1
|
Kontkanen OV, Biriukov D, Futera Z. Reorganization Free Energy of Copper Proteins in Solution, in Vacuum, and on Metal Surfaces. J Chem Phys 2022; 156:175101. [DOI: 10.1063/5.0085141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Metalloproteins, known to efficiently transfer electronic charge in biological systems, recently found their utilization in nanobiotechnological devices where the protein is placed into direct contact with metal surfaces. The feasibility of oxidation/reduction of the protein redox sites is affected by the reorganization free energies, one of the key parameters determining the transfer rates. While their values have been measured and computed for proteins in their native environments, i.e., in aqueous solution, the reorganization free energies of dry proteins or proteins adsorbed to metal surfaces remain unknown. Here, we investigate the redox properties of blue copper protein azurin, a prototypical redox-active metalloprotein previously probed by various experimental techniques both in solution and on metal/vacuum interfaces. We used a hybrid QM/MM computational technique based on DFT to explore protein dynamics, flexibility, and corresponding reorganization free energies in aqueous solution, vacuum, and on vacuum gold interfaces. Somewhat surprisingly, the reorganization free energy only slightly decreases when azurin is dried because the loss of the hydration shell leads to larger flexibility of the protein near its redox site. At the vacuum gold surfaces, the energetics of the structure relaxation depends on the adsorption geometry, however, significant reduction of the reorganization free energy was not observed. These findings have important consequences for the charge transport mechanism in vacuum devices, showing that the free energy barriers for protein oxidation remain significant even under ultra-high vacuum conditions.
Collapse
Affiliation(s)
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Czech Republic
| | - Zdenek Futera
- University of South Bohemia in Ceske Budejovice Faculty of Science, Czech Republic
| |
Collapse
|
2
|
Schulz C, van Gastel M, Pantazis DA, Neese F. Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin. Inorg Chem 2021; 60:7399-7412. [PMID: 33939922 PMCID: PMC8154437 DOI: 10.1021/acs.inorgchem.1c00640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/27/2022]
Abstract
Blue copper proteins continue to challenge experiment and theory with their electronic structure and spectroscopic properties that respond sensitively to the coordination environment of the copper ion. In this work, we report state-of-the art electronic structure studies for geometric and spectroscopic properties of the archetypal "Type I" copper protein azurin in its Cu(II) state. A hybrid quantum mechanics/molecular mechanics (QM/MM) approach is used, employing both density functional theory (DFT) and coupled cluster with singles, doubles, and perturbative triples (CCSD(T)) methods for the QM region, the latter method making use of the domain-based local pair natural orbital (DLPNO) approach. Models of increasing QM size are employed to investigate the convergence of critical geometric parameters. It is shown that convergence is slow and that a large QM region is critical for reproducing the short experimental Cu-SCys112 distance. The study of structural convergence is followed by investigation of spectroscopic parameters using both DFT and DLPNO-CC methods and comparing these to the experimental spectrum using simulations. The results allow us to examine for the first time the distribution of spin densities and hyperfine coupling constants at the coupled cluster level, leading us to revisit the experimental assignment of the 33S hyperfine splitting. The wavefunction-based approach to obtain spin-dependent properties of open-shell systems demonstrated here for the case of azurin is transferable and applicable to a large array of bioinorganic systems.
Collapse
Affiliation(s)
- Christine
E. Schulz
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Kitoh-Nishioka H, Shigeta Y, Ando K. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. J Chem Phys 2020; 153:104104. [PMID: 32933280 DOI: 10.1063/5.0018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Practical ways to calculate the tunneling matrix elements and analyze the tunneling pathways for protein electron-transfer (ET) reactions with a fragment molecular orbital (FMO) method are presented. The straightforward use of minimal basis sets only for the atoms involved in the covalent bond detachment in FMO can properly describe the ETs through the protein main-chains with the cost-effective two-body corrections (FMO2) without losing the quality of double-zeta basis sets. The current FMO codes have been interfaced with density functional theory, polarizable continuum model, and model core potentials, with which the FMO-based protein ET calculations can consider the effects of electron correlation, solvation, and transition-metal redox centers. The reasonable performance of the FMO-based ET calculations is demonstrated for three different sets of protein-ET model molecules: (1) hole transfer between two tryptophans covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, (2) ET between two plastoquinones covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, and (3) hole transfer between ruthenium (Ru) and copper (Cu) complexes covalently bridged by a stretch of a polyglycine linker as a model for Ru-modified derivatives of azurin.
Collapse
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koji Ando
- Department of Information and Sciences, Tokyo Woman's Christian University, 2-6-1 Zenpukuji, Suginami-ku, Tokyo 167-8585, Japan
| |
Collapse
|
4
|
Shen L, Zeng X, Hu H, Hu X, Yang W. Accurate Quantum Mechanical/Molecular Mechanical Calculations of Reduction Potentials in Azurin Variants. J Chem Theory Comput 2018; 14:4948-4957. [PMID: 30040901 DOI: 10.1021/acs.jctc.8b00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding the regulation mechanism and molecular determinants of the reduction potential of metalloprotein is a major challenge. An ab initio quantum mechanical/molecular mechanical (QM/MM) method combining the minimum free energy path (MFEP) and fractional number of electron (FNE) approaches has been developed in our group to simulate the redox processes of large systems. The FNE scheme provides an efficient unique description for the redox process, while the MFEP method provides improved conformational sampling on complex environments such as protein in the QM/MM calculations. The reduction potentials of wild-type and seven mutants of azurin, a type 1 copper metalloprotein, were simulated with the QM/MM-MFEP+FNE approach in this paper. A range of 350 mV for the variations of the reduction potentials of these azurin proteins was reproduced faithfully with relative errors around 20 mV. The correlation between structural interactions and reduction potentials observed in simulations provides in-depth insight into the regulation of reduction potentials, which potentially can also be very useful to the engineering of metalloprotein-based electrocatalysts in artificial photosynthesis. The excellent accuracy and efficiency of the QM/MM-MFEP+FNE approach demonstrate the potential for simulations of many electron transfer processes in condensed phases and biochemical systems.
Collapse
Affiliation(s)
- Lin Shen
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Xiancheng Zeng
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Hao Hu
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Xiangqian Hu
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Weitao Yang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
5
|
Coskuner-Weber O. Revisiting Cu(II) Bound Amyloid-β40 and Amyloid-β42 Peptides: Varying Coordination Chemistries. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.424144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Wise O, Coskuner O. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue. J Comput Chem 2014; 35:1278-89. [DOI: 10.1002/jcc.23622] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/06/2014] [Accepted: 03/23/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Olivia Wise
- Department of Chemistry; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
- Neurosciences Institute; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
| | - Orkid Coskuner
- Department of Chemistry; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
- Neurosciences Institute; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
| |
Collapse
|
7
|
Rittmeier M, Dechert S, Demeshko S, Meyer F. New Tripodal Tridentate Ligands with {NS 2} Donor Set and a Backbone Hydroxo Anchor, and Their Copper(I) and Copper(II) Complexes. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Plasticity in the copper–thioether bond: Manifestation in blue Cu proteins and in synthetic analogs. J Inorg Biochem 2012; 115:182-5. [DOI: 10.1016/j.jinorgbio.2012.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
|
9
|
Kachalova GS, Shosheva AC, Bourenkov GP, Donchev AA, Dimitrov MI, Bartunik HD. Structural comparison of the poplar plastocyanin isoforms PCa and PCb sheds new light on the role of the copper site geometry in interactions with redox partners in oxygenic photosynthesis. J Inorg Biochem 2012; 115:174-81. [PMID: 22883960 DOI: 10.1016/j.jinorgbio.2012.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023]
Abstract
Plastocyanin (PC) from poplar leaves is present in two isoforms, PCa and PCb, which differ in sequence by amino acid replacements at locations remote from the copper center and simultaneously act in the photosynthetic electron-transport chain. We describe ultra-high resolution structures of PCa and high-resolution structures of PCb, both under oxidizing and reducing conditions at pH 4, 6 and 8. The docking on cytochrome f and photosystem I, respectively, has been modeled for both isoforms. PCa and PCb exhibit closely similar overall and active-site structures, except for a difference in the relative orientation of the acidic patches. The isoforms exhibit substantial differences in the dependence of the reduced (Cu(I)) geometry on pH. In PCa, the decrease in pH causes a gradual dissociation of His87 from Cu(I) at low pH, probably adopting a neutral tautomeric state. In PCb, the histidine remains covalently bound to Cu(I) and may adopt a doubly protonated state at low pH. The fact that both isoforms have similar although not identical functions in photosynthetic electron flows suggests that the His87 imidazole does not play a crucial role for the pathway of electron transport from cytochrome f to oxidized PC.
Collapse
Affiliation(s)
- Galina S Kachalova
- A.N.Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr., Moscow 119071, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Monari A, Very T, Rivail JL, Assfeld X. A QM/MM study on the spinach plastocyanin: Redox properties and absorption spectra. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2011.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Monari A, Very T, Rivail JL, Assfeld X. Effects of mutations on the absorption spectra of copper proteins: a QM/MM study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1221-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|