flow-channel microfluidic chip. RSC Adv 2013. [DOI: 10.1039/c3ra23119d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Seow YC, Lim SP, Lee HP. Optofluidic variable-focus lenses for light manipulation. LAB ON A CHIP 2012; 12:3810-3815. [PMID: 22885654 DOI: 10.1039/c2lc40415j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper presents a planar optofluidic lens for light manipulation utilizing a combination of optofluidic biconvex lens with micromixer. Three light manipulation techniques including tunable optical diverging, collimating and focusing are realized by altering the refractive index of the optofluidic variable-focus lenses formed by solid polydimethylsiloxane (PDMS) walls and tunable liquid lens body. The optical power from the laser input can be increased or decreased with the tuning of the variable-focus lenses' refractive indexes. The optical power adjustment capabilities are demonstrated and characterized. The combinations of benefits of all lens' optical manipulation capabilities, greater mechanical stability, significant increase of optofluidic device's life time and seamless integration with other lab-on-a-chip functionalities provide a promising and versatile optofluidic compartment to integrate with lab-on-a-chip excitation and sensing applications. Optofluidic lens-including system for tunable fluorescence sensing is demonstrated showing 186% increase in detected fluorescence intensity.
Collapse
Affiliation(s)
- Y C Seow
- Applied Mechanics Laboratory, Department of Mechanical Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576.
| | | | | |
Collapse
|
15
|
Rea I, Orabona E, Lamberti A, Rendina I, De Stefano L. A microfluidics assisted porous silicon array for optical label-free biochemical sensing. BIOMICROFLUIDICS 2011; 5:34120-3412010. [PMID: 22662045 PMCID: PMC3364833 DOI: 10.1063/1.3626008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/28/2011] [Indexed: 05/24/2023]
Abstract
A porous silicon (PSi) based microarray has been integrated with a microfluidic system, as a proof of concept device for the optical monitoring of selective label-free DNA-DNA interaction. A 4 × 4 square matrix of PSi one dimensional photonic crystals, each one of 200 μm diameter and spaced by 600 μm, has been sealed by a polydimethylsiloxane (PDMS) channels circuit. The PSi optical microarray elements have been functionalized by DNA single strands after sealing: the microfluidic circuit allows to reduce significantly the biologicals and chemicals consumption, and also the incubation time with respect to a not integrated device. Theoretical calculations, based on finite element method, taking into account molecular interactions, are in good agreement with the experimental results, and the developed numerical model can be used for device optimization. The functionalization process and the interaction between DNA probe and target has been monitored by spectroscopic reflectometry for each PSi element in the microchannels.
Collapse
|
16
|
Xiong S, Liu AQ, Chin LK, Yang Y. An optofluidic prism tuned by two laminar flows. LAB ON A CHIP 2011; 11:1864-1869. [PMID: 21448472 DOI: 10.1039/c1lc20180h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper presents a tunable optofluidic prism based on the configuration of two laminar flow streams with different refractive indices in a triangular chamber. The chambers with 70° and 90° apex angles are designed based on simulation results, which provide the optimum working range and avoid recirculating flows in the chambers. In addition, a hydrodynamic model has been developed to predict the tuning of the prisms by the variation in the flow rates. Prisms with different refractive indices are realized using benzyl alcohol and deionized (DI) water as the inner liquids, respectively. The mixture of ethylene glycol and DI water with an effective refractive index matched to that of the microchannel is used as the outer liquid. The apex angle of the prism is tuned from 75° to 135° by adjusting the ratio of the two flow rates. Subsequently, the deviation angle of the output light beam is tuned from -13.5° to 22°. One of the new features of this optofluidic prism is its capability to transform from a symmetric to an asymmetric prism with the assistance of a third flow. Two optical behaviours have been performed using the optofluidic prism. First, parallel light beam scanning is achieved with a constant deviation angle of 10° and a tuning range of 60 μm using the asymmetric prism. The detected output light intensity is increased by 65.7%. Second, light dispersion is experimentally demonstrated using 488-nm and 633-nm laser beams. The two laser beams become distinguishable with a deviation angle difference of 2.5° when the apex angle of the prism reaches 116°.
Collapse
Affiliation(s)
- S Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
17
|
Yoon SY, Yang S. Microfluidic refractometer with micro-image defocusing. LAB ON A CHIP 2011; 11:851-855. [PMID: 21229182 DOI: 10.1039/c0lc00366b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We herein report on a novel micro-refractometer with a self-calibration function. A micro-image defocusing (µ-ID) technique using optical path separation via a three-pinhole aperture is adopted to measure refractive index (RI). In order to achieve self-calibration, the microfluidic device is designed to have a self-calibration region into which reference fluids with known RIs are injected, as well as a measurement region into which a sample fluid is injected. In this way, the RI of the sample fluid is calculated automatically. In order to demonstrate the application of our proposed micro-refractometer, certified RI liquids with RIs of 1.300, 1.400, 1.450, 1.500, 1.550, 1.600, and 1.700 were used. The experimental demonstration described herein shows that the measured RIs have a deviation of less than 0.0009 with an uncertainty of ±0.001 refractive index unit (RIU) compared with their certified values.
Collapse
Affiliation(s)
- Sang Youl Yoon
- Graduate Program of Medical System Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, Republic of Korea 500-712
| | | |
Collapse
|
18
|
Jian AQ, Zhang XM, Zhu WM, Yu M. Optofluidic refractometer using resonant optical tunneling effect. BIOMICROFLUIDICS 2010; 4:43008. [PMID: 21267085 PMCID: PMC3026030 DOI: 10.1063/1.3502671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 09/25/2010] [Indexed: 05/11/2023]
Abstract
This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU(-1). Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry-Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10(-9) RIU, two orders higher than the best results of current methods.
Collapse
|
19
|
Chen Y, Lei L, Zhang K, Shi J, Wang L, Li H, Zhang XM, Wang Y, Chan HLW. Optofluidic microcavities: Dye-lasers and biosensors. BIOMICROFLUIDICS 2010; 4:043002. [PMID: 24753719 PMCID: PMC3977751 DOI: 10.1063/1.3499949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/22/2010] [Indexed: 05/11/2023]
Abstract
Optofluidic microcavities are integrated elements of microfluidics that can be explored for a large variety of applications. In this review, we first introduce the physics basis of optical microcavities and microflow control. Then, we describe four types of optofluidic dye lasers developed so far based on both simple and advanced device fabrication technologies. To illustrate the application potential of such devices, we present two types of laser intracavity measurements for chemical solution and single cell analyses. In addition, the possibility of single molecule detection is discussed. All these recent achievements demonstrated the great importance of the topics in biology and several other disciplines.
Collapse
Affiliation(s)
- Y Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China ; Ecole Normale Supérieure, CNRS-ENS-UPMC, 24 rue Lhomond, 75231 Paris, France ; Centre for Microfluidics and Nanotechnology, Peking University, 100871 Beijing, China
| | - L Lei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China ; Ecole Normale Supérieure, CNRS-ENS-UPMC, 24 rue Lhomond, 75231 Paris, France
| | - K Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - J Shi
- Ecole Normale Supérieure, CNRS-ENS-UPMC, 24 rue Lhomond, 75231 Paris, France
| | - L Wang
- Ecole Normale Supérieure, CNRS-ENS-UPMC, 24 rue Lhomond, 75231 Paris, France
| | - H Li
- Ecole Normale Supérieure, CNRS-ENS-UPMC, 24 rue Lhomond, 75231 Paris, France ; Centre for Microfluidics and Nanotechnology, Peking University, 100871 Beijing, China
| | - X M Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Y Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - H L W Chan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|