1
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
2
|
Pang X, Zhao K, Hu D, Zhong Q, Zhang N, Jiang C. Effect of load-resisting force on photoisomerization mechanism of a single second generation light-driven molecular rotary motor. J Chem Phys 2024; 161:164302. [PMID: 39435841 DOI: 10.1063/5.0216074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
A pivotal aspect of molecular motors is their capability to generate load capacity from a single entity. However, few studies have directly characterized the load-resisting force of a single light-driven molecular motor. This research provides a simulation analysis of the load-resisting force for a highly efficient, second-generation molecular motor developed by Feringa et al. We investigate the M-to-P photoinduced nonadiabatic molecular dynamics of 9-(2,3-dihydro-2-methyl-1H-benz[e]inden-1-ylidene)-9H-fluorene utilizing Tully's surface hopping method at the semi-empirical OM2/MRCI level under varying load-resisting forces. The findings indicate that the quantum yield remains relatively stable under forces up to 0.003 a.u., with the photoisomerization mechanism functioning typically. Beyond this threshold, the quantum yield declines, and an alternative photoisomerization mechanism emerges, characterized by an inversion of the central double bond's twisting direction. The photoisomerization process stalls when the force attains a critical value of 0.012 a.u. Moreover, the average lifetime of the excited state oscillates around that of the unperturbed system. The quantum yield and mean lifetime of the S1 excited state in the absence of external force are recorded at 0.54 and 877.9 fs, respectively. In addition, we analyze a time-dependent fluorescence radiation spectrum, confirming the presence of a dark state and significant vibrations, as previously observed experimentally by Conyard et al.
Collapse
Affiliation(s)
- Xiaojuan Pang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Kaiyue Zhao
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, People's Republic of China
| | - Quanjie Zhong
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Ningbo Zhang
- School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chenwei Jiang
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
3
|
Colaizzi L, Ryabchuk S, Månsson EP, Saraswathula K, Wanie V, Trabattoni A, González-Vázquez J, Martín F, Calegari F. Few-femtosecond time-resolved study of the UV-induced dissociative dynamics of iodomethane. Nat Commun 2024; 15:9196. [PMID: 39455555 PMCID: PMC11511850 DOI: 10.1038/s41467-024-53183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Ultraviolet (UV) light that penetrates our atmosphere initiates various photochemical and photobiological processes. However, the absence of extremely short UV pulses has so far hindered our ability to fully capture the mechanisms at the very early stages of such processes. This is important because the concerted motion of electrons and nuclei in the first few femtoseconds often determines molecular reactivity. Here we investigate the dissociative dynamics of iodomethane following UV photoexcitation, utilizing mass spectrometry with a 5 fs time resolution. The short duration of the UV pump pulse (4.2 fs) allows the ultrafast dynamics to be investigated in the absence of any external field, from well before any significant vibrational displacement occurs until dissociation has taken place. The experimental results combined with semi-classical trajectory calculations provide the identification of the main dissociation channels and indirectly reveal the signature of a conical intersection in the time-dependent yield of the iodine ion. Furthermore, we demonstrate that the UV-induced breakage of the C-I bond can be prevented when the molecule is ionized by the probe pulse within 5 fs after the UV excitation, showcasing an ultrafast stabilization scheme against dissociation.
Collapse
Affiliation(s)
- Lorenzo Colaizzi
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
| | - Sergey Ryabchuk
- Physics Department, Universität Hamburg, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Erik P Månsson
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Krishna Saraswathula
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Vincent Wanie
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Andrea Trabattoni
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Quantum Optics, Leibniz Universität Hannover, Hannover, Germany
| | - Jesús González-Vázquez
- Departamento de Química, Universidad Autonoma de Madrid, Madrid, Spain.
- IADCHEM, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Fernando Martín
- Departamento de Química, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, Spain
| | - Francesca Calegari
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
4
|
Hennefarth MR, Truhlar DG, Gagliardi L. Semiclassical Nonadiabatic Molecular Dynamics Using Linearized Pair-Density Functional Theory. J Chem Theory Comput 2024; 20:8741-8748. [PMID: 39383493 DOI: 10.1021/acs.jctc.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Nonadiabatic molecular dynamics is an effective method for modeling nonradiative decay in electronically excited molecules. Its accuracy depends strongly on the quality of the potential energy surfaces, and its affordability for long direct-dynamic simulations with adequate ensemble averaging depends strongly on the cost of the required electronic structure calculations. Linearized pair-density functional theory (L-PDFT) is a recently developed post-self-consistent-field multireference method that can model potential energy surfaces with an accuracy similar to expensive multireference perturbation theories but at a computational cost similar to the underlying multiconfiguration self-consistent field method. Here, we integrate the SHARC dynamics and PySCF electronic structure code to utilize L-PDFT for electronically nonadiabatic calculations and use the combined programs to study the photoisomerization reaction of cis-azomethane. We show that L-PDFT is able to successfully simulate the photoisomerization without crashes, and it yields results similar to the more expensive extended multistate complete active space second-order perturbation theory. This shows that L-PDFT can model internal conversion, and it demonstrates its promise for broader photodynamics applications.
Collapse
Affiliation(s)
- Matthew R Hennefarth
- Department of Chemistry and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Sangiogo Gil E, Giustini A, Accomasso D, Granucci G. Excitonic Approach for Nonadiabatic Dynamics: Extending Beyond the Frenkel Exciton Model. J Chem Theory Comput 2024; 20:8437-8449. [PMID: 39284746 DOI: 10.1021/acs.jctc.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We report the formulation and implementation of an extended Frenkel exciton model (EFEM) designed for simulating the dynamics of multichromophoric systems, taking into account the possible presence of interchromophore charge transfer states, as well as other states in which two chromophores are simultaneously excited. Our approach involves constructing a Hamiltonian based on calculations performed on monomers and selected dimers within the multichromophoric aggregate. Nonadiabatic molecular dynamics is addressed using a surface hopping approach, while the electronic wave functions and energies required for constructing the EFEM are computed utilizing the semiempirical floating occupation molecular orbitals-configuration interaction (FOMO-CI) electronic structure method. To validate our approach, we simulate the singlet fission process in a trimer of 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene (ThBF) molecules, embedded in their crystal environment, comparing the results of the EFEM to the standard "supermolecule" approach.
Collapse
Affiliation(s)
- Eduarda Sangiogo Gil
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Andrea Giustini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
6
|
Peschel MT, Kussmann J, Ochsenfeld C, de Vivie-Riedle R. Simulation of the non-adiabatic dynamics of an enone-Lewis acid complex in an explicit solvent. Phys Chem Chem Phys 2024; 26:23256-23263. [PMID: 39193656 DOI: 10.1039/d4cp02492c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Unlocking the full potential of Lewis acid catalysis for photochemical transformations requires a comprehensive understanding of the ultrafast dynamics of substrate-Lewis acid complexes. In a previous article [Peschel et al., Angew. Chem. Int. Ed., 2021, 60, 10155], time-resolved spectroscopy supported by static calculations revealed that the Lewis acid remains attached during the relaxation of the model complex cyclohexenone-BF3. In contrast to the experimental observation, surface-hopping dynamics in the gas phase predicted ultrafast heterolytic dissociation. We attributed the discrepancy to missing solvent interactions. Thus, in this work, we present an interface between the SHARC and FermiONs++ program packages, which enables us to investigate the ultrafast dynamics of cyclohexenone-BF3 in an explicit solvent environment. Our simulations demonstrate that the solvent prevents the dissociation of the complex, leading to an intriguing dissociation-reassociation mechanism. Comparing the dynamics with and without triplet states highlights their role in the relaxation process and shows that the Lewis acid inhibits intersystem crossing. These findings provide a clear picture of the relaxation process, which may aid in designing future Lewis acid catalysts for photochemical applications. They underscore that an explicit solvent model is required to describe relaxation processes in weakly bound states, as energy transfer to the solvent is crucial for the system to reach its minimum geometries.
Collapse
Affiliation(s)
- Martin T Peschel
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Jörg Kussmann
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
7
|
S Mattos R, Mukherjee S, Barbatti M. Quantum Dynamics from Classical Trajectories. J Chem Theory Comput 2024. [PMID: 39235064 DOI: 10.1021/acs.jctc.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Nonadiabatic molecular dynamics plays an essential role in exploring the time evolution of molecular systems. Various methods have been developed for this study, with varying accuracy and computational cost. One very successful among them is trajectory surface hopping, which propagates nuclei as classical trajectories using forces from a quantum description of the electrons and incorporates nonadiabatic effects through stochastic state changes during each trajectory propagation. A statistical analysis of an ensemble of the independent trajectories recovers the simulated system's behavior. This approach can give good results, but it is known to overlook nuclear quantum effects, leading to inaccurate predictions. Here, we present quantum dynamics from classical trajectories (QDCT), a new protocol to recover the quantum wavepacket from the classical trajectories generated by surface hopping. In this first QDCT implementation, we apply it to recover results at the multiple spawning level from postprocessing surface hopping precomputed trajectories. With a series of examples, we demonstrate QDCT's potential to improve the accuracy of the dynamics, correct decoherence effects, and diagnose problems or increase confidence in surface hopping results. All that comes at virtually no computational cost since no new electronic calculation is required.
Collapse
Affiliation(s)
- Rafael S Mattos
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
| | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87100 Torun, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
8
|
Ulukan P, Lognon E, Catak S, Monari A. Intersystem crossing in a dibenzofuran-based room temperature phosphorescent luminophore investigated by non-adiabatic dynamics. Phys Chem Chem Phys 2024; 26:22261-22268. [PMID: 39136100 DOI: 10.1039/d4cp02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The use of phosphorescent luminophores is highly beneficial in diverse high-technological and biological applications. Yet, because of the formally forbidden character of intersystem crossing, the use of heavy metals or atoms is usually necessary to achieve high quantum yields. This choice imposes serious constraints in terms of high device cost and inherent toxicity. In this contribution we resort to density functional based surface hopping non-adiabatic dynamics of a potential organic luminophore intended for room-temperature applications. We confirm that intersystem crossing is operative in a ps time-scale without requiring the activation of large-scale movements, thus confirming the suitability of the El Sayed-based strategy for the rational design of fully organic phosphorescent emitters.
Collapse
Affiliation(s)
- Pelin Ulukan
- Bogazici University, 34342 Bebek/Istanbul, Turkey
| | - Elise Lognon
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France.
| | - Saron Catak
- Bogazici University, 34342 Bebek/Istanbul, Turkey
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France.
| |
Collapse
|
9
|
Curchod BFE, Orr-Ewing AJ. Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry. J Phys Chem A 2024; 128:6613-6635. [PMID: 39021090 PMCID: PMC11331530 DOI: 10.1021/acs.jpca.4c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Research that explores the chemistry of Earth's atmosphere is central to the current understanding of global challenges such as climate change, stratospheric ozone depletion, and poor air quality in urban areas. This research is a synergistic combination of three established domains: earth observation, for example, using satellites, and in situ field measurements; computer modeling of the atmosphere and its chemistry; and laboratory measurements of the properties and reactivity of gas-phase molecules and aerosol particles. The complexity of the interconnected chemical and photochemical reactions which determine the composition of the atmosphere challenges the capacity of laboratory studies to provide the spectroscopic, photochemical, and kinetic data required for computer models. Here, we consider whether predictions from computational chemistry using modern electronic structure theory and nonadiabatic dynamics simulations are becoming sufficiently accurate to supplement quantitative laboratory data for wavelength-dependent absorption cross-sections, photochemical quantum yields, and reaction rate coefficients. Drawing on presentations and discussions from the CECAM workshop on Theoretical and Experimental Advances in Atmospheric Photochemistry held in March 2024, we describe key concepts in the theory of photochemistry, survey the state-of-the-art in computational photochemistry methods, and compare their capabilities with modern experimental laboratory techniques. From such considerations, we offer a perspective on the scope of computational (photo)chemistry methods based on rigorous electronic structure theory to become a fourth core domain of research in atmospheric chemistry.
Collapse
|
10
|
Kochman MA. Nonadiabatic Molecular Dynamics Simulations Provide Evidence for Coexistence of Planar and Nonplanar Intramolecular Charge Transfer Structures in Fluorazene. J Phys Chem A 2024; 128:6685-6694. [PMID: 39109856 PMCID: PMC11331525 DOI: 10.1021/acs.jpca.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Fluorazene is a model compound for photoinduced intramolecular charge transfer (ICT) between aromatic moieties. Despite intensive studies, both spectroscopic and theoretical, a complete model of its photophysics is still lacking. Especially controversial is the geometry of its ICT structure, or structures. In order to fill in the gaps in the state of knowledge on this important model system, in the present study I report the results of nonadiabatic molecular dynamics (NAMD) simulations of its photorelaxation process in acetonitrile solution. To afford a direct comparison to spectroscopic data, I use the simulation results as the basis for the calculation of the transient absorption (TA) spectrum. The NAMD simulations provide detailed information on the sequence of events during the excited-state relaxation of the title compound. Following initial photoexcitation into the bright S2 state, the molecule undergoes rapid internal conversion into the S1 state, leading to the locally excited (LE) structure. The LE structure, in turn, undergoes isomerization into a population of ICT structures, with geometries ranging from near-planar to markedly nonplanar. The LE → ICT isomerization reaction is accompanied by the decay of the characteristic excited-state absorption band of the LE structure near 2 eV. The anomalous fluorescence emission band of fluorazene is found to originate mainly from the near-planar ICT structures, in part because they dominate the overall population of ICT structures. Thus, the planar ICT (PICT) model appears to be the most appropriate description of the geometry of the ICT structure of fluorazene.
Collapse
Affiliation(s)
- Michał Andrzej Kochman
- Institute
of Physical Chemistry of the Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
- Theoretical
Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
11
|
Geng X, Li Y, Yang J, Liu F. How Do the Position and Number of Methyl Substituents Affect the Photochemical Process of Criegee Intermediate? Trajectory Surface-Hopping Dynamics of Four-Carbon CIs. J Phys Chem A 2024; 128:5525-5532. [PMID: 38961838 DOI: 10.1021/acs.jpca.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Electronic-structure calculations combined with nonadiabatic trajectory surface-hopping (TSH) dynamic simulations were carried out on two alkenyl-substituted Criegee intermediates (CIs), i.e., propenyl-substituted CI (PCI) and 1-methyl-propenyl substituted CI (MPCI), in order to investigate the influence of the position and number of substituents on the photochemical process of CI in S1 states. It is found that they play critical roles in the reactivity, dominant product channel, and mechanism of the CIs. More specifically, introducing a methyl group on either C1 (α-C) or C3 (γ-C) position of a vinyl-substituted CI (VCI) skeleton facilitates the rotation of the C1═O1 bond and leads to the formation of a three-membered dioxirane ring; meanwhile, it evidently enhances the reactively of the S1-state molecule. Meanwhile, methyl substitution on the vinyl moiety [i.e., C2 (β-C) and C3 (γ-C) positions] is beneficial for the rotation of the C2═C3 bond and thus facilitates the formation of the five-membered 1,2-dioxole ring, and the substitution on C2 site decreases the reactivity. The cosubstitution of C2 and C3 atoms by methyl groups well balances the features of VCI in the sense of high reactivity, consistently predominant channel, and possible dioxole side-product. The findings here not only deepen the knowledge on the photochemical processes of the CI but also inspire the rethinking of the "old" concept of substitution effect.
Collapse
Affiliation(s)
- Ximei Geng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Yazhen Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Jiawei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
12
|
Li S, Xie BB, Yin BW, Liu L, Shen L, Fang WH. Construction of Highly Accurate Machine Learning Potential Energy Surfaces for Excited-State Dynamics Simulations Based on Low-Level Data Sets. J Phys Chem A 2024; 128:5516-5524. [PMID: 38954640 DOI: 10.1021/acs.jpca.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Machine learning is capable of effectively predicting the potential energies of molecules in the presence of high-quality data sets. Its application in the construction of ground- and excited-state potential energy surfaces is attractive to accelerate nonadiabatic molecular dynamics simulations of photochemical reactions. Because of the huge computational cost of excited-state electronic structure calculations, the construction of a high-quality data set becomes a bottleneck. In the present work, we first built two data sets. One was obtained from surface hopping dynamics simulations at the semiempirical OM2/MRCI level. Another was extracted from the dynamics trajectories at the CASSCF level, which was reported previously. The ground- and excited-state potential energy surfaces of ethylene-bridged azobenzene at the CASSCF computational level were constructed based on the former low-level data set. Although non-neural network machine learning methods can achieve good or modest performance during the training process, only neural network models provide reliable predictions on the latter external test data set. The BPNN and SchNet combined with the Δ-ML scheme and the force term in the loss functions are recommended for dynamics simulations. Then, we performed excited-state dynamics simulations of the photoisomerization of ethylene-bridged azobenzene on machine learning potential energy surfaces. Compared with the lifetimes of the first excited state (S1) estimated at different computational levels, our results on the E isomer are in good agreement with the high-level estimation. However, the overestimation of the Z isomer is unimproved. It suggests that smaller errors during the training process do not necessarily translate to more accurate predictions on high-level potential energies or better performance on nonadiabatic dynamics simulations, at least in the present case.
Collapse
Affiliation(s)
- Shuai Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, Zhejiang, P. R. China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, Zhejiang, P. R. China
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai 265505, Shandong, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, Shandong, P. R. China
| |
Collapse
|
13
|
Liu C, Lin C, Xia Y, Wang F, Liu G, Zhou L, Yang Z. The effective prolongation of the excited-state carrier lifetime of CsPbI 2Br with applying strain. Phys Chem Chem Phys 2024; 26:18006-18015. [PMID: 38894605 DOI: 10.1039/d4cp01448k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In recent years, all-inorganic perovskites CsPbX3 (X = Cl, Br, I) have emerged as excellent candidates for solar cells due to their remarkable thermal stability and suitable bandgaps. Among them, CsPbI2Br is a hotspot in perovskite material research currently. Non-radiative electron-hole recombination often leads to significant energy losses, impacting the efficiency of solar cells, so a thorough understanding of carrier recombination mechanisms is crucial. Our work investigated the carrier recombination dynamics in detail and proved that strains can effectively reduce nonradiative recombination. In this study, using first-principles calculations combined with nonadiabatic (NA) molecular dynamics (MD), we demonstrate that applying 2% tensile and 2% compressive strains to CsPbI2Br can modify the bandgap, induce moderate disorder, reduce the overlap of electron-hole wavefunctions, decrease NA coupling, and shorten decoherence time, thereby minimizing non-radiative recombination and extending the carrier lifetime. Especially the 2% tensile strain exhibits more effective control performance, significantly reducing non-radiative electron-hole recombination and extending the charge carrier lifetime to 14.59 ns, nearly five times that of the pristine CsPbI2Br system (3.12 ns). This study reveals the impact mechanism of strain on carrier behavior in perovskite solar cells, providing a new non-chemical strategy for modulating the lifetime of photo-generated carriers and enhancing the efficiency of all-inorganic perovskite solar cells.
Collapse
Affiliation(s)
- Chang Liu
- Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Center for Basic Research in Energy Interdisciplinary Studies, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Chundan Lin
- Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Center for Basic Research in Energy Interdisciplinary Studies, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Yuhong Xia
- Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Center for Basic Research in Energy Interdisciplinary Studies, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Fei Wang
- Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Center for Basic Research in Energy Interdisciplinary Studies, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Guodong Liu
- Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Center for Basic Research in Energy Interdisciplinary Studies, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Lulu Zhou
- Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Center for Basic Research in Energy Interdisciplinary Studies, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Zhenqing Yang
- Beijing Key Laboratory of Oil and Gas Optical Detection Technology, Center for Basic Research in Energy Interdisciplinary Studies, China University of Petroleum (Beijing), Beijing, 102249, China.
| |
Collapse
|
14
|
Zhang L, Pios SV, Martyka M, Ge F, Hou YF, Chen Y, Chen L, Jankowska J, Barbatti M, Dral PO. MLatom Software Ecosystem for Surface Hopping Dynamics in Python with Quantum Mechanical and Machine Learning Methods. J Chem Theory Comput 2024; 20:5043-5057. [PMID: 38836623 DOI: 10.1021/acs.jctc.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We present an open-source MLatom@XACS software ecosystem for on-the-fly surface hopping nonadiabatic dynamics based on the Landau-Zener-Belyaev-Lebedev algorithm. The dynamics can be performed via Python API with a wide range of quantum mechanical (QM) and machine learning (ML) methods, including ab initio QM (CASSCF and ADC(2)), semiempirical QM methods (e.g., AM1, PM3, OMx, and ODMx), and many types of ML potentials (e.g., KREG, ANI, and MACE). Combinations of QM and ML methods can also be used. While the user can build their own combinations, we provide AIQM1, which is based on Δ-learning and can be used out-of-the-box. We showcase how AIQM1 reproduces the isomerization quantum yield of trans-azobenzene at a low cost. We provide example scripts that, in dozens of lines, enable the user to obtain the final population plots by simply providing the initial geometry of a molecule. Thus, those scripts perform geometry optimization, normal mode calculations, initial condition sampling, parallel trajectories propagation, population analysis, and final result plotting. Given the capabilities of MLatom to be used for training different ML models, this ecosystem can be seamlessly integrated into the protocols building ML models for nonadiabatic dynamics. In the future, a deeper and more efficient integration of MLatom with Newton-X will enable a vast range of functionalities for surface hopping dynamics, such as fewest-switches surface hopping, to facilitate similar workflows via the Python API.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sebastian V Pios
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| | - Mikołaj Martyka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Fuchun Ge
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi-Fan Hou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuxinxin Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lipeng Chen
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| | - Pavlo O Dral
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| |
Collapse
|
15
|
Huang H, Peng J, Zhang Y, Gu FL, Lan Z, Xu C. The development of the QM/MM interface and its application for the on-the-fly QM/MM nonadiabatic dynamics in JADE package: Theory, implementation, and applications. J Chem Phys 2024; 160:234101. [PMID: 38884395 DOI: 10.1063/5.0215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
Collapse
Affiliation(s)
- Haiyi Huang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhang Q, Shao X, Li W, Mi W, Pavanello M, Akimov AV. Nonadiabatic molecular dynamics with subsystem density functional theory: application to crystalline pentacene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:385901. [PMID: 38866023 DOI: 10.1088/1361-648x/ad577d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
In this work, we report the development and assessment of the nonadiabatic molecular dynamics approach with the electronic structure calculations based on the linearly scaling subsystem density functional method. The approach is implemented in an open-source embedded Quantum Espresso/Libra software specially designed for nonadiabatic dynamics simulations in extended systems. As proof of the applicability of this method to large condensed-matter systems, we examine the dynamics of nonradiative relaxation of excess excitation energy in pentacene crystals with the simulation supercells containing more than 600 atoms. We find that increased structural disorder observed in larger supercell models induces larger nonadiabatic couplings of electronic states and accelerates the relaxation dynamics of excited states. We conduct a comparative analysis of several quantum-classical trajectory surface hopping schemes, including two new methods proposed in this work (revised decoherence-induced surface hopping and instantaneous decoherence at frustrated hops). Most of the tested schemes suggest fast energy relaxation occurring with the timescales in the 0.7-2.0 ps range, but they significantly overestimate the ground state recovery rates. Only the modified simplified decay of mixing approach yields a notably slower relaxation timescales of 8-14 ps, with a significantly inhibited ground state recovery.
Collapse
Affiliation(s)
- Qingxin Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Xuecheng Shao
- Department of Physics, Rutgers University, The State University of New Jersey, Newark, NJ 07102, United States of America
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Wenhui Mi
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, People's Republic of China
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Michele Pavanello
- Department of Physics, Rutgers University, The State University of New Jersey, Newark, NJ 07102, United States of America
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| |
Collapse
|
17
|
Mannouch JR, Kelly A. Quantum Quality with Classical Cost: Ab Initio Nonadiabatic Dynamics Simulations Using the Mapping Approach to Surface Hopping. J Phys Chem Lett 2024; 15:5814-5823. [PMID: 38781480 PMCID: PMC11163471 DOI: 10.1021/acs.jpclett.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nonadiabatic dynamics methods are an essential tool for investigating photochemical processes. In the context of employing first-principles electronic structure techniques, such simulations can be carried out in a practical manner using semiclassical trajectory-based methods or wave packet approaches. While all approaches applicable to first-principles simulations are necessarily approximate, it is commonly thought that wave packet approaches offer inherent advantages over their semiclassical counterparts in terms of accuracy and that this trait simply comes at a higher computational cost. Here we demonstrate that the mapping approach to surface hopping (MASH), a recently introduced trajectory-based nonadiabatic dynamics method, can be efficiently applied in tandem with ab initio electronic structure. Our results even suggest that MASH may provide more accurate results than on-the-fly wave packet techniques, all at a much lower computational cost.
Collapse
Affiliation(s)
- Jonathan R. Mannouch
- Hamburg Center for Ultrafast
Imaging, Universität Hamburg and
the Max Planck Institute
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Aaron Kelly
- Hamburg Center for Ultrafast
Imaging, Universität Hamburg and
the Max Planck Institute
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
18
|
Frassi D, Padula G, Granucci G. Photoisomerization of Spiropyran in Solution: A Surface Hopping Investigation. J Phys Chem B 2024; 128:5246-5253. [PMID: 38760327 DOI: 10.1021/acs.jpcb.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
We performed a computational investigation of the photoisomerization of an unsubstituted spiropyran in solution using surface hopping molecular dynamics simulations in a semiempirical framework. To bring out the solvent effects on the excited state dynamics, we have run simulations in three different environments: chloroform, methanol, and ethylene glycol. We show that the interaction with a moderately polar solvent such as chloroform has little effect on the dynamics when compared to vacuum results previously obtained by our group. At variance, the interaction with the protic solvents considered considerably affects the reaction mechanism, the quantum yield, and the excited state lifetimes.
Collapse
Affiliation(s)
- Dario Frassi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Giancarlo Padula
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
19
|
Shi W, Ma J, Jiang C, Taketsugu T. Advanced theoretical design of light-driven molecular rotary motors: enhancing thermal helix inversion and visible-light activation. Phys Chem Chem Phys 2024; 26:15672-15680. [PMID: 38766713 DOI: 10.1039/d4cp00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this study, we have advanced the field of light-driven molecular rotary motors (LDMRMs) by achieving two pivotal goals: lowering the thermal helix inversion (THI) barrier and extending the absorption wavelength into the visible spectrum. This study involves the structural reengineering of a second-generation visible LDMRM, resulting in the synthesis of a novel class, specifically, 2-((2S)-5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-yl)-3-oxo-2,3-dihydro-1H-dibenzo[e,g]indole-6,9-dicarbonitrile. This redesigned motor stands out with its two photoisomerization stages and two thermal helix inversions, featuring exceptionally low THI barriers (4.00 and 2.05 kcal mol-1 at the OM2/MRCI level for the EM → EP and ZM → ZP processes, respectively). Moreover, it displays absorption wavelengths in the visible light range (482.98 and 465.76 nm for the EP and ZP isomers, respectively, at the TD-PBE0-D3/6-31G(d,p) level), surpassing its predecessors in efficiency, as indicated by the narrow HOMO-LUMO energy gap. Ultrafast photoisomerization kinetics (approximately 0.8-1.6 ps) and high quantum yields (around 0.3-0.6) were observed through trajectory surface hopping simulations. Additionally, the simulated time-resolved fluorescence emission spectrum indicates a significantly reduced "dark state" duration (0.09-0.26 ps) in these newly designed LDMRMs compared to the original ones, marking a substantial leap forward in the design and efficiency of LDMRMs.
Collapse
Affiliation(s)
- Weiliang Shi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Jianzheng Ma
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Chenwei Jiang
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
20
|
Hutton L, Moreno Carrascosa A, Prentice AW, Simmermacher M, Runeson JE, Paterson MJ, Kirrander A. Using a multistate mapping approach to surface hopping to predict the ultrafast electron diffraction signal of gas-phase cyclobutanone. J Chem Phys 2024; 160:204307. [PMID: 38814011 DOI: 10.1063/5.0203667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024] Open
Abstract
Using the recently developed multistate mapping approach to surface hopping (multistate MASH) method combined with SA(3)-CASSCF(12,12)/aug-cc-pVDZ electronic structure calculations, the gas-phase isotropic ultrafast electron diffraction (UED) of cyclobutanone is predicted and analyzed. After excitation into the n-3s Rydberg state (S2), cyclobutanone can relax through two S2/S1 conical intersections, one characterized by compression of the CO bond and the other by dissociation of the α-CC bond. Subsequent transfer into the ground state (S0) is then achieved via two additional S1/S0 conical intersections that lead to three reaction pathways: α ring-opening, ethene/ketene production, and CO liberation. The isotropic gas-phase UED signal is predicted from the multistate MASH simulations, allowing for a direct comparison to the experimental data. This work, which is a contribution to the cyclobutanone prediction challenge, facilitates the identification of the main photoproducts in the UED signal and thereby emphasizes the importance of dynamics simulations for the interpretation of ultrafast experiments.
Collapse
Affiliation(s)
- Lewis Hutton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Andrés Moreno Carrascosa
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Andrew W Prentice
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Mats Simmermacher
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Johan E Runeson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
21
|
Yang H, Wu R, Li W, Wen J. Ultrafast hydrogen production in boron/oxygen-codoped graphitic carbon nitride revealed by nonadiabatic dynamics simulations. Phys Chem Chem Phys 2024; 26:14205-14215. [PMID: 38689538 DOI: 10.1039/d4cp01085j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Graphitic carbon nitride (g-C3N4 or GCN) shows promise in photocatalytic water splitting, despite facing the challenge of rapid electron-hole recombination. In this study, we investigated the influence of boron/oxygen codoping on the photocatalytic performance of GCN systems for hydrogen generation. First-principles calculations and nonadiabatic molecular dynamics (NAMD) simulations were employed to reveal that the recombination time of photogenerated carriers could be increased by 16% to 64% in the codoped systems compared to the pristine GCN. The time-dependent density functional theory (TDDFT) scheme was utilized to select energy windows and initiate dynamics in cluster models of B/O co-doped heptazine with water molecules. Notably, we observed efficient direct photodissociation of hydrogen atoms from water molecules within 60 fs and proton hops within the hydrogen-bonded network within 80 fs in the co-doped system, diverging from the previously proposed mechanism for pristine heptazine in NAMD simulations. This discovery underscores the significant role of faster proton-coupled electron transfer (PCET) reactions and rapid radiationless relaxation in achieving high photocatalytic efficiency in water splitting. Our work enhances the understanding of the internal mechanism of highly efficient photocatalysts for water splitting and provides a new design strategy for doped GCN.
Collapse
Affiliation(s)
- Huijuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
22
|
Wu J, Zhang X, Xia J, Zhou Z, Xia SH. Mechanistic Insights into the Excited-State Intramolecular Proton Transfer (ESIPT) Process of 2-(2-Aminophenyl)naphthalene. J Phys Chem A 2024. [PMID: 38709493 DOI: 10.1021/acs.jpca.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The 2-(2-aminophenyl)naphthalene molecule attracted much attention due to excited-state intramolecular proton transfer (ESIPT) from an amino NH2 group to a carbon atom of an adjacent aromatic ring. The ESIPT mechanisms of 2-(2-aminophenyl)naphthalene are still unclear. Herein, the decay pathways of this molecule in vacuum were investigated by combining static electronic structure calculations and nonadiabatic dynamics simulations. The calculations indicated the existence of two stable structures (S0-1 and S0-2) in the S0 and S1 states. For the S0-1 isomer, upon excitation to the Franck-Condon point, the system relaxed to the S1 minimum quickly, and then there exist four decay pathways (two ESIPT ones and two decay channels with C atom pyramidalization). In the ESIPT decay pathways, the system encounters the S1S0-PT-1 or S1S0-PT-2 conical intersection, which funnels the system rapidly to the S0 state. In the other two pathways, the system de-excited from the S1 to the S0 state via the S1S0-1 or S1S0-2 conical intersection. For the S0-2 structure, the decay pathways were similar to those of S0-1. The dynamics simulations showed that 75 and 69% of trajectories experienced the two ESIPT conical intersections for the S0-1 and S0-2 structures, respectively. Our simulations showed that the lifetime of the S1 state of S0-1 (S0-2) is estimated to be 358 (400) fs. Notably, we not only found the detailed reaction mechanism of the system but also found that the different ground-state configurations of this system have little effect on the reaction mechanism in vacuum.
Collapse
Affiliation(s)
- Jiahui Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinyu Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinglin Xia
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zihao Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
23
|
Zhang Y, Jia MR, Liu XY, Fang WH, Cui G. Photoinduced Dynamics of a Single-Walled Carbon Nanotube with a sp 3 Defect: The Importance of Excitonic Effects. J Phys Chem A 2024; 128:3311-3320. [PMID: 38654690 DOI: 10.1021/acs.jpca.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, we employed linear-response time-dependent functional theory nonadiabatic dynamic simulations to explore the photoinduced exciton dynamics of a chiral single-walled carbon nanotube CNT(6,5) covalently doped with a 4-nitrobenzyl group (CNT65-NO2). The results indicate that the introduction of a sp3 defect leads to the splitting of the degenerate VBM/VBM-1 and CBM/CBM+1 states. Both the VBM upshift and the CBM downshift are responsible for the experimentally observed redshifted E11* trapping state. The simulations reveal that the photoinduced exciton relaxation dynamics completes within 500 fs, which is consistent with the experimental work. On the other hand, we also conducted the nonadiabatic carrier (electron and hole) dynamic simulations, which completely ignore the excitonic effects. The comparison demonstrates that excitonic effects are indispensable. Deep analyses show that such effects induce several dark states, which play an important role in regulating the photoinduced dynamics of CNT65-NO2. The present work demonstrates the importance of including excitonic effects in simulating photoinduced processes of carbon nanotubes. In addition, it not only rationalizes previous experiments but also provides valuable insights that will help in the future rational design of novel covalently doped carbon nanotubes with superior photoluminescent properties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Ru Jia
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Ghosh A, Das P, Kumar S, Sarkar P. Hot carrier relaxation dynamics of an aza-covalent organic framework during photoexcitation: An insight from ab initio quantum dynamics. J Chem Phys 2024; 160:164707. [PMID: 38647311 DOI: 10.1063/5.0200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
In order to develop an efficient metal-free solar energy harvester, we herein performed the electronic structure calculation, followed by the hot carrier relaxation dynamics of two dimensional (2D) aza-covalent organic framework by time domain density functional calculations in conjunction with non-adiabatic molecular dynamics (NAMD) simulation. The electronic structure calculation shows that the aza-covalent organic framework (COF) is a direct bandgap semiconductor with acute charge separation and effective optical absorption in the UV-visible region. Our study of non-adiabatic molecular dynamics simulation predicts the sufficiently prolonged electron-hole recombination process (6.8 nanoseconds) and the comparatively faster electron (22.48 ps) and hole relaxation (0.51 ps) dynamics in this two-dimensional aza-COF. According to our theoretical analysis, strong electron-phonon coupling is responsible for the rapid charge relaxation, whereas the electron-hole recombination process is slowed down by relatively weak electron-phonon coupling, relatively lower non-adiabatic coupling, and quick decoherence time. We do hope that our results of NAMD simulation on exciton relaxation dynamics will be helpful for designing photovoltaic devices based on this two dimensional aza-COF.
Collapse
Affiliation(s)
- Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Priya Das
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Subhash Kumar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
25
|
Jaiswal VK, Montorsi F, Aleotti F, Segatta F, Keefer D, Mukamel S, Nenov A, Conti I, Garavelli M. Ultrafast photochemistry and electron-diffraction spectra in n → (3s) Rydberg excited cyclobutanone resolved at the multireference perturbative level. J Chem Phys 2024; 160:164316. [PMID: 38686819 DOI: 10.1063/5.0203624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
We study the ultrafast time evolution of cyclobutanone excited to the singlet n → Rydberg state through non-adiabatic surface-hopping simulationsperformed at extended multi-state complete active space second-order perturbation (XMS-CASPT2) level of theory. These dynamics predict relaxation to the ground-state with a timescale of 822 ± 45 fs with minimal involvement of the triplets. The major relaxation path to the ground-state involves a three-state degeneracy region and leads to a variety of fragmented photoproducts. We simulate the resulting time-resolved electron-diffraction spectra, which track the relaxation of the excited state and the formation of various photoproducts in the ground state.
Collapse
Affiliation(s)
- V K Jaiswal
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - F Montorsi
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - F Aleotti
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - F Segatta
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Daniel Keefer
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA
| | - A Nenov
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - I Conti
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - M Garavelli
- Dipartimento di Chimica industriale "Toso Montanari," Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
26
|
de Araújo BB, Gonçalves PFB. From skin sensitizers to wastewater: the unknown photo-deactivation process of low-lying excited states of isothiazolinones. A non-adiabatic dynamics investigation. Phys Chem Chem Phys 2024; 26:12799-12805. [PMID: 38619871 DOI: 10.1039/d4cp00998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Isothiazolinones represent a class of heterocyclic compounds widely used in various applications, including as biocides in cosmetics, detergents, and paints, as well as in industrial wastewater treatment. Indeed, the presence of isothiazolinones in the environment and their associated potential health hazards have raised significant concerns. In this study, a non-adiabatic dynamics investigation was conducted using state-of-the-art methodologies to explore the photochemistry of isothiazolinones. A simplified model, isothiazol-3(2H)-one (ISO), was employed to represent this compound class. The study validated the model and demonstrated that ISO can return to its ground state through the cleavage of the S-N or S-C bonds, with no significant energy barrier observed. Non-adiabatic dynamics simulations provided insights into the time scales and detailed processes of isothiazolinone photodissociation. The preferred route for deactivation was found to be the cleavage of the S-N bond. This research enhances our understanding of the photodeactivation processes of isothiazolinones and their potential environmental impact.
Collapse
Affiliation(s)
- Bruno Bercini de Araújo
- Grupo de Química Teórica, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500, CP 15003, CEP 91501970, Porto Alegre, Brazil.
| | - Paulo Fernando Bruno Gonçalves
- Grupo de Química Teórica, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500, CP 15003, CEP 91501970, Porto Alegre, Brazil.
| |
Collapse
|
27
|
Medhi B, Nath U, Sarma M. Revisiting fulgide photochromism: Mechanistic decoding and electron transport from computational exploration. J Chem Phys 2024; 160:154308. [PMID: 38634497 DOI: 10.1063/5.0203307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
The photochromic behavior of the fulgide molecule relies on ring-closure and ring-opening processes involving conical intersections during excited state transformation between isomers. The precise location and topography of these conical intersections significantly shape the decay process and fluorescence phenomena inherent to the molecule. This work combines electronic structure theory calculations using the density functional theory and wavefunction methods, as well as surface hopping simulation to analyze the photochemical behavior of an experimentally synthesized fulgide molecule, (E)-p-methylacetophenylisopropylidenesuccinic anhydride (1E). Our study reveals the conical intersection between the first excited state (S1) and the ground electronic state (S0), which emerges beyond the S1 minimum of 1E to the ring-closing side. The distinctive topography of this conical intersection appears to be sloped. These findings suggest a reduced quantum yield for the formation of the closed isomer, indicating a higher likelihood of reformation of the open isomer(s). The surface hopping simulation further supports this observation, revealing a mere ∼8% quantum yield for the formation of the closed isomer. In addition, the photoisomerization of the fulgide molecule initiates a cascade of conduction switching and holds great potential for applications in molecular electronics. Delving into the realm of molecular electronics, we have further examined the electron transport properties, disclosing the higher conductivity of the closed isomer.
Collapse
Affiliation(s)
- Biman Medhi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Upasana Nath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
28
|
Medhi B, Sarma M. Deciphering the Internal Conversion Processes Involved in the Photochemical Ring-Opening of 1,3-Cyclohexadiene by Symmetric sp 2-Carbon Substitutions. J Phys Chem A 2024; 128:2025-2037. [PMID: 38426433 DOI: 10.1021/acs.jpca.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Chemical substituents hold the potential to markedly influence the photochemical behavior in molecular systems and assist in gaining a comprehensive understanding of nonadiabatic phenomena. In this study, we have conducted a comparative analysis of the influence of chemical substituents on the photochemical ring-opening of 1,3-cyclohexadiene (CHD), considering four systems: CHD, 2,3-dimethylcyclohexadiene (CHD-Me2-1), 1,4-dimethylcyclohexadiene (CHD-Me2-2), and 1,2,3,4-tetramethylcyclohexadiene (CHD-Me4), using electronic structure theory calculations and nonadiabatic molecular dynamics simulations. Employing extended multistate complete active space second-order perturbation (XMS-CASPT2) theory, we optimized reactants, S1 states, conical intersections (CIns), and products, revealing structural and energetic variations consistent with prior research. Nonadiabatic molecular dynamics simulation was used to gain insights into photochemical dynamics at state-averaged complete active space self-consistent field (SA-CASSCF) theory. CHD-Me4 exhibited reduced carbon-carbon single bond rupture rates, responsible for ring-opening, due to substituent proximity. Further, CHD-Me2-2 and CHD-Me4 displayed prolonged excited-state relaxation times, highlighting notable substituents' impact. Analysis of kinetic energy profiles of specific carbon atoms also revealed restrained atomic displacements, particularly in CHD-Me2-2 and CHD-Me4. These findings advance our understanding of how substituents modulate photochemical reactions in cyclohexadiene derivatives, guiding new molecular design and future research.
Collapse
Affiliation(s)
- Biman Medhi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
29
|
Chen X, Zhang X, Han J, Xia SH. Photochemical Mechanisms of Hydroxyquinoline Benzimidazole: Insights from Electronic Structure Calculations and Nonadiabatic Dynamics Simulations. J Phys Chem A 2024; 128:1984-1992. [PMID: 38446415 DOI: 10.1021/acs.jpca.3c07298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Excited-state intramolecular double proton transfer (ESIDPT) has received much attention because of its widespread existence in the life reactions of living organisms, and materials with this property are significant for their special luminescent properties. In this work, the complete active space self-consistent field (CASSCF) and OM2/multireference configuration interaction (OM2/MRCI) methods have been employed to study the static electronic structure calculations of the photochemistry and the possibility of ESIDPT process of hydroxyquinoline benzimidazole (HQB) molecule, along with the nonadiabatic dynamics simulations. The computational results show that the HQB molecule is relaxed to the S1-ENOL minimum after being excited to the Franck-Condon point in the S1 state. Subsequently, during the nonadiabatic deactivation process, the OH···N proton transfer and the twisting of benzimidazole occur before arriving at the single proton transfer conical intersection S1S0-KETO. Finally, the system can either return to the initial ground-state structure S0-ENOL or to the single proton transfer ground-state structure S0-KETO, both of which have almost the same probability. The dynamics simulations also show that no double proton transfer occurs. The excited-state lifetime of HQB is fitted to 1.1 ps, and only 64% of the dynamic trajectories return to the ground state within the 2.0 ps simulation time. We hope the detailed reaction mechanism of the HQB molecule will provide new insights into similar systems.
Collapse
Affiliation(s)
- Xiaohang Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - XinYu Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
30
|
Salvadori G, Mazzeo P, Accomasso D, Cupellini L, Mennucci B. Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. J Mol Biol 2024; 436:168358. [PMID: 37944793 DOI: 10.1016/j.jmb.2023.168358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this review, we discuss the successes and challenges of the atomistic modeling of photoreceptors. Throughout our presentation, we integrate explanations of the primary methodological approaches, ranging from quantum mechanical descriptions to classical enhanced sampling methods, all while providing illustrative examples of their practical application to specific systems. To enhance the effectiveness of our analysis, our primary focus has been directed towards the examination of applications across three distinct photoreceptors. These include an example of Blue Light-Using Flavin (BLUF) domains, a bacteriophytochrome, and the orange carotenoid protein (OCP) employed by cyanobacteria for photoprotection. Particular emphasis will be placed on the pivotal role played by the protein matrix in fine-tuning the initial photochemical event within the embedded chromophore. Furthermore, we will investigate how this localized perturbation initiates a cascade of events propagating from the binding pocket throughout the entire protein structure, thanks to the intricate network of interactions between the chromophore and the protein.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Patrizia Mazzeo
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
31
|
Dupuy L, Rikus A, Maitra NT. Exact-Factorization-Based Surface Hopping without Velocity Adjustment. J Phys Chem Lett 2024:2643-2649. [PMID: 38422391 DOI: 10.1021/acs.jpclett.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
While surface hopping has emerged as a powerful method for simulating non-adiabatic dynamics in large molecules, the ad hoc nature of the necessary velocity adjustments and decoherence corrections in the algorithm somewhat reduces its reliability. Here we propose a new scheme that eliminates these aspects by combining the nuclear equation from the quantum-trajectory surface-hopping approach with the electronic equation derived from the exact-factorization approach. The resulting method, denoted QTSH-XF, yields a surface-hopping method on firmer ground than previous and is shown to successfully capture dynamics in Tully models and in a linear vibronic coupling model of the photoexcited uracil cation.
Collapse
Affiliation(s)
- Lucien Dupuy
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Anton Rikus
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
- University of Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, 48149 Münster, Germany
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
32
|
Zhou JG, Shu Y, Wang Y, Leszczynski J, Prezhdo O. Dissociation Time, Quantum Yield, and Dynamic Reaction Pathways in the Thermolysis of trans-3,4-Dimethyl-1,2-dioxetane. J Phys Chem Lett 2024; 15:1846-1855. [PMID: 38334951 PMCID: PMC10895692 DOI: 10.1021/acs.jpclett.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
The thermolysis of trans-3,4-dimethyl-1,2-dioxetane is studied by trajectory surface hopping. The significant difference between long and short dissociation times is rationalized by frustrated dissociations and the time spent in triplet states. If the C-C bond breaks through an excited state channel, then the trajectory passes over a ridge of the potential energy surface of that state. The calculated triplet quantum yields match the experimental results. The dissociation half-times and quantum yields follow the same ascending order as per the product states, justifying the conjecture that the longer dissociation time leads to a higher quantum yield, proposed in the context of the methylation effect. The populations of the molecular Coulomb Hamiltonian and diagonal states reach equilibrium, but the triplet populations with different Sz components fluctuate indefinitely. Certain initial velocities, leading the trajectories to given product states, can be identified as the most characteristic features for sorting trajectories according to their product states.
Collapse
Affiliation(s)
- Jian-Ge Zhou
- Interdisciplinary
Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric
Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Yinan Shu
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yuchen Wang
- Department
of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jerzy Leszczynski
- Interdisciplinary
Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric
Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Oleg Prezhdo
- Department
of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
33
|
Figueira Nunes JP, Ibele LM, Pathak S, Attar AR, Bhattacharyya S, Boll R, Borne K, Centurion M, Erk B, Lin MF, Forbes RJG, Goff N, Hansen CS, Hoffmann M, Holland DMP, Ingle RA, Luo D, Muvva SB, Reid AH, Rouzée A, Rudenko A, Saha SK, Shen X, Venkatachalam AS, Wang X, Ware MR, Weathersby SP, Wilkin K, Wolf TJA, Xiong Y, Yang J, Ashfold MNR, Rolles D, Curchod BFE. Monitoring the Evolution of Relative Product Populations at Early Times during a Photochemical Reaction. J Am Chem Soc 2024; 146:4134-4143. [PMID: 38317439 PMCID: PMC10870701 DOI: 10.1021/jacs.3c13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.
Collapse
Affiliation(s)
| | - Lea Maria Ibele
- CNRS,
Institut de Chimie Physique UMR8000, Université
Paris-Saclay, Orsay, 9140, France
| | - Shashank Pathak
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Andrew R. Attar
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Surjendu Bhattacharyya
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Kurtis Borne
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Martin Centurion
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Benjamin Erk
- Deutsches
Elektronen Synchrotron DESY, Hamburg, 22607, Germany
| | - Ming-Fu Lin
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ruaridh J. G. Forbes
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nathan Goff
- Brown University, Providence, Rhode Island 02912, United States
| | | | - Matthias Hoffmann
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Rebecca A. Ingle
- Department
of Chemistry, University College London, London, WC1H 0AJ, U.K.
| | - Duan Luo
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sri Bhavya Muvva
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander H. Reid
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Artem Rudenko
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sajib Kumar Saha
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiaozhe Shen
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Anbu Selvam Venkatachalam
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Xijie Wang
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matt R. Ware
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Kyle Wilkin
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Thomas J. A. Wolf
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Yanwei Xiong
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Yang
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Daniel Rolles
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | | |
Collapse
|
34
|
Jankowska J, Sobolewski AL. Photo-oxidation of methanol in complexes with pyrido[2,3- b]pyrazine: a nonadiabatic molecular dynamics study. Phys Chem Chem Phys 2024; 26:5296-5302. [PMID: 38265828 DOI: 10.1039/d3cp04148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Excited-state Proton-Coupled Electron Transfer (PCET) constitutes a key step in the photo-oxidation of small, electron-rich systems possessing acidic hydrogen atoms, such as water or alcohols, which can play a vital role in green hydrogen production. In this contribution, we employ ab initio quantum-chemical methods and on-the-fly nonadiabatic molecular dynamics simulations to study the mechanism and the photodynamics of PCET in 1 : 1 pyrido[2,3-b]pyrazine complexes with methanol. We find the process to be ultrafast and efficient when the intramolecular hydrogen bond is formed with one of the β-positioned nitrogen atoms. The complex exhibiting a hydrogen bond with an isolated nitrogen site, on the contrary, shows much lower reactivity. We explain this effect with the stabilization of the reactive ππ* charge-transfer electronic state in the former case.
Collapse
Affiliation(s)
- Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland.
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
| |
Collapse
|
35
|
Pedraza-González L, Accomasso D, Cupellini L, Granucci G, Mennucci B. Ultrafast excited-state dynamics of Luteins in the major light-harvesting complex LHCII. Photochem Photobiol Sci 2024; 23:303-314. [PMID: 38151602 DOI: 10.1007/s43630-023-00518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
Carotenoid pigments are known to present a functional versatility when bound to light-harvesting complexes. This versatility originates from a strong correlation between a complex electronic structure and a flexible geometry that is easily tunable by the surrounding protein environment. Here, we investigated how the different L1 and L2 sites of the major trimeric light-harvesting complex (LHCII) of green plants tune the electronic structure of the two embedded luteins, and how this reflects on their ultrafast dynamics upon excitation. By combining molecular dynamics and quantum mechanics/molecular mechanics calculations, we found that the two luteins feature a different conformation around the second dihedral angle in the lumenal side. The s-cis preference of the lutein in site L2 allows for a more planar geometry of the π -conjugated backbone, which results in an increased degree of delocalization and a reduced excitation energy, explaining the experimentally observed red shift. Despite these remarkable differences, according to surface hopping simulations the two luteins present analogous ultrafast dynamics upon excitation: the bright S 2 state quickly decays (in ∼ 50 fs) to the dark intermediate S x , eventually ending up in the S 1 state. Furthermore, by employing two different theoretical approaches (i.e., Förster theory and an excitonic version of surface hopping), we investigated the experimentally debated energy transfer between the two luteins. With both approaches, no evident energy transfer was observed in the ultrafast timescale.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Davide Accomasso
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy.
| |
Collapse
|
36
|
Accomasso D, Londi G, Cupellini L, Mennucci B. The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants. Nat Commun 2024; 15:847. [PMID: 38286840 PMCID: PMC11258248 DOI: 10.1038/s41467-024-45090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
In plants, light-harvesting complexes serve as antennas to collect and transfer the absorbed energy to reaction centers, but also regulate energy transport by dissipating the excitation energy of chlorophylls. This process, known as nonphotochemical quenching, seems to be activated by conformational changes within the light-harvesting complex, but the quenching mechanisms remain elusive. Recent spectroscopic measurements suggest the carotenoid S* dark state as the quencher of chlorophylls' excitation. By investigating lutein embedded in different conformations of CP29 (a minor antenna in plants) via nonadiabatic excited state dynamics simulations, we reveal that different conformations of the complex differently stabilize the lutein s-trans conformer with respect to the dominant s-cis one. We show that the s-trans conformer presents the spectroscopic signatures of the S* state and rationalize its ability to accept energy from the closest excited chlorophylls, providing thus a relationship between the complex's conformation and the nonphotochemical quenching.
Collapse
Affiliation(s)
- Davide Accomasso
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy.
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland.
| | - Giacomo Londi
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
37
|
Pieroni C, Sangiogo Gil E, Ibele LM, Persico M, Granucci G, Agostini F. Investigating the Photodynamics of trans-Azobenzene with Coupled Trajectories. J Chem Theory Comput 2024; 20:580-596. [PMID: 38177105 DOI: 10.1021/acs.jctc.3c00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this work, we present the first implementation of coupled-trajectory Tully surface hopping (CT-TSH) suitable for applications to molecular systems. We combine CT-TSH with the semiempirical floating occupation molecular orbital-configuration interaction electronic structure method to investigate the photoisomerization dynamics of trans-azobenzene. Our study shows that CT-TSH can capture correctly decoherence effects in this system, yielding consistent electronic and nuclear dynamics in agreement with (standard) decoherence-corrected TSH. Specifically, CT-TSH is derived from the exact factorization and the electronic coefficients' evolution is directly influenced by the coupling of trajectories, resulting in the improvement of internal consistency if compared to standard TSH.
Collapse
Affiliation(s)
- Carlotta Pieroni
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Eduarda Sangiogo Gil
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Lea M Ibele
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
38
|
Akimov AV. Energy-Conserving and Thermally Corrected Neglect of Back-Reaction Approximation Method for Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:11673-11683. [PMID: 38109379 DOI: 10.1021/acs.jpclett.3c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In this work, the energy-conserving and thermally corrected neglect of the back-reaction approximation approach for nonadiabatic molecular dynamics in extended atomistic systems is developed. The new approach introduces three key corrections to the original method: (1) it enforces the total energy conservation, (2) it introduces an explicit coupling of the system to its environment, and (3) it introduces a renormalization of nonadiabatic couplings to account for a difference between the instantaneous nuclear kinetic energy and the kinetic energy of guiding trajectories. In the new approach, an auxiliary kinetic energy variable is introduced as an independent dynamical variable. The new approach produces nonzero equilibrium populations, whereas the original neglect of the back-reaction approximation method does not. It yields population relaxation time scales that are favorably comparable to the reference values, and it introduces an explicit and controllable way of dissipating energy into a bath without an assumption of the bath being at equilibrium.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| |
Collapse
|
39
|
Martín Santa Daría A, González-Sánchez L, Gómez S. Coronene: a model for ultrafast dynamics in graphene nanoflakes and PAHs. Phys Chem Chem Phys 2023; 26:174-184. [PMID: 37811951 DOI: 10.1039/d3cp03656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Assuming a delta pulse excitation, quantum wavepackets are propagated on the excited state manifold in the energy range from 3.4-5.0 eV for coronene and 2.4-3.5 eV for circumcoronene to study the time evolution of the states as well as their lifetimes. The full-dimensional (102 and 210 degrees of freedom for coronene and circumcoronene respectively) non-adiabatic dynamics simulated with the ML-MCTDH method on twelve coupled singlet electronic states show that the different absorption spectra are only due to electronic delocalisation effects that change the excited state energies, but the structural dynamics in both compounds are identical. Breathing and tilting motions drive the decay dynamics of the electronic states away from the Frank-Condon region independently of the size of the aromatic system. This promising result allows the use of coronene as a model system for the dynamics of larger polycyclic aromatic hydrocarbons (PAHs) and graphene one dimensional sheets or nanoflakes.
Collapse
Affiliation(s)
| | | | - Sandra Gómez
- Departamento de Química Física, Universidad de Salamanca, Spain.
| |
Collapse
|
40
|
Huang DM, Green AT, Martens CC. A first principles derivation of energy-conserving momentum jumps in surface hopping simulations. J Chem Phys 2023; 159:214108. [PMID: 38047505 DOI: 10.1063/5.0178534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
The fewest switches surface hopping (FSSH) method proposed by Tully in 1990 [Tully, J. Chem. Phys. 93, 1061 (1990)]-along with its many later variations-forms the basis for most practical simulations of molecular dynamics with electronic transitions in realistic systems. Despite its popularity, a rigorous formal derivation of the algorithm has yet to be achieved. In this paper, we derive the energy-conserving momentum jumps employed by FSSH from the perspective of quantum trajectory surface hopping (QTSH) [Martens, J. Phys. Chem. A 123, 1110 (2019)]. In the limit of localized nonadiabatic transitions, simple mathematical and physical arguments allow the FSSH algorithm to be derived from first principles. For general processes, the quantum forces characterizing the QTSH method provide accurate results for nonadiabatic dynamics with rigorous energy conservation, at the ensemble level, within the consistency of the underlying stochastic surface hopping without resorting to the artificial momentum rescaling of FSSH.
Collapse
Affiliation(s)
| | - Austin T Green
- University of California, Irvine, California 92697-2025, USA
| | - Craig C Martens
- University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
41
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
42
|
Zhou JN, Cheng KQ, Zhang X, Yang S, Liu J, Li W, Li Q, Han J, Xie XY, Cui G. Mechanistic insights into photoinduced energy and charge transfer dynamics between magnesium-centered tetrapyrroles and carbon nanotubes. Phys Chem Chem Phys 2023; 25:30627-30635. [PMID: 37933177 DOI: 10.1039/d3cp04573k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Functionalizing single-walled carbon nanotubes (SWNTs) with light-harvesting molecules is a facile way to construct donor-acceptor nanoarchitectures with intriguing optoelectronic properties. Magnesium-centered bacteriochlorin (MgBC), chlorin (MgC), and porphyrin (MgP) are a series of tetrapyrrole macrocycles comprising a central metal and four coordinated aromatic or antiaromatic five-membered rings linked by methine units, which show excellent visible light absorption. To delineate the effects of the aromaticity of coordinated rings on the optoelectronic properties of the nanocomposites, the photoinduced energy and charge transfer dynamics between Mg-centered tetrapyrroles and SWNTs are explored. The results show that excited energy transfer (EET) can occur within MgP@SWNT ascribed to the stabilization of the highest occupied molecular orbital (HOMO) in MgP with the increase of aromatic coordinated rings, while only electron transfer can take place in MgBC@SWNT and MgC@SWNT. Non-adiabatic dynamics simulations demonstrate that electron and hole transfer from MgP to SWNT is asynchronous. The electron transfer is ultrafast with a timescale of ca. 50 fs. By contrast, the hole transfer is significantly suppressed, although it can be accelerated to some extent when using a lower excitation energy of 2.2 eV as opposed to 3.1 eV. Further analysis reveals that the large energy gaps between charge-donor and charge-acceptor states play a crucial role in regulating photoexcited state relaxation dynamics. Our theoretical insights elucidate the structure-functionality interrelations between Mg-centered tetrapyrroles and SWNTs and provide a comprehensive understanding of the underlying charge transfer mechanism within MgP@SWNT nanocomposites, which paves the way for the forthcoming development of SWNT-based photo-related functional materials with targeted applications.
Collapse
Affiliation(s)
- Jia-Ning Zhou
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ke-Qin Cheng
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Xiaolong Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Shubin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Wenzuo Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Qingzhong Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Xiao-Ying Xie
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
43
|
Im S, Jung Y. Substituent-Induced Hyperconjugation: Origin of the Structural Effects on the Efficiency of Photochemical Ring Opening. J Phys Chem A 2023; 127:9236-9243. [PMID: 37905965 DOI: 10.1021/acs.jpca.3c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photochemical ring-opening reactions are among the most extensively employed chemical reactions in the field of chemistry. Owing to their significance, molecular-level studies of these reactions have been widely conducted. One of the major considerations in investigating the ring-opening dynamics of complex molecules on the molecular scale is the differences in dynamics between different conformers because the number of conformers arising from a specific substrate rapidly increases with the complexity of the substrate. However, to date, studies dealing with this problem have been limited to specific individual cases. That is, a rule applicable to arbitrary conformers to estimate and explain the effects of the molecular structure, such as substituents and conformations, on photochemical ring opening has not been established. Herein, we propose the concept of substituent-induced electron density leakage via hyperconjugation as a candidate for this general rule. Based on our hypothesis, we present an indicator that can predict the efficiency of the photochemical ring-opening reactions of various conformers. The relative error between the ring-opening efficiency as obtained from the indicator and that obtained from the nonadiabatic simulations was less than 25% in 56 of the 66 conformers arising from 1,3-cyclohexadiene and 12 distinct analogues. This approach offers the possibility of accurately and quickly predicting the photochemical ring-opening efficiency of arbitrary molecules in arbitrary conformations.
Collapse
Affiliation(s)
- Seongmin Im
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
44
|
Liu S, Liu SS, Tang XM, Liu XY, Yang JJ, Cui G, Li L. Solvent effects on the photoinduced charge separation dynamics of directly linked zinc phthalocyanine-perylenediimide dyads: a nonadiabatic dynamics simulation with an optimally tuned screened range-separated hybrid functional. Phys Chem Chem Phys 2023; 25:28452-28464. [PMID: 37846460 DOI: 10.1039/d3cp03517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiao-Mei Tang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
45
|
Mejia-Rodriguez D, Aprà E, Autschbach J, Bauman NP, Bylaska EJ, Govind N, Hammond JR, Kowalski K, Kunitsa A, Panyala A, Peng B, Rehr JJ, Song H, Tretiak S, Valiev M, Vila FD. NWChem: Recent and Ongoing Developments. J Chem Theory Comput 2023; 19:7077-7096. [PMID: 37458314 DOI: 10.1021/acs.jctc.3c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.
Collapse
Affiliation(s)
- Daniel Mejia-Rodriguez
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff R Hammond
- Accelerated Computing, NVIDIA Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander Kunitsa
- Zapata Computing, Inc., 100 Federal Street, Boston, Massachusetts 02110, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marat Valiev
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
46
|
Coffman AJ, Jin Z, Chen J, Subotnik JE, Cofer-Shabica DV. Use of QM/MM Surface Hopping Simulations to Understand Thermally Activated Rare-Event Nonadiabatic Transitions in the Condensed Phase. J Chem Theory Comput 2023; 19:7136-7150. [PMID: 37811904 DOI: 10.1021/acs.jctc.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We implement a rare-event sampling scheme for quantifying the rate of thermally activated nonadiabatic transitions in the condensed phase. Our Quantum mechanics/molecular mechanics (QM/MM) methodology uses the recently developed Interface for NonAdiabatic QM/MM in Solvent (INAQS) package to interface an elementary electronic structure package and a popular open-source molecular dynamics software (GROMACS) to simulate an electron transfer event between two stationary ions in a solution of acetonitrile solvent molecules. Nonadiabatic effects are implemented through a surface hopping scheme, and our simulations allow further quantitative insight into the participation ratio of a solvent and the effect of ion separation distance as far as facilitating electron transfer. We also demonstrate that the standard gas-phase approaches for treating frustrated hops and velocity reversal must be refined when working in the condensed phase with many degrees of freedom. The code and methodology developed here can be easily expanded upon and modified to incorporate other systems and should provide a great deal of new insight into a wide variety of condensed phase nonadiabatic phenomena.
Collapse
Affiliation(s)
- Alec J Coffman
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Zuxin Jin
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Junhan Chen
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - D Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
47
|
Xie M, Ren SX, Hu D, Zhong JM, Luo J, Tan Y, Li YP, Si LP, Cao J. The impact of the chalcogen-substitution element and initial spectroscopic state on excited-state relaxation pathways in nucleobase photosensitizers: a combination of static and dynamic studies. Phys Chem Chem Phys 2023; 25:27756-27765. [PMID: 37814579 DOI: 10.1039/d3cp03730d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The substitution of oxygen with chalcogen in carbonyl group(s) of canonical nucleobases gives an impressive triplet generation, enabling their promising applications in medicine and other emerging techniques. The excited-state relaxation S2(ππ*) → S1(nπ*) → T1(ππ*) has been considered the preferred path for triplet generation in these nucleobase derivatives. Here, we demonstrate enhanced quantum efficiency of direct intersystem crossing from S2 to triplet manifold upon substitution with heavier chalcogen elements. The excited-state relaxation dynamics of sulfur/selenium substituted guanines in a vacuum is investigated using a combination of static quantum chemical calculations and on-the-fly excited-state molecular dynamics simulations. We find that in sulfur-substitution the S2 state predominantly decays to the S1 state, while upon selenium-substitution the S2 state deactivation leads to simultaneous population of the S1 and T2,3 states in the same time scale and multi-state quasi-degeneracy region S2/S1/T2,3. Interestingly, the ultrafast deactivation of the spectroscopic S3 state of both studied molecules to the S1 state occurs through a successive S3 → S2 → S1 path involving a multi-state quasi-degeneracy S3/S2/S1. The populated S1 and T2 states will cross the lowest triplet state, and the S1 → T intersystem crossing happens in a multi-state quasi-degeneracy region S1/T2,3/T1 and is accelerated by selenium-substitution. The present study reveals the influence of both the chalcogen substitution element and initial spectroscopic state on the excited-state relaxation mechanism of nucleobase photosensitizers and also highlights the important role of multi-state quasi-degeneracy in mediating the complex relaxation process. These theoretical results provide additional insights into the intrinsic photophysics of nucleobase-based photosensitizers and are helpful for designing novel photo-sensitizers for real applications.
Collapse
Affiliation(s)
- Min Xie
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Shuang-Xiao Ren
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Die Hu
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Ji-Meng Zhong
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Jie Luo
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yin Tan
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Yan-Ping Li
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Li-Ping Si
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy & Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, P. R. China
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou, 550018, P. R. China.
| |
Collapse
|
48
|
Arcidiacono A, Accomasso D, Cupellini L, Mennucci B. How orange carotenoid protein controls the excited state dynamics of canthaxanthin. Chem Sci 2023; 14:11158-11169. [PMID: 37860660 PMCID: PMC10583711 DOI: 10.1039/d3sc02662k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Orange Carotenoid Protein (OCP) is a ketocarotenoid-binding protein essential for photoprotection in cyanobacteria. The main steps of the photoactivated conversion which converts OCP from its resting state to the active one have been extensively investigated. However, the initial photochemical event in the ketocarotenoid which triggers the large structural changes finally leading to the active state is still not understood. Here we employ QM/MM surface hopping nonadiabatic dynamics to investigate the excited-state decay of canthaxanthin in OCP, both in the ultrafast S2 to S1 internal conversion and the slower decay leading back to the ground state. For the former step we show the involvement of an additional excited state, which in the literature has been often named the SX state, and we characterize its nature. For the latter step, we reveal an excited state decay characterized by multiple timescales, which are related to the ground-state conformational heterogeneity of the ketocarotenoid. We assigned the slowly decaying population to the so-called S* state. Finally, we identify a minor decay pathway involving double-bond photoisomerization, which could be the initial trigger to photoactivation of OCP.
Collapse
Affiliation(s)
- Amanda Arcidiacono
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Davide Accomasso
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
49
|
Villaseco Arribas E, Vindel-Zandbergen P, Roy S, Maitra NT. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Phys Chem Chem Phys 2023; 25:26380-26395. [PMID: 37750820 DOI: 10.1039/d3cp03464j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The exact factorization approach has led to the development of new mixed quantum-classical methods for simulating coupled electron-ion dynamics. We compare their performance for dynamics when more than two electronic states are occupied at a given time, and analyze: (1) the use of coupled versus auxiliary trajectories in evaluating the electron-nuclear correlation terms, (2) the approximation of using these terms within surface-hopping and Ehrenfest frameworks, and (3) the relevance of the exact conditions of zero population transfer away from nonadiabatic coupling regions and total energy conservation. Dynamics through the three-state conical intersection in the uracil radical cation as well as polaritonic models in one dimension are studied.
Collapse
Affiliation(s)
| | - Patricia Vindel-Zandbergen
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Saswata Roy
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| |
Collapse
|
50
|
Zhou L, Ni H, Jiang Z, Qiang J, Jiang W, Zhang W, Lu P, Wen J, Lin K, Zhu M, Dörner R, Wu J. Ultrafast formation dynamics of D 3+ from the light-driven bimolecular reaction of the D 2-D 2 dimer. Nat Chem 2023; 15:1229-1235. [PMID: 37264104 DOI: 10.1038/s41557-023-01230-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
The light-driven formation of trihydrogen cation has been attracting considerable attention because of its important role as an initiator of chemical reactions in interstellar clouds. To understand the formation dynamics, most previous studies focused on creating H3+ or D3+ from unimolecular reactions of various organic molecules. Here we observe and characterize the ultrafast formation dynamics of D3+ from a bimolecular reaction, using pump-probe experiments that employ ultrashort laser pulses to probe its formation from a D2-D2 dimer. Our molecular dynamics simulations provide an intuitive representation of the reaction dynamics, which agree well with the experimental observation. We also show that the emission direction of D3+ can be controlled using a tailored two-colour femtosecond laser field. The underlying control mechanism is in line with what is known from the light control of electron localization in the bond breaking of single molecules.
Collapse
Affiliation(s)
- Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Zhejun Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Junjie Qiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Wenyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| | - Kang Lin
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt, Germany.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai, China.
| |
Collapse
|