1
|
Larsen JA, Barclay A, Vettore N, Klausen LK, Mangels LN, Coden A, Schmit JD, Lindorff-Larsen K, Buell AK. The mechanism of amyloid fibril growth from Φ-value analysis. Nat Chem 2025:10.1038/s41557-024-01712-9. [PMID: 39820805 DOI: 10.1038/s41557-024-01712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 01/19/2025]
Abstract
Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble-the rate-limiting step-for fibril elongation of PI3K-SH3 amyloid fibrils. The ensemble was validated experimentally by Tanford β analysis and computationally by free energy calculations. Although protein folding proceeds on funnel-shaped landscapes, here we find that the energy landscape for the misfolding reaction consists of a large 'golf course' region, defined by a single energy barrier and transition state, accessing a sharply funnelled region. Thus, misfolding occurs by rare, successful monomer-fibril end collisions interspersed by numerous unsuccessful binding attempts. Taken together, these insights provide a quantitative and highly resolved description of a protein misfolding reaction.
Collapse
Affiliation(s)
- Jacob Aunstrup Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Abigail Barclay
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicola Vettore
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Louise K Klausen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lena N Mangels
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alberto Coden
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Shenoy D, Chivukula S, Erdogan N, Chiesa E, Pellegrino S, Reches M, Genta I. Self-assembled peptide-based nanofibers for cardiovascular tissue regeneration. J Mater Chem B 2025; 13:844-857. [PMID: 39655843 DOI: 10.1039/d4tb01235f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cardiovascular diseases are the leading cause of death worldwide, claiming millions of lives every year. Cardiac tissue engineering has emerged as a versatile option for repairing cardiac tissue and helping its regeneration. The use of nanomaterials, particularly nanofiber-based scaffolds combined with biomolecular cues like peptides, has significantly improved the compatibility and efficacy of the scaffolds for cardiac tissue regeneration. By utilising the self-assembly properties of peptides to create nanofiber scaffolds, we can achieve stability that closely mimics the natural components of cardiac tissue, making them perfect for cardiac tissue regeneration. In this review, we highlighted the dynamic process of self-assembly into nanofibers and the use of various self-assembled nanofibers for cardiovascular tissue regeneration, focusing on their roles in antithrombotic, angiogenic, differentiation, proliferation, and anti-atherosclerotic interventions.
Collapse
Affiliation(s)
- Dhriti Shenoy
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy.
| | - Sowmya Chivukula
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
| | - Nursu Erdogan
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
- Physics of Nanostructures and Advanced Materials, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Spain
| | - Enrica Chiesa
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
| | - Sara Pellegrino
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy.
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Ida Genta
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
| |
Collapse
|
3
|
Li Y, Zhu J, Zhang Z, Wei J, Wang F, Meisl G, Knowles TPJ, Egelman EH, Tezcan FA. Transforming an ATP-dependent enzyme into a dissipative, self-assembling system. Nat Chem Biol 2025:10.1038/s41589-024-01811-1. [PMID: 39806067 DOI: 10.1038/s41589-024-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes. FtsH nanotubes require constant energy input to maintain their integrity and degrade over time with the concomitant hydrolysis of ATP, analogous to natural NTP-dependent cytoskeletal assemblies. Yet, in contrast to natural dissipative systems, ATP hydrolysis is catalyzed by free FtsH protomers and FtsH nanotubes serve to conserve ATP, leading to transient assemblies whose lifetimes can be tuned from days to minutes through the inclusion of external ATPases in solution.
Collapse
Affiliation(s)
- Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jie Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jiapeng Wei
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL, USA
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Jia M, Li Y, Wang C, Gao X, Guan Y, Ai H. Fluorescence Detection and Inhibition Mechanisms of DNTPH on Aβ42 Oligomers Characterized as Products in the Four Stages of Aggregation. ACS Chem Neurosci 2024; 15:4220-4228. [PMID: 39494683 DOI: 10.1021/acschemneuro.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Aβ42 aggregation was implicated in the pathogenesis of Alzheimer's disease (AD) without effective treatment available currently. Future efforts in clinical trials should instead focus on applying those antiamyloid treatment strategies to the preclinical stage and "the earlier, the better". How to identify and inhibit Aβ42 oligomers in the different stages of aggregation is therefore becoming the key to controlling primary aggregation and consequent AD development. Aggregation-induced emission probe DNTPH was demonstrated recently, enabling detection of amyloid at wavelengths up to 710 nm and exhibiting strong inhibitory effects on Aβ fibrosis at low dose. However, the detection and inhibition mechanisms of Aβ oligomers at various early stages of aggregation remain unknown. To this end, we built four different morphologies of Aβ42 pentamers characterized by products in monomeric aggregate (PM), primary nucleation (PP), secondary nucleation (PS), and fibril stages (PF) to explore the distinguishable ability and inhibition mechanisms of DNTPH with different concentrations upon binding. The results showcased that DNTPH does detect the four different Aβ42 oligomers with conspicuous fluorescence (λPM = 657 nm, λPP = 639 nm, λPS = 630 nm, and λPF = 648 nm) but fails to distinguish them, indicating that additional improvements are required further for the probe to achieve it. The inhibition mechanisms of DNTPH on the four Aβ42 aggregation are however of amazing differences. For PM and PP, aggregation was inhibited by altering the secondary structural composition, i.e., by decreasing the β-sheet and toxic turn (residues 22-23) probabilities, respectively. For PS, inhibition was achieved by segregating and keeping the two disordered monomeric species (PSM) away from the ordered secondary seed species (PSF) and consequently blocking further growth of the PSF seed. The inhibition mechanism for PS is first probed and proposed so far, as far as we know, and the corresponding aggregation stage of PS is the most important one among the four stages. The inhibition of PF was triggered by distorting the fibril chains, disrupting the ordered fibril surface for the contact of monomers. In addition, the optimal inhibitory concentrations of DNTPH for PM, PP, and PF were determined to be 1:3, while for PS, it was 1:5. This outcome offers a novel perspective for designing drugs targeting Aβ42 oligomers at different aggregation stages.
Collapse
Affiliation(s)
- Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Zibo City Engineering Research Center for New Pollution Monitoring and Governance, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
5
|
Bogdanova LR, Nikiforova AA, Ziganshina SA, Zuev YF, Sedov IA. Influence of divalent metal cations on α-lactalbumin fibril formation. J Biol Inorg Chem 2024; 29:601-609. [PMID: 39126483 DOI: 10.1007/s00775-024-02071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The effect of binding of divalent metal cations (Ca2+, Cu2+, Mg2+, Mn2+, Zn2+) on the kinetics of fibril formation of bovine α-lactalbumin at acidic conditions is considered. The kinetic parameters of the process were determined using a thioflavin T fluorescence assay. The DSC thermograms of bovine α-lactalbumin in the presence and absence of cations were recorded. The duration of the lag period correlates with the changes in the thermal stability of the molten globule of the protein in the presence of cations. The final thioflavin T fluorescence intensity after formation of the mature fibrils decreases under the influence of calcium ions which strongly bind to the monomeric protein, and increases in solutions containing copper and especially zinc. These ions seem to accelerate secondary nucleation processes and change the fibril morphology, which was confirmed by atomic force microscopy imaging.
Collapse
Affiliation(s)
- L R Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - A A Nikiforova
- Department of Chemistry, Kazan Federal University, Kazan, Russia
| | - S A Ziganshina
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Yu F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - I A Sedov
- Department of Chemistry, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
6
|
Xu CK, Meisl G, Andrzejewska EA, Krainer G, Dear AJ, Castellana-Cruz M, Turi S, Edu IA, Vivacqua G, Jacquat RPB, Arter WE, Spillantini MG, Vendruscolo M, Linse S, Knowles TPJ. α-Synuclein oligomers form by secondary nucleation. Nat Commun 2024; 15:7083. [PMID: 39153989 PMCID: PMC11330488 DOI: 10.1038/s41467-024-50692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
Oligomeric species arising during the aggregation of α-synuclein are implicated as a major source of toxicity in Parkinson's disease, and thus a major potential drug target. However, both their mechanism of formation and role in aggregation are largely unresolved. Here we show that, at physiological pH and in the absence of lipid membranes, α-synuclein aggregates form by secondary nucleation, rather than simple primary nucleation, and that this process is enhanced by agitation. Moreover, using a combination of single molecule and bulk level techniques, we identify secondary nucleation on the surfaces of existing fibrils, rather than formation directly from monomers, as the dominant source of oligomers. Our results highlight secondary nucleation as not only the key source of oligomers, but also the main mechanism of aggregate formation, and show that these processes take place under conditions which recapitulate the neutral pH and ionic strength of the cytosol.
Collapse
Affiliation(s)
- Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ewa A Andrzejewska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Molecular Biosciences (IMB), University of Graz, Graz, Austria
| | - Alexander J Dear
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Marta Castellana-Cruz
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Soma Turi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Irina A Edu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Raphaël P B Jacquat
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - William E Arter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Axell E, Hu J, Lindberg M, Dear AJ, Ortigosa-Pascual L, Andrzejewska EA, Šneiderienė G, Thacker D, Knowles TPJ, Sparr E, Linse S. The role of shear forces in primary and secondary nucleation of amyloid fibrils. Proc Natl Acad Sci U S A 2024; 121:e2322572121. [PMID: 38875148 PMCID: PMC11194593 DOI: 10.1073/pnas.2322572121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.
Collapse
Affiliation(s)
- Emil Axell
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Jing Hu
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Max Lindberg
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Alexander J. Dear
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Lei Ortigosa-Pascual
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Ewa A. Andrzejewska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Greta Šneiderienė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Dev Thacker
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| |
Collapse
|
8
|
Wei J, Meisl G, Dear A, Oosterhuis M, Melki R, Emanuelsson C, Linse S, Knowles TPJ. Kinetic models reveal the interplay of protein production and aggregation. Chem Sci 2024; 15:8430-8442. [PMID: 38846392 PMCID: PMC11151821 DOI: 10.1039/d4sc00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Protein aggregation is a key process in the development of many neurodegenerative disorders, including dementias such as Alzheimer's disease. Significant progress has been made in understanding the molecular mechanisms of aggregate formation in pure buffer systems, much of which was enabled by the development of integrated rate laws that allowed for mechanistic analysis of aggregation kinetics. However, in order to translate these findings into disease-relevant conclusions and to make predictions about the effect of potential alterations to the aggregation reactions by the addition of putative inhibitors, the current models need to be extended to account for the altered situation encountered in living systems. In particular, in vivo, the total protein concentrations typically do not remain constant and aggregation-prone monomers are constantly being produced but also degraded by cells. Here, we build a theoretical model that explicitly takes into account monomer production, derive integrated rate laws and discuss the resulting scaling laws and limiting behaviours. We demonstrate that our models are suited for the aggregation-prone Huntington's disease-associated peptide HttQ45 utilizing a system for continuous in situ monomer production and the aggregation of the tumour suppressor protein P53. The aggregation-prone HttQ45 monomer was produced through enzymatic cleavage of a larger construct in which a fused protein domain served as an internal inhibitor. For P53, only the unfolded monomers form aggregates, making the unfolding a rate-limiting step which constitutes a source of aggregation-prone monomers. The new model opens up possibilities for a quantitative description of aggregation in living systems, allowing for example the modelling of inhibitors of aggregation in a dynamic environment of continuous protein synthesis.
Collapse
Affiliation(s)
- Jiapeng Wei
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alexander Dear
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department of Biochemistry and Structural Biology, Lund University SE22100 Lund Sweden
| | - Matthijs Oosterhuis
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University Sweden
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS 18 Route du Panorama, Fontenay-Aux-Roses cedex 92265 France
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University Sweden
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Cavendish Laboratory, University of Cambridge J J Thomson Avenue CB3 0HE UK
| |
Collapse
|
9
|
Dear AJ, Teng X, Ball SR, Lewin J, Horne RI, Clow D, Stevenson A, Harper N, Yahya K, Yang X, Brewerton SC, Thomson J, Michaels TCT, Linse S, Knowles TPJ, Habchi J, Meisl G. Molecular mechanism of α-synuclein aggregation on lipid membranes revealed. Chem Sci 2024; 15:7229-7242. [PMID: 38756798 PMCID: PMC11095391 DOI: 10.1039/d3sc05661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
The central hallmark of Parkinson's disease pathology is the aggregation of the α-synuclein protein, which, in its healthy form, is associated with lipid membranes. Purified monomeric α-synuclein is relatively stable in vitro, but its aggregation can be triggered by the presence of lipid vesicles. Despite this central importance of lipids in the context of α-synuclein aggregation, their detailed mechanistic role in this process has not been established to date. Here, we use chemical kinetics to develop a mechanistic model that is able to globally describe the aggregation behaviour of α-synuclein in the presence of DMPS lipid vesicles, across a range of lipid and protein concentrations. Through the application of our kinetic model to experimental data, we find that the reaction is a co-aggregation process involving both protein and lipids and that lipids promote aggregation as much by enabling fibril elongation as by enabling their initial formation. Moreover, we find that the primary nucleation of lipid-protein co-aggregates takes place not on the surface of lipid vesicles in bulk solution but at the air-water and/or plate interfaces, where lipids and proteins are likely adsorbed. Our model forms the basis for mechanistic insights, also in other lipid-protein co-aggregation systems, which will be crucial in the rational design of drugs that inhibit aggregate formation and act at the key points in the α-synuclein aggregation cascade.
Collapse
Affiliation(s)
- Alexander J Dear
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Xiangyu Teng
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Sarah R Ball
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Joshua Lewin
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Robert I Horne
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Daniel Clow
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Alisdair Stevenson
- Department of Biology, Institute of Biochemistry, ETH Zurich Otto Stern Weg 3 8093 Zurich Switzerland
- Bringing Materials to Life Initiative, ETH Zurich Switzerland
| | - Natasha Harper
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Kim Yahya
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Xiaoting Yang
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Suzanne C Brewerton
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - John Thomson
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich Otto Stern Weg 3 8093 Zurich Switzerland
- Bringing Materials to Life Initiative, ETH Zurich Switzerland
| | - Sara Linse
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
- Biochemistry and Structural Biology, Lund University Lund Sweden
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge UK
- Cavendish Laboratory, University of Cambridge Cambridge UK
| | - Johnny Habchi
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| | - Georg Meisl
- WaveBreak Therapeutics Ltd, Chemistry of Health Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
10
|
Razbin M, Benetatos P. Variance and higher moments in the sigmoidal self-assembly of branched fibrils. J Chem Phys 2024; 160:114109. [PMID: 38506286 DOI: 10.1063/5.0190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Self-assembly of functional branched filaments, such as actin filaments and microtubules, or dysfunctional ones, such as amyloid fibrils, plays important roles in many biological processes. Here, based on the master equation approach, we study the kinetics of the formation of the branched fibrils. In our model, a branched fibril has one mother branch and several daughter branches. A daughter branch grows from the side of a pre-existing mother branch or daughter branch. In our model, we consider five basic processes for the self-assembly of the branched filaments, namely, the nucleation, the dissociation of the primary nucleus of fibrils, the elongation, the fragmentation, and the branching. The elongation of a mother branch from two ends and the elongation of a daughter branch from two ends can, in principle, occur with four different rate constants associated with the corresponding tips. This leads to a pronounced impact of the directionality of growth on the kinetics of the self-assembly. Here, we have unified and generalized our four previously presented models of branched fibrillogenesis in a single model. We have obtained a system of non-linear ordinary differential equations that give the time evolution of the polymer numbers and the mass concentrations along with the higher moments as observable quantities.
Collapse
Affiliation(s)
- Mohammadhosein Razbin
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Meisl G. The thermodynamics of neurodegenerative disease. BIOPHYSICS REVIEWS 2024; 5:011303. [PMID: 38525484 PMCID: PMC10957229 DOI: 10.1063/5.0180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The formation of protein aggregates in the brain is a central aspect of the pathology of many neurodegenerative diseases. This self-assembly of specific proteins into filamentous aggregates, or fibrils, is a fundamental biophysical process that can easily be reproduced in the test tube. However, it has been difficult to obtain a clear picture of how the biophysical insights thus obtained can be applied to the complex, multi-factorial diseases and what this means for therapeutic strategies. While new, disease-modifying therapies are now emerging, for the most devastating disorders, such as Alzheimer's and Parkinson's disease, they still fall well short of offering a cure, and few drug design approaches fully exploit the wealth of mechanistic insights that has been obtained in biophysical studies. Here, I attempt to provide a new perspective on the role of protein aggregation in disease, by phrasing the problem in terms of a system that, under constant energy consumption, attempts to maintain a healthy, aggregate-free state against the thermodynamic driving forces that inexorably push it toward pathological aggregation.
Collapse
Affiliation(s)
- Georg Meisl
- WaveBreak Therapeutics Ltd., Chemistry of Health, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
13
|
Illes-Toth E, Rempel DL, Gross ML. Exploration of Resveratrol as a Potent Modulator of α-Synuclein Fibril Formation. ACS Chem Neurosci 2024; 15:503-516. [PMID: 38194353 PMCID: PMC10922803 DOI: 10.1021/acschemneuro.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The molecular determinants of amyloid protein misfolding and aggregation are key for the development of therapeutic interventions in neurodegenerative disease. Although small synthetic molecules, bifunctional molecules, and natural products offer a potentially advantageous approach to therapeutics to remodel aggregation, their evaluation requires new platforms that are informed at the molecular level. To that end, we chose pulsed hydrogen/deuterium exchange mass spectrometry (HDX-MS) to discern the phenomena of aggregation modulation for a model system of alpha synuclein (αS) and resveratrol, an antiamyloid compound. We invoked, as a complement to HDX, advanced kinetic modeling described here to illuminate the details of aggregation and to determine the number of oligomeric populations by kinetically fitting the experimental data under conditions of limited proteolysis. The misfolding of αS is most evident within and nearby the nonamyloid-β component region, and resveratrol significantly remodels that aggregation. HDX distinguishes readily a less solvent-accessible, more structured oligomer that coexists with a solvent-accessible, more disordered oligomer during aggregation. A view of the misfolding emerges from time-dependent changes in the fractional species across the protein with or without resveratrol, while details were determined through kinetic modeling of the protected species. A detailed picture of the inhibitory action of resveratrol with time and regional specificity emerges, a picture that can be obtained for other inhibitors and amyloid proteins. Moreover, the model reveals that new states of aggregation are sampled, providing new insights on amyloid formation. The findings were corroborated by circular dichroism and transmission electron microscopy.
Collapse
Affiliation(s)
- Eva Illes-Toth
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Don L Rempel
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63130, United States
| |
Collapse
|
14
|
Marković M, Milošević J, Wang W, Cao Y. Passive Immunotherapies Targeting Amyloid- β in Alzheimer's Disease: A Quantitative Systems Pharmacology Perspective. Mol Pharmacol 2023; 105:1-13. [PMID: 37907353 DOI: 10.1124/molpharm.123.000726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) protein accumulation in the brain. Passive immunotherapies using monoclonal antibodies for targeting Aβ have shown promise for AD treatment. Indeed, recent US Food and Drug Administration approval of aducanumab and lecanemab, alongside positive donanemab Phase III results demonstrated clinical efficacy after decades of failed clinical trials for AD. However, the pharmacological basis distinguishing clinically effective from ineffective therapies remains unclear, impeding development of potent therapeutics. This study aimed to provide a quantitative perspective for effectively targeting Aβ with antibodies. We first reviewed the contradicting results associated with the amyloid hypothesis and the pharmacological basis of Aβ immunotherapy. Subsequently, we developed a quantitative systems pharmacology (QSP) model that describes the non-linear progression of Aβ pathology and the pharmacologic actions of the Aβ-targeting antibodies. Using the QSP model, we analyzed various scenarios for effective passive immunotherapy for AD. The model revealed that binding exclusively to the Aβ monomer has minimal effect on Aβ aggregation and plaque reduction, making the antibody affinity toward Aβ monomer unwanted, as it could become a distractive mechanism for plaque reduction. Neither early intervention, high brain penetration, nor increased dose could yield significant improvement of clinical efficacy for antibodies targeting solely monomers. Antibodies that bind all Aβ species but lack effector function exhibited moderate effects in plaque reduction. Our model highlights the importance of binding aggregate Aβ species and incorporating effector functions for efficient and early plaque reduction, guiding the development of more effective therapies for this devastating disease. SIGNIFICANCE STATEMENT: Despite previous unsuccessful attempts spanning several decades, passive immunotherapies utilizing monoclonal antibodies for targeting amyloid-beta (Aβ) have demonstrated promise with two recent FDA approvals. However, the pharmacological basis that differentiates clinically effective therapies from ineffective ones remains elusive. Our study offers a quantitative systems pharmacology perspective, emphasizing the significance of selectively targeting specific Aβ species and importance of antibody effector functions. This perspective sheds light on the development of more effective therapies for this devastating disease.
Collapse
Affiliation(s)
- Milica Marković
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy (M.M., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine (Y.C.), University of North Carolina at Chapel Hill, North Carolina; Department of Biochemistry (J.M.), University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; and Clinical Pharmacology and Pharmacometrics, Janssen Research & Development (W.W.), LLC, Spring House, Pennsylvania
| | - Jelica Milošević
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy (M.M., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine (Y.C.), University of North Carolina at Chapel Hill, North Carolina; Department of Biochemistry (J.M.), University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; and Clinical Pharmacology and Pharmacometrics, Janssen Research & Development (W.W.), LLC, Spring House, Pennsylvania
| | - Weirong Wang
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy (M.M., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine (Y.C.), University of North Carolina at Chapel Hill, North Carolina; Department of Biochemistry (J.M.), University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; and Clinical Pharmacology and Pharmacometrics, Janssen Research & Development (W.W.), LLC, Spring House, Pennsylvania
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy (M.M., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine (Y.C.), University of North Carolina at Chapel Hill, North Carolina; Department of Biochemistry (J.M.), University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; and Clinical Pharmacology and Pharmacometrics, Janssen Research & Development (W.W.), LLC, Spring House, Pennsylvania
| |
Collapse
|
15
|
Gardon L, Becker N, Rähse N, Hölbling C, Apostolidis A, Schulz CM, Bochinsky K, Gremer L, Heise H, Lakomek NA. Amyloid fibril formation kinetics of low-pH denatured bovine PI3K-SH3 monitored by three different NMR techniques. Front Mol Biosci 2023; 10:1254721. [PMID: 38046811 PMCID: PMC10691488 DOI: 10.3389/fmolb.2023.1254721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Misfolding of amyloidogenic proteins is a molecular hallmark of neurodegenerative diseases in humans. A detailed understanding of the underlying molecular mechanisms is mandatory for developing innovative therapeutic approaches. The bovine PI3K-SH3 domain has been a model system for aggregation and fibril formation. Methods: We monitored the fibril formation kinetics of low pH-denatured recombinantly expressed [U-13C, 15N] labeled bovine PI3K-SH3 by a combination of solution NMR, high-resolution magic angle spinning (HR-MAS) NMR and solid-state NMR spectra. Solution NMR offers the highest sensitivity and, therefore, allows for the recording of two-dimensional NMR spectra with residue-specific resolution for individual time points of the time series. However, it can only follow the decay of the aggregating monomeric species. In solution NMR, aggregation occurs under quiescent experimental conditions. Solid-state NMR has lower sensitivity and allows only for the recording of one-dimensional spectra during the time series. Conversely, solid-state NMR is the only technique to detect disappearing monomers and aggregated species in the same sample by alternatingly recoding scalar coupling and dipolar coupling (CP)-based spectra. HR-MAS NMR is used here as a hybrid method bridging solution and solid-state NMR. In solid-state NMR and HR-MAS NMR the sample is agitated due to magic angle spinning. Results: Good agreement of the decay rate constants of monomeric SH3, measured by the three different NMR methods, is observed. Moderate MAS up to 8 kHz seems to influence the aggregation kinetics of seeded fibril formation only slightly. Therefore, under sufficient seeding (1% seeds used here), quiescent conditions (solution NMR), and agitated conditions deliver similar results, arguing against primary nucleation induced by MAS as a major contributor. Using solid-state NMR, we find that the amount of disappeared monomer corresponds approximately to the amount of aggregated species under the applied experimental conditions (250 µM PI3K-SH3, pH 2.5, 298 K, 1% seeds) and within the experimental error range. Data can be fitted by simple mono-exponential conversion kinetics, with lifetimes τ in the 14-38 h range. Atomic force microscopy confirms that fibrils substantially grew in length during the aggregation experiment. This argues for fibril elongation as the dominant growth mechanism in fibril mass (followed by the CP-based solid-state NMR signal). Conclusion: We suggest a combined approach employing both solution NMR and solid-state NMR, back-to-back, on two aliquots of the same sample under seeding conditions as an additional approach to follow monomer depletion and growth of fibril mass simultaneously. Atomic force microscopy images confirm fibril elongation as a major contributor to the increase in fibril mass.
Collapse
Affiliation(s)
- Luis Gardon
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nina Becker
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nick Rähse
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Christoph Hölbling
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Athina Apostolidis
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Celina M. Schulz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kevin Bochinsky
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils-Alexander Lakomek
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Voigt B, Bhatia T, Hesselbarth J, Baumann M, Schmidt C, Ott M, Balbach J. The Prenucleation Equilibrium of the Parathyroid Hormone Determines the Critical Aggregation Concentration and Amyloid Fibril Nucleation. Chemphyschem 2023; 24:e202300439. [PMID: 37477386 DOI: 10.1002/cphc.202300439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Nucleation and growth of amyloid fibrils were found to only occur in supersaturated solutions above a critical concentration (ccrit ). The biophysical meaning of ccrit remained mostly obscure, since typical low values of ccrit in the sub-μM range hamper investigations of potential oligomeric states and their structure. Here, we investigate the parathyroid hormone PTH84 as an example of a functional amyloid fibril forming peptide with a comparably high ccrit of 67±21 μM. We describe a complex concentration dependent prenucleation ensemble of oligomers of different sizes and secondary structure compositions and highlight the occurrence of a trimer and tetramer at ccrit as possible precursors for primary fibril nucleation. Furthermore, the soluble state found in equilibrium with fibrils adopts to the prenucleation state present at ccrit . Our study sheds light onto early events of amyloid formation directly related to the critical concentration and underlines oligomer formation as a key feature of fibril nucleation. Our results contribute to a deeper understanding of the determinants of supersaturated peptide solutions. In the current study we present a biophysical approach to investigate ccrit of amyloid fibril formation of PTH84 in terms of secondary structure, cluster size and residue resolved intermolecular interactions during oligomer formation. Throughout the investigated range of concentrations (1 μM to 500 μM) we found different states of oligomerization with varying ability to contribute to primary fibril nucleation and with a concentration dependent equilibrium. In this context, we identified the previously described ccrit of PTH84 to mark a minimum concentration for the formation of homo-trimers/tetramers. These investigations allowed us to characterize molecular interactions of various oligomeric states that are further converted into elongation competent fibril nuclei during the lag phase of a functional amyloid forming peptide.
Collapse
Affiliation(s)
- Bruno Voigt
- Martin Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann-Straße 7, 06120, Halle, Germany
| | - Twinkle Bhatia
- Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3, 06120, Halle, Germany
| | - Julia Hesselbarth
- present address: Johannes Gutenberg University Mainz, Institute of Chemistry - Biochemistry, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Martin Luther University Halle-Wittenberg, Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3a, 06120, Halle, Germany
| | - Monika Baumann
- Martin Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann-Straße 7, 06120, Halle, Germany
| | - Carla Schmidt
- present address: Johannes Gutenberg University Mainz, Institute of Chemistry - Biochemistry, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Martin Luther University Halle-Wittenberg, Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3a, 06120, Halle, Germany
| | - Maria Ott
- Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3, 06120, Halle, Germany
| | - Jochen Balbach
- Martin Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann-Straße 7, 06120, Halle, Germany
| |
Collapse
|
17
|
Vadukul D, Papp M, Thrush RJ, Wang J, Jin Y, Arosio P, Aprile FA. α-Synuclein Aggregation Is Triggered by Oligomeric Amyloid-β 42 via Heterogeneous Primary Nucleation. J Am Chem Soc 2023; 145:18276-18285. [PMID: 37556728 PMCID: PMC10450681 DOI: 10.1021/jacs.3c03212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/11/2023]
Abstract
An increasing number of cases where amyloids of different proteins are found in the same patient are being reported. This observation complicates diagnosis and clinical intervention. Amyloids of the amyloid-β peptide or the protein α-synuclein are traditionally considered hallmarks of Alzheimer's and Parkinson's diseases, respectively. However, the co-occurrence of amyloids of these proteins has also been reported in patients diagnosed with either disease. Here, we show that soluble species containing amyloid-β can induce the aggregation of α-synuclein. Fibrils formed under these conditions are solely composed of α-synuclein to which amyloid-β can be found associated but not as part of the core of the fibrils. Importantly, by global kinetic analysis, we found that the aggregation of α-synuclein under these conditions occurs via heterogeneous primary nucleation, triggered by soluble aggregates containing amyloid-β.
Collapse
Affiliation(s)
- Devkee
M. Vadukul
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Marcell Papp
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Rebecca J. Thrush
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Jielei Wang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Yiyun Jin
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Francesco A. Aprile
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
18
|
De Sio S, Waegele J, Bhatia T, Voigt B, Lilie H, Ott M. Inherent Adaptivity of Alzheimer Peptides to Crowded Environments. Macromol Biosci 2023; 23:e2200527. [PMID: 37066978 DOI: 10.1002/mabi.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Amyloid β (Aβ) is the major constituent in senile plaques of Alzheimer's disease in which peptides initially undergo structural conversions to form elongated fibrils. The impact of crowding on the fibrillation pathways of Aβ40 and Aβ42 , the most common peptide isoforms are studied. PEG and Ficoll are used as model crowders to mimic a macromolecular enriched surrounding. The fibrillar growth is monitored with the help of ThT-fluorescence assays in order to extract two rates describing primary and secondary processes of nucleation and growth. Techniques as fluorescence correlation spectroscopy and analytical ultracentrifugation are used to discuss oligomeric states; fibril morphologies are investigated using negative-staining transmission electron microscopy. While excluded volume effects imposed by macromolecular crowding are expected to always increase rates of intermolecular interactions and structural conversion, a vast variety of effects are found depending on the peptide, the crowder, or ionic strength of the solution. While investigations of the obtained rates with respect to a reactant-occluded model are capable to display specific surface interactions with the crowder, the employment of crystallization-like models reveal the crowder-induced entropic gain withΔ Δ G fib crow = - 116 ± 21 k $\Delta \Delta G_{\text{fib}}^{\text{crow}}=-116\pm 21\; k$ J mol-1 per volume fraction of the crowder.
Collapse
Affiliation(s)
- Silvia De Sio
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Jana Waegele
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Twinkle Bhatia
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Bruno Voigt
- Department of Physics, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 7, Halle, 06120, Saxony-Anhalt, Germany
| | - Hauke Lilie
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Maria Ott
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| |
Collapse
|
19
|
Ghosh S, Tugarinov V, Clore GM. Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation. Proc Natl Acad Sci U S A 2023; 120:e2305823120. [PMID: 37186848 PMCID: PMC10214214 DOI: 10.1073/pnas.2305823120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-β42 (Aβ42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aβ42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 μM Aβ42 at 20 °C), Aβ42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aβ42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aβ42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
20
|
Kamada A, Toprakcioglu Z, Knowles TPJ. Kinetic Analysis Reveals the Role of Secondary Nucleation in Regenerated Silk Fibroin Self-Assembly. Biomacromolecules 2023; 24:1709-1716. [PMID: 36926854 PMCID: PMC10091410 DOI: 10.1021/acs.biomac.2c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Silk proteins obtained from the Bombyx mori silkworm have been extensively studied due to their remarkable mechanical properties. One of the major structural components of this complex material is silk fibroin, which can be isolated and processed further in vitro to form artificial functional materials. Due to the excellent biocompatibility and rich self-assembly behavior, there has been sustained interest in such materials formed through the assembly of regenerated silk fibroin feedstocks. The molecular mechanisms by which the soluble regenerated fibroin molecules self-assemble into protein nanofibrils remain, however, largely unknown. Here, we use the framework of chemical kinetics to connect macroscopic measurements of regenerated silk fibroin self-assembly to the underlying microscopic mechanisms. Our results reveal that the aggregation of regenerated silk fibroin is dominated by a nonclassical secondary nucleation processes, where the formation of new fibrils is catalyzed by the existing aggregates in an autocatalytic manner. Such secondary nucleation pathways were originally discovered in the context of polymerization of disease-associated proteins, but the present results demonstrate that this pathway can also occur in functional assembly. Furthermore, our results show that shear flow induces the formation of nuclei, which subsequently accelerate the process of aggregation through an autocatalytic amplification driven by the secondary nucleation pathway. Taken together, these results allow us to identify the parameters governing the kinetics of regenerated silk fibroin self-assembly and expand our current understanding of the spinning of bioinspired protein-based fibers, which have a wide range of applications in materials science.
Collapse
Affiliation(s)
- Ayaka Kamada
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Zenon Toprakcioglu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, Cambridge CB3 0FE, U.K
| |
Collapse
|
21
|
Ghosh S, Ali R, Verma S. Aβ-oligomers: A potential therapeutic target for Alzheimer's disease. Int J Biol Macromol 2023; 239:124231. [PMID: 36996958 DOI: 10.1016/j.ijbiomac.2023.124231] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The cascade of amyloid formation relates to multiple complex events at the molecular level. Previous research has established amyloid plaque deposition as the leading cause of Alzheimer's disease (AD) pathogenesis, detected mainly in aged population. The primary components of the plaques are two alloforms of amyloid-beta (Aβ), Aβ1-42 and Aβ1-40 peptides. Recent studies have provided considerable evidence contrary to the previous claim indicating that amyloid-beta oligomers (AβOs) as the main culprit responsible for AD-associated neurotoxicity and pathogenesis. In this review, we have discussed the primary features of AβOs, such as assembly formation, the kinetics of oligomer formation, interactions with various membranes/membrane receptors, the origin of toxicity, and oligomer-specific detection methods. Recently, the discovery of rationally designed antibodies has opened a gateway for using synthesized peptides as a grafting component in the complementarity determining region (CDR) of antibodies. Thus, the Aβ sequence motif or the complementary peptide sequence in the opposite strand of the β-sheet (extracted from the Protein Data Bank: PDB) helps design oligomer-specific inhibitors. The microscopic event responsible for oligomer formation can be targeted, and thus prevention of the overall macroscopic behaviour of the aggregation or the associated toxicity can be achieved. We have carefully reviewed the oligomer formation kinetics and associated parameters. Besides, we have depicted a thorough understanding of how the synthesized peptide inhibitors can impede the early aggregates (oligomers), mature fibrils, monomers, or a mixture of the species. The oligomer-specific inhibitors (peptides or peptide fragments) lack in-depth chemical kinetics and optimization control-based screening. In the present review, we have proposed a hypothesis for effectively screening oligomer-specific inhibitors using the chemical kinetics (determining the kinetic parameters) and optimization control strategy (cost-dependent analysis). Further, it may be possible to implement the structure-kinetic-activity-relationship (SKAR) strategy instead of structure-activity-relationship (SAR) to improve the inhibitor's activity. The controlled optimization of the kinetic parameters and dose usage will be beneficial for narrowing the search window for the inhibitors.
Collapse
|
22
|
Taylor AP, Davis PJ, Aubrey LD, White JBR, Parton ZN, Staniforth RA. Simple, Reliable Protocol for High-Yield Solubilization of Seedless Amyloid-β Monomer. ACS Chem Neurosci 2022; 14:53-71. [PMID: 36512740 PMCID: PMC9817077 DOI: 10.1021/acschemneuro.2c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Self-assembly of the amyloid-β (Aβ) peptide to form toxic oligomers and fibrils is a key causal event in the onset of Alzheimer's disease, and Aβ is the focus of intense research in neuroscience, biophysics, and structural biology aimed at therapeutic development. Due to its rapid self-assembly and extreme sensitivity to aggregation conditions, preparation of seedless, reproducible Aβ solutions is highly challenging, and there are serious ongoing issues with consistency in the literature. In this paper, we use a liquid-phase separation technique, asymmetric flow field-flow fractionation with multiangle light scattering (AF4-MALS), to develop and validate a simple, effective, economical method for re-solubilization and quality control of purified, lyophilized Aβ samples. Our findings were obtained with recombinant peptide but are physicochemical in nature and thus highly relevant to synthetic peptide. We show that much of the variability in the literature stems from the inability of overly mild solvent treatments to produce consistently monomeric preparations and is rectified by a protocol involving high-pH (>12) dissolution, sonication, and rapid freezing to prevent modification. Aβ treated in this manner is chemically stable, can be stored over long timescales at -80 °C, and exhibits remarkably consistent self-assembly behavior when returned to near-neutral pH. These preparations are highly monomeric, seedless, and do not require additional rounds of size exclusion, eliminating the need for this costly procedure and increasing the flexibility of use. We propose that our improved protocol is the simplest, fastest, and most effective way to solubilize Aβ from diverse sources for sensitive self-assembly and toxicity assays.
Collapse
|
23
|
Thacker D, Willas A, Dear AJ, Linse S. Role of Hydrophobicity at the N-Terminal Region of Aβ42 in Secondary Nucleation. ACS Chem Neurosci 2022; 13:3477-3487. [PMID: 36411082 PMCID: PMC9732875 DOI: 10.1021/acschemneuro.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
The self-assembly of the amyloid β 42 (Aβ42) peptide is linked to Alzheimer's disease, and oligomeric intermediates are linked to neuronal cell death during the pathology of the disease. These oligomers are produced prolifically during secondary nucleation, by which the aggregation of monomers is catalyzed on fibril surfaces. Significant progress has been made in understanding the aggregation mechanism of Aβ42; still, a detailed molecular-level understanding of secondary nucleation is lacking. Here, we explore the role of four hydrophobic residues on the unstructured N-terminal region of Aβ42 in secondary nucleation. We create eight mutants with single substitutions at one of the four positions─Ala2, Phe4, Tyr10, and Val12─to decrease the hydrophobicity at respective positions (A2T, A2S, F4A, F4S, Y10A, Y10S, V12A, and V12S) and one mutant (Y10F) to remove the polar nature of Tyr10. Kinetic analyses of aggregation data reveal that the hydrophobicity at the N-terminal region of Aβ42, especially at positions 10 and 12, affects the rate of fibril mass generated via secondary nucleation. Cryo-electron micrographs reveal that most of the mutants with lower hydrophobicity form fibrils that are markedly longer than WT Aβ42, in line with the reduced secondary nucleation rates for these peptides. The dominance of secondary nucleation, however, is still retained in the aggregation mechanism of these mutants because the rate of primary nucleation is even more reduced. This highlights that secondary nucleation is a general phenomenon that is not dependent on any one particular feature of the peptide and is rather robust to sequence perturbations.
Collapse
Affiliation(s)
- Dev Thacker
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| | - Amanda Willas
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| | - Alexander J. Dear
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Sara Linse
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| |
Collapse
|
24
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
25
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
26
|
Uddin A, Malla JA, Kumar H, Kumari M, Sinha S, Sharma VK, Kumar Y, Talukdar P, Lahiri M, Maiti TK, Hazra P. Development of a Systematic Strategy toward Promotion of α-Synuclein Aggregation Using 2-Hydroxyisophthalamide-Based Systems. Biochemistry 2022; 61:2267-2279. [PMID: 36219819 DOI: 10.1021/acs.biochem.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Establishing a potent scheme against α-synuclein aggregation involved in Parkinson's disease has been evaluated as a promising route to identify compounds that either inhibit or promote the aggregation process of α-synuclein. In the last two decades, this perspective has guided a dramatic increase in the efforts, focused on developing potent drugs either for retardation or promotion of the self-assembly process of α-synuclein. To address this issue, using a chemical kinetics platform, we developed a strategy that enabled a progressively detailed analysis of the molecular events leading to protein aggregation at the microscopic level in the presence of a recently synthesized 2-hydroxyisophthalamide class of small organic molecules based on their binding affinity. Furthermore, qualitatively, we have developed a strategy of disintegration of α-synuclein fibrils in the presence of these organic molecules. Finally, we have shown that these organic molecules effectively suppress the toxicity of α-synuclein oligomers in neuron cells.
Collapse
Affiliation(s)
- Aslam Uddin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Manisha Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad121001, India
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura281406, India
| | - Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Yashwant Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad121001, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| |
Collapse
|
27
|
Qian D, Michaels TCT, Knowles TPJ. Analytical Solution to the Flory-Huggins Model. J Phys Chem Lett 2022; 13:7853-7860. [PMID: 35977086 PMCID: PMC9421911 DOI: 10.1021/acs.jpclett.2c01986] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 05/27/2023]
Abstract
A self-consistent analytical solution for binodal concentrations of the two-component Flory-Huggins phase separation model is derived. We show that this form extends the validity of the Ginzburg-Landau expansion away from the critical point to cover the whole phase space. Furthermore, this analytical solution reveals an exponential scaling law of the dilute phase binodal concentration as a function of the interaction strength and chain length. We demonstrate explicitly the power of this approach by fitting experimental protein liquid-liquid phase separation boundaries to determine the effective chain length and solute-solvent interaction energies. Moreover, we demonstrate that this strategy allows us to resolve differences in interaction energy contributions of individual amino acids. This analytical framework can serve as a new way to decode the protein sequence grammar for liquid-liquid phase separation.
Collapse
Affiliation(s)
- Daoyuan Qian
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Thomas C. T. Michaels
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
- Department
of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, U.K.
- Laboratory
for Molecular Cell Biology, University College
London, London, WC1E 6BT, U.K.
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson
Avenue, Cambridge, CB3
0HE, U.K.
| |
Collapse
|
28
|
Meisl G, Xu CK, Taylor JD, Michaels TCT, Levin A, Otzen D, Klenerman D, Matthews S, Linse S, Andreasen M, Knowles TPJ. Uncovering the universality of self-replication in protein aggregation and its link to disease. SCIENCE ADVANCES 2022; 8:eabn6831. [PMID: 35960802 PMCID: PMC9374340 DOI: 10.1126/sciadv.abn6831] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fibrillar protein aggregates are a hallmark of a range of human disorders, from prion diseases to dementias, but are also encountered in several functional contexts. Yet, the fundamental links between protein assembly mechanisms and their functional or pathological roles have remained elusive. Here, we analyze the aggregation kinetics of a large set of proteins that self-assemble by a nucleated-growth mechanism, from those associated with disease, over those whose aggregates fulfill functional roles in biology, to those that aggregate only under artificial conditions. We find that, essentially, all such systems, regardless of their biological role, are capable of self-replication. However, for aggregates that have evolved to fulfill a structural role, the rate of self-replication is too low to be significant on the biologically relevant time scale. By contrast, all disease-related proteins are able to self-replicate quickly compared to the time scale of the associated disease. Our findings establish the ubiquity of self-replication and point to its potential importance across aggregation-related disorders.
Collapse
Affiliation(s)
- Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Catherine K. Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jonathan D. Taylor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Thomas C. T. Michaels
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Aviad Levin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus DK-8000, Denmark
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- U.K. Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Corresponding author. (S.L.); (M.A.); (T.P.J.K.)
| | - Maria Andreasen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Aarhus DK-8000, Denmark
- Corresponding author. (S.L.); (M.A.); (T.P.J.K.)
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Corresponding author. (S.L.); (M.A.); (T.P.J.K.)
| |
Collapse
|
29
|
Zhong X, Kumar R, Wang Y, Biverstål H, Ingeborg Jegerschöld C, J B Koeck P, Johansson J, Abelein A, Chen G. Amyloid Fibril Formation of Arctic Amyloid-β 1-42 Peptide is Efficiently Inhibited by the BRICHOS Domain. ACS Chem Biol 2022; 17:2201-2211. [PMID: 35876740 PMCID: PMC9396614 DOI: 10.1021/acschembio.2c00344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-β peptide (Aβ) aggregation is one of the hallmarks of Alzheimer's disease (AD). Mutations in Aβ are associated with early onset familial AD, and the Arctic mutant E22G (Aβarc) is an extremely aggregation-prone variant. Here, we show that BRICHOS, a natural anti-amyloid chaperone domain, from Bri2 efficiently inhibits aggregation of Aβarc by mainly interfering with secondary nucleation. This is qualitatively different from the microscopic inhibition mechanism for the wild-type Aβ, against which Bri2 BRICHOS has a major effect on both secondary nucleation and fibril end elongation. The monomeric Aβ42arc peptide aggregates into amyloid fibrils significantly faster than wild-type Aβ (Aβ42wt), as monitored by thioflavin T (ThT) binding, but the final ThT intensity was strikingly lower for Aβ42arc compared to Aβ42wt fibrils. The Aβ42arc peptide formed large aggregates, single-filament fibrils, and multiple-filament fibrils without obvious twists, while Aβ42wt fibrils displayed a polymorphic pattern with typical twisted fibril architecture. Recombinant human Bri2 BRICHOS binds to the Aβ42arc fibril surface and interferes with the macroscopic fibril arrangement by promoting single-filament fibril formation. This study provides mechanistic insights on how BRICHOS efficiently affects the aggressive Aβ42arc aggregation, resulting in both delayed fibril formation kinetics and altered fibril structure.
Collapse
Affiliation(s)
- Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden
| | - Rakesh Kumar
- The Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Yu Wang
- The Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden.,College of Wildlife and Protected Area, Northeast Forestry University, 150040 Harbin, People's Republic of China
| | - Henrik Biverstål
- The Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Caroline Ingeborg Jegerschöld
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden
| | - Philip J B Koeck
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden
| | - Jan Johansson
- The Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Axel Abelein
- The Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Gefei Chen
- The Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
30
|
Ceccon A, Tugarinov V, Torricella F, Clore GM. Quantitative NMR analysis of the kinetics of prenucleation oligomerization and aggregation of pathogenic huntingtin exon-1 protein. Proc Natl Acad Sci U S A 2022; 119:e2207690119. [PMID: 35858329 PMCID: PMC9303973 DOI: 10.1073/pnas.2207690119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 01/14/2023] Open
Abstract
The N-terminal region of the huntingtin protein, encoded by exon-1 (httex1) and containing an expanded polyglutamine tract, forms fibrils that accumulate in neuronal inclusion bodies, resulting in Huntington's disease. We previously showed that reversible formation of a sparsely populated tetramer of the N-terminal amphiphilic domain, comprising a dimer of dimers in a four-helix bundle configuration, occurs on the microsecond timescale and is an essential prerequisite for subsequent nucleation and fibril formation that takes place orders of magnitude slower on a timescale of hours. For pathogenic httex1, such as httex1Q35 with 35 glutamines, NMR signals decay too rapidly to permit measurement of time-intensive exchange-based experiments. Here, we show that quantitative analysis of both the kinetics and mechanism of prenucleation tetramerization and aggregation can be obtained simultaneously from a series of 1H-15N band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC) correlation spectra. The equilibria and kinetics of tetramerization are derived from the time dependence of the 15N chemical shifts and 1H-15N cross-peak volume/intensity ratios, while the kinetics of irreversible fibril formation are afforded by the decay curves of 1H-15N cross-peak intensities and volumes. Analysis of data on httex1Q35 over a series of concentrations ranging from 200 to 750 μM and containing variable (7 to 20%) amounts of the Met7O sulfoxide species, which does not tetramerize, shows that aggregation of native httex1Q35 proceeds via fourth-order primary nucleation, consistent with the critical role of prenucleation tetramerization, coupled with first-order secondary nucleation. The Met7O sulfoxide species does not nucleate but is still incorporated into fibrils by elongation.
Collapse
Affiliation(s)
- Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NlH, Bethesda, MD 20892-0520
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NlH, Bethesda, MD 20892-0520
| | - Francesco Torricella
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NlH, Bethesda, MD 20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NlH, Bethesda, MD 20892-0520
| |
Collapse
|
31
|
Meisl G, Knowles TPJ, Klenerman D. Mechanistic Models of Protein Aggregation Across Length-Scales and Time-Scales: From the Test Tube to Neurodegenerative Disease. Front Neurosci 2022; 16:909861. [PMID: 35844223 PMCID: PMC9281552 DOI: 10.3389/fnins.2022.909861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Through advances in the past decades, the central role of aberrant protein aggregation has been established in many neurodegenerative diseases. Crucially, however, the molecular mechanisms that underlie aggregate proliferation in the brains of affected individuals are still only poorly understood. Under controlled in vitro conditions, significant progress has been made in elucidating the molecular mechanisms that take place during the assembly of purified protein molecules, through advances in both experimental methods and the theories used to analyse the resulting data. The determination of the aggregation mechanism for a variety of proteins revealed the importance of intermediate oligomeric species and of the interactions with promotors and inhibitors. Such mechanistic insights, if they can be achieved in a disease-relevant system, provide invaluable information to guide the design of potential cures to these devastating disorders. However, as experimental systems approach the situation present in real disease, their complexity increases substantially. Timescales increase from hours an aggregation reaction takes in vitro, to decades over which the process takes place in disease, and length-scales increase to the dimension of a human brain. Thus, molecular level mechanistic studies, like those that successfully determined mechanisms in vitro, have only been applied in a handful of living systems to date. If their application can be extended to further systems, including patient data, they promise powerful new insights. Here we present a review of the existing strategies to gain mechanistic insights into the molecular steps driving protein aggregation and discuss the obstacles and potential paths to achieving their application in disease. First, we review the experimental approaches and analysis techniques that are used to establish the aggregation mechanisms in vitro and the insights that have been gained from them. We then discuss how these approaches must be modified and adapted to be applicable in vivo and review the existing works that have successfully applied mechanistic analysis of protein aggregation in living systems. Finally, we present a broad mechanistic classification of in vivo systems and discuss what will be required to further our understanding of aggregate formation in living systems.
Collapse
Affiliation(s)
- Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Michaels TCT, Dear AJ, Cohen SIA, Vendruscolo M, Knowles TPJ. Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. J Chem Phys 2022; 156:164904. [PMID: 35490011 DOI: 10.1063/5.0077609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein self-assembly into amyloid fibrils underlies several neurodegenerative conditions, including Alzheimer's and Parkinson's diseases. It has become apparent that the small oligomers formed during this process constitute neurotoxic molecular species associated with amyloid aggregation. Targeting the formation of oligomers represents, therefore, a possible therapeutic avenue to combat these diseases. However, it remains challenging to establish which microscopic steps should be targeted to suppress most effectively the generation of oligomeric aggregates. Recently, we have developed a kinetic model of oligomer dynamics during amyloid aggregation. Here, we use this approach to derive explicit scaling relationships that reveal how key features of the time evolution of oligomers, including oligomer peak concentration and lifetime, are controlled by the different rate parameters. We discuss the therapeutic implications of our framework by predicting changes in oligomer concentrations when the rates of the individual microscopic events are varied. Our results identify the kinetic parameters that control most effectively the generation of oligomers, thus opening a new path for the systematic rational design of therapeutic strategies against amyloid-related diseases.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Alexander J Dear
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Samuel I A Cohen
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
33
|
Mohammad-Beigi H, Zanganeh M, Scavenius C, Eskandari H, Farzadfard A, Shojaosadati SA, Enghild JJ, Otzen DE, Buell AK, Sutherland DS. A Protein Corona Modulates Interactions of α-Synuclein with Nanoparticles and Alters the Rates of the Microscopic Steps of Amyloid Formation. ACS NANO 2022; 16:1102-1118. [PMID: 34982538 DOI: 10.1021/acsnano.1c08825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) can modulate protein aggregation and fibril formation in the context of amyloid diseases. Understanding the mechanism of this action remains a critical next step in developing nanomedicines for the treatment or prevention of Parkinson's disease. α-Synuclein (α-Syn) can undergo interactions of different strength with nanoparticles, and these interactions can be prevented by the presence of a protein corona (PC) acquired during the exposure of NPs to serum proteins. Here, we develop a method to attach the PC irreversibly to the NPs, which enables us to study in detail the interaction of α-Syn and polyethylenimine-coated carboxyl-modified polystyrene NPs (PsNPs-PEI) and the role of the dynamics of the interactions. Analysis of the kinetics of fibril formation reveals that the NPs surface promotes the primary nucleation step of amyloid fibril formation without significantly affecting the elongation and fragmentation steps or the final equilibrium. Furthermore, the results show that even though α-Syn can access the surface of NPs that are precoated with a PC, due to the dynamic nature of the PC proteins, the PC nevertheless reduces the acceleratoring effect of the NPs. This effect is likely to be caused by reducing the overall amount of weakly interacting α-Syn molecules on the NP surface and the access of further α-Syn required for fibril elongation. Our experimental approach provides microscopic insight into how serum proteins can modulate the complex interplay between NPs and amyloid proteins.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Masumeh Zanganeh
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, 14115-143 Tehran, Iran
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Hoda Eskandari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Azad Farzadfard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, 14115-143 Tehran, Iran
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Niyangoda C, Barton J, Bushra N, Karunarathne K, Strauss G, Fakhre F, Koria P, Muschol M. Origin, toxicity and characteristics of two amyloid oligomer polymorphs. RSC Chem Biol 2021; 2:1631-1642. [PMID: 34977578 PMCID: PMC8637835 DOI: 10.1039/d1cb00081k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
There is compelling evidence that small oligomeric aggregates, emerging during the assembly of amyloid fibrils and plaques, are important molecular pathogens in many amyloid diseases. While significant progress has been made in revealing the mechanisms underlying fibril growth, understanding how amyloid oligomers fit into the fibril assembly process, and how they contribute to the pathogenesis of amyloid diseases, has remained elusive. Commonly, amyloid oligomers are considered to be metastable, early-stage precursors to fibril formation that are either on- or off-pathway from fibril growth. In addition, amyloid oligomers have been reported to colocalize with late-stage fibrils and plaques. Whether these early and late-stage oligomer species are identical or distinct, and whether both are relevant to pathogenesis remains unclear. Here we report on the formation of two distinct oligomer species of lysozyme, formed either during the early or late-stages of in vitro fibril growth. We further observe that the pH change from in vitro growth conditions to cell media used for toxicity studies induced distinct mesoscopic precipitates, two of which resemble either diffuse or neuritic plaques seen in Alzheimer's histology. Our biophysical characterization indicates that both oligomer species share morphological and tinctorial features considered characteristic for amyloid oligomers. At the same time, their sizes, morphologies, their immunostaining, detailed tinctorial profiles and, most prominently, their biological activity are clearly distinct from each other. Probing the conditions promoting the formation of these two distinct oligomer species suggests distinct roles of charge interactions, hydrophobicity and monomer flexibility in directing oligomer assembly.
Collapse
Affiliation(s)
| | - Jeremy Barton
- Dept. of Physics, University of South Florida Tampa FL 33620 USA
| | - Nabila Bushra
- Dept. of Physics, University of South Florida Tampa FL 33620 USA
| | | | - Graham Strauss
- Dept. of Chemical and Biomedical Engineering, University of South Florida Tampa FL 33620 USA
| | - Fadia Fakhre
- Dept. of Physics, University of South Florida Tampa FL 33620 USA
| | - Piyush Koria
- Dept. of Chemical and Biomedical Engineering, University of South Florida Tampa FL 33620 USA
| | - Martin Muschol
- Dept. of Physics, University of South Florida Tampa FL 33620 USA
| |
Collapse
|
35
|
Zaguri D, Zimmermann MR, Meisl G, Levin A, Rencus-Lazar S, Knowles TPJ, Gazit E. Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules. ACS NANO 2021; 15:18305-18311. [PMID: 34694771 DOI: 10.1021/acsnano.1c07537] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of ordered protein and peptide assemblies is a phenomenon related to a wide range of human diseases. However, the mechanism of assembly at the molecular level remains largely unknown. Minimal models enable the exploration of the underlying interactions that are at the core of such self-assembly processes. In particular, the ability of phenylalanine, a single aromatic amino acid, to form an amyloid-like structure has challenged the previous dogma viewing a peptide backbone as a prerequisite for assembly. The driving forces controlling the nucleation and assembly in the absence of a peptide backbone remain to be identified. Here, aiming to unravel these forces, we explored the kinetics and thermodynamics of three phenylalanine-containing molecules during their assembly process: the amino acid phenylalanine, which accumulates in phenylketonuria patients, the diphenylalanine core-motif of the amyloid β peptide related to Alzheimer's disease, and the extended triphenylalanine peptide which forms a range of distinct nanostructures in vitro. We found that the aggregation propensity, regarding the critical monomer concentration, strongly increases with size, with triphenylalanine being the most aggregation-prone species under our experimental conditions. In the context of classical nucleation theory, this increase in aggregation propensity can be attributed to the larger free energy decrease upon aggregation of larger peptides and is not due to the presence/absence of a peptide bond per se. Taken together, this work provides insights into the aggregation processes of chemically simple systems and suggests that both backbone-containing peptides and backbone-lacking amino acids assemble through a similar mechanism, thus supporting the classification of amino acids in the continuum of amyloid-forming building blocks.
Collapse
Affiliation(s)
- Dor Zaguri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Manuela R Zimmermann
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Aviad Levin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- BLAVATNIK CENTER for Drug Discovery for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
36
|
Awasthi P, Das S. Kinetics of protein aggregation at a temperature gradient condition. SOFT MATTER 2021; 17:9008-9013. [PMID: 34610083 DOI: 10.1039/d1sm00857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unconventional multi-sigmoidal kinetic behaviour of protein aggregation at a temperature gradient condition is reported in this study. To establish a feasible theory for protein aggregation kinetics at a temperature gradient condition, the spatial height of the protein solution is divided into hypothetical layers and the kinetic equations in those layers are solved. Furthermore, we endeavour to study numerically the effect of the temperature gradient on the kinetics of oligomer-mediated protein aggregation and protein inhibition.
Collapse
Affiliation(s)
- Prasoon Awasthi
- BioMEMS and Microfluidic Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, India.
| | - Soumen Das
- BioMEMS and Microfluidic Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, India.
| |
Collapse
|
37
|
Zimmermann MR, Bera SC, Meisl G, Dasadhikari S, Ghosh S, Linse S, Garai K, Knowles TPJ. Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of Aβ42 Aggregation. J Am Chem Soc 2021; 143:16621-16629. [PMID: 34582216 DOI: 10.1021/jacs.1c07228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The formation of amyloid fibrils and oligomers is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD), and contributes to the disease pathway. To progress our understanding of these diseases at a molecular level, it is crucial to determine the mechanisms and rates of amyloid formation and replication. In the context of AD, the self-replication of aggregates of the Aβ42 peptide by secondary nucleation, leading to the formation of new aggregates on the surfaces of existing ones, is a major source of both new fibrils and smaller toxic oligomeric species. However, the core mechanistic determinants, including the presence of intermediates, as well as the role of heterogeneities in the fibril population, are challenging to determine from bulk aggregation measurements. Here, we obtain such information by monitoring directly the time evolution of individual fibrils by TIRF microscopy. Crucially, essentially all aggregates have the ability to self-replicate via secondary nucleation, and the amplification of the aggregate concentration cannot be explained by a small fraction of "superspreader" fibrils. We observe that secondary nucleation is a catalytic multistep process involving the attachment of soluble species to the fibril surface, followed by conversion/detachment to yield a new fibril in solution. Furthermore, we find that fibrils formed by secondary nucleation resemble the parent fibril population. This detailed level of mechanistic insights into aggregate self-replication is key in the rational design of potential inhibitors of this process.
Collapse
Affiliation(s)
- Manuela R Zimmermann
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Subhas C Bera
- TIFR Centre for Interdisciplinary Sciences, 500046 Hyderabad, India
- Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University, Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | | | - Shamasree Ghosh
- TIFR Centre for Interdisciplinary Sciences, 500046 Hyderabad, India
| | - Sara Linse
- Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden
| | - Kanchan Garai
- TIFR Centre for Interdisciplinary Sciences, 500046 Hyderabad, India
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| |
Collapse
|
38
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
39
|
Horvath I, Kumar R, Wittung-Stafshede P. Macromolecular crowding modulates α-synuclein amyloid fiber growth. Biophys J 2021; 120:3374-3381. [PMID: 34242594 PMCID: PMC8391083 DOI: 10.1016/j.bpj.2021.06.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
The crowdedness of living cells, hundreds of milligrams per milliliter of macromolecules, may affect protein folding, function, and misfolding. Still, such processes are most often studied in dilute solutions in vitro. To assess consequences of the in vivo milieu, we here investigated the effects of macromolecular crowding on the amyloid fiber formation reaction of α-synuclein, the amyloidogenic protein in Parkinson's disease. For this, we performed spectroscopic experiments probing individual steps of the reaction as a function of the macromolecular crowding agent Ficoll70, which is an inert sucrose-based polymer that provides excluded-volume effects. The experiments were performed at neutral pH at quiescent conditions to avoid artifacts due to shaking and glass beads (typical conditions for α-synuclein), using amyloid fiber seeds to initiate reactions. We find that both primary nucleation and fiber elongation steps during α-synuclein amyloid formation are accelerated by the presence of 140 and 280 mg/mL Ficoll70. Moreover, in the presence of Ficoll70 at neutral pH, secondary nucleation appears favored, resulting in faster overall α-synuclein amyloid formation. In contrast, sucrose, a small-molecule osmolyte and building block of Ficoll70, slowed down α-synuclein amyloid formation. The ability of cell environments to modulate reaction kinetics to a large extent, such as severalfold faster individual steps in α-synuclein amyloid formation, is an important consideration for biochemical reactions in living systems.
Collapse
Affiliation(s)
- Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
40
|
Dear AJ, Michaels TCT, Knowles TPJ, Mahadevan L. Feedback control of protein aggregation. J Chem Phys 2021; 155:064102. [PMID: 34391352 DOI: 10.1063/5.0055925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The self-assembly of peptides and proteins into amyloid fibrils plays a causative role in a wide range of increasingly common and currently incurable diseases. The molecular mechanisms underlying this process have recently been discovered, prompting the development of drugs that inhibit specific reaction steps as possible treatments for some of these disorders. A crucial part of treatment design is to determine how much drug to give and when to give it, informed by its efficacy and intrinsic toxicity. Since amyloid formation does not proceed at the same pace in different individuals, it is also important that treatment design is informed by local measurements of the extent of protein aggregation. Here, we use stochastic optimal control theory to determine treatment regimens for inhibitory drugs targeting several key reaction steps in protein aggregation, explicitly taking into account variability in the reaction kinetics. We demonstrate how these regimens may be updated "on the fly" as new measurements of the protein aggregate concentration become available, in principle, enabling treatments to be tailored to the individual. We find that treatment timing, duration, and drug dosage all depend strongly on the particular reaction step being targeted. Moreover, for some kinds of inhibitory drugs, the optimal regimen exhibits high sensitivity to stochastic fluctuations. Feedback controls tailored to the individual may therefore substantially increase the effectiveness of future treatments.
Collapse
Affiliation(s)
- Alexander J Dear
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Thomas C T Michaels
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - L Mahadevan
- School of Engineering and Applied Sciences, Department of Physics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
41
|
Klenerman D, Sanchez SE, Whiten DR, Meisl G, Ruggeri FS, Hidari E. Alpha synuclein only forms fibrils in vitro when larger than its critical size of 70 monomers. Chembiochem 2021; 22:2867-2871. [PMID: 34383993 PMCID: PMC8518629 DOI: 10.1002/cbic.202100285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Indexed: 12/03/2022]
Abstract
The aggregation of α‐synuclein into small soluble aggregates and then fibrils is important in the development and spreading of aggregates through the brain in Parkinson's disease. Fibrillar aggregates can grow by monomer addition and then break into fragments that could spread into neighboring cells. The rate constants for fibril elongation and fragmentation have been measured but it is not known how large an aggregate needs to be before fibril formation is thermodynamically favorable. This critical size is an important parameter controlling at what stage in an aggregation reaction fibrils can form and replicate. We determined this value to be approximately 70 monomers using super‐resolution and atomic force microscopy imaging of individual α‐synuclein aggregates formed in solution over long time periods. This represents the minimum size for a stable α‐synuclein fibril and we hypothesis the formation of aggregates of this size in a cell represents a tipping point at which rapid replication occurs.
Collapse
Affiliation(s)
- David Klenerman
- University of Cambridge, Department of Chemistry, Lensfield Road, CB2 1EW, Cambridge, UNITED KINGDOM
| | | | - Daniel R Whiten
- Kolling Institute of Medical Research, Kolling Institute, AUSTRALIA
| | - Georg Meisl
- University of Cambridge, Chemistry, UNITED KINGDOM
| | - Francesco Simone Ruggeri
- Wageningen UR PRI: Wageningen University and Research Wageningen Plant Research, organic and physical chemistry Laboratories, NETHERLANDS
| | - Eric Hidari
- University of Cambridge, Chemistry, UNITED KINGDOM
| |
Collapse
|
42
|
Iwakawa N, Morimoto D, Walinda E, Shirakawa M, Sugase K. Multiple-State Monitoring of SOD1 Amyloid Formation at Single-Residue Resolution by Rheo-NMR Spectroscopy. J Am Chem Soc 2021; 143:10604-10613. [PMID: 34232041 DOI: 10.1021/jacs.1c02974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of protein aggregates or fibrils entails the conversion of soluble native protein monomers via multiple molecular states. No spectroscopic techniques have succeeded in capturing the transient molecular-scale events of fibrillation in situ. Here we report residue- and state-specific real-time monitoring of the fibrillation of amyotrophic lateral sclerosis-related SOD1 by rheology NMR (Rheo-NMR) spectroscopy. Under moderately denaturing conditions, where NMR signals of folded and unfolded monomeric SOD1 are simultaneously observable, the cross-peak intensities of folded monomeric SOD1 decreased faster than those of the unfolded species, and a 310-helix in folded SOD1 was deformed prior to global unfolding. Furthermore, real-time protein dynamics analysis identified residues involved in the core structure formation of SOD1 oligomers. Our findings provide insight into local and global unfolding events in SOD1 and fibril formation. This Rheo-NMR analysis will be applicable not only to atomic-level monitoring of other amyloidogenic proteins but also to quantification of shear-induced structural changes of non-amyloidogenic proteins and elucidation of shear-enhanced chemical phenomena such as viscosity increase and crystallization of various solution-state compounds.
Collapse
Affiliation(s)
- Naoto Iwakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
43
|
Thompson TB, Meisl G, Knowles TPJ, Goriely A. The role of clearance mechanisms in the kinetics of pathological protein aggregation involved in neurodegenerative diseases. J Chem Phys 2021; 154:125101. [PMID: 33810689 DOI: 10.1063/5.0031650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The deposition of pathological protein aggregates in the brain plays a central role in cognitive decline and structural damage associated with neurodegenerative diseases. In Alzheimer's disease, the formation of amyloid-β plaques and neurofibrillary tangles of the tau protein is associated with the appearance of symptoms and pathology. Detailed models for the specific mechanisms of aggregate formation, such as nucleation and elongation, exist for aggregation in vitro where the total protein mass is conserved. However, in vivo, an additional class of mechanisms that clear pathological species is present and is believed to play an essential role in limiting the formation of aggregates and preventing or delaying the emergence of disease. A key unanswered question in the field of neuro-degeneration is how these clearance mechanisms can be modeled and how alterations in the processes of clearance or aggregation affect the stability of the system toward aggregation. Here, we generalize classical models of protein aggregation to take into account both production of monomers and the clearance of protein aggregates. We show that, depending on the specifics of the clearance process, a critical clearance value emerges above which accumulation of aggregates does not take place. Our results show that a sudden switch from a healthy to a disease state can be caused by small variations in the efficiency of the clearance process and provide a mathematical framework to explore the detailed effects of different mechanisms of clearance on the accumulation of aggregates.
Collapse
Affiliation(s)
- T B Thompson
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - G Meisl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - T P J Knowles
- Department of Chemistry and Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - A Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Cho S, Yun SH. Poly(catecholamine) coated CsPbBr 3 perovskite microlasers: lasing in water and biofunctionalization. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101902. [PMID: 34539305 PMCID: PMC8447242 DOI: 10.1002/adfm.202101902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 05/13/2023]
Abstract
Lead halide perovskite (LHP) is a promising material for various optoelectronic applications. Surface coating on particles is a common strategy to improve their functionality and environmental stability, but LHP is not amenable to most coating chemistries because of its intrinsic weakness against polar solvents. Here, we describe a novel method of synthesizing LHP microlasers in a super-saturated polar solvent using sonochemistry and applying various functional coatings on individual microlasers in situ. We synthesize cesium lead bromine perovskite (CsPbBr3) microcrystals capped with organic poly-norepinephrine (pNE) layers. The catechol group of pNE coordinates to bromine-deficient lead atoms, forming a defect-passivating and diffusion-blocking shell. The pNE layer enhances the material lifetime of CsPbBr3 in water by 2,000-folds, enabling bright luminescence and lasing from single microcrystals in water. Furthermore, the pNE shell permits biofunctionalization with proteins, small molecules, and lipid bilayers. Luminescence from CsPbBr3 microcrystals is sustained in water over 1 hour and observed in live cells. The functionalization method may enable new applications of LHP laser particles in water-rich environments.
Collapse
Affiliation(s)
- Sangyeon Cho
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, 02139, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
45
|
Sharma A, McDonald MA, Rose HB, Chernoff YO, Behrens SH, Bommarius AS. Modeling Amyloid Aggregation Kinetics: A Case Study with Sup35NM. J Phys Chem B 2021; 125:4955-4963. [PMID: 33961433 DOI: 10.1021/acs.jpcb.0c11250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Understanding the aggregation mechanism of amyloid proteins, such as Sup35NM, is essential to understanding amyloid diseases. Significant recent work has focused on using the fluorescence of thioflavin T (ThT), which undergoes a red shift when bound to amyloid aggregates, to monitor amyloid fibril formation. In the present study, the progression of the total mass of aggregates during fibril formation is monitored for initial monomer concentrations in order to infer the relevant aggregation mechanisms. This workflow was implemented using the amyloid-forming fragment Sup35NM under different agitation conditions and for initial monomer concentrations spanning 2 orders of magnitude. The analysis suggests that primary nucleation, monomeric elongation, secondary nucleation, and fragmentation might all be relevant, but their relative importance could not be determined unambiguously, despite the large set of high-quality data. Discriminating between the fibril-generating processes is shown to require additional information, such as a fibril length distribution. Using Sup35NM as a case study, a framework for fitting the parameters of arbitrary amyloid aggregation kinetics is developed based on a population balance model (PBM), which resolves not only the total aggregate mass (monitored experimentally via ThT fluorescence) but the entire fibril length distribution over time. In addition to the rich new set of ThT fluorescence data, we have reanalyzed a previously published aggregate size distribution using this method. With the size distribution, it was determined that in the reanalyzed in vitro experiment, secondary nucleation generated significantly fewer new Sup35NM fibrils than fragmentation. The proposed strategy of applying the same PBM to a combination of kinetic data from fluorescence monitoring and experimental fibril length distributions will allow the inference of aggregation mechanisms with far greater confidence than fluorescence studies alone.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew A McDonald
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Harrison B Rose
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Sven H Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Polymer Science & Materials Chemistry, Exponent, Inc., Atlanta, Georgia 30326, United States
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
46
|
Deleanu M, Hernandez JF, Cipelletti L, Biron JP, Rossi E, Taverna M, Cottet H, Chamieh J. Unraveling the Speciation of β-Amyloid Peptides during the Aggregation Process by Taylor Dispersion Analysis. Anal Chem 2021; 93:6523-6533. [PMID: 33852281 DOI: 10.1021/acs.analchem.1c00527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation mechanisms of amyloid β peptides depend on multiple intrinsic and extrinsic physicochemical factors (e.g., peptide chain length, truncation, peptide concentration, pH, ionic strength, temperature, metal concentration, etc.). Due to this high number of parameters, the formation of oligomers and their propensity to aggregate make the elucidation of this physiopathological mechanism a challenging task. From the analytical point of view, up to our knowledge, few techniques are able to quantify, in real time, the proportion and the size of the different soluble species during the aggregation process. This work aims at demonstrating the efficacy of the modern Taylor dispersion analysis (TDA) performed in capillaries (50 μm i.d.) to unravel the speciation of β-amyloid peptides in low-volume peptide samples (∼100 μL) with an analysis time of ∼3 min per run. TDA was applied to study the aggregation process of Aβ(1-40) and Aβ(1-42) peptides at physiological pH and temperature, where more than 140 data points were generated with a total volume of ∼1 μL over the whole aggregation study (about 0.5 μg of peptides). TDA was able to give a complete and quantitative picture of the Aβ speciation during the aggregation process, including the sizing of the oligomers and protofibrils, the consumption of the monomer, and the quantification of different early- and late-formed aggregated species.
Collapse
Affiliation(s)
- Mihai Deleanu
- IBMM, ENSCM, Université Montpellier, CNRS, 34095 Montpellier, France
| | | | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, 34095 Montpellier, France.,Institut Universitaire de France (IUF), France
| | | | - Emilie Rossi
- , Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Myriam Taverna
- Institut Universitaire de France (IUF), France.,, Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Hervé Cottet
- IBMM, ENSCM, Université Montpellier, CNRS, 34095 Montpellier, France
| | - Joseph Chamieh
- IBMM, ENSCM, Université Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
47
|
Beeg M, Battocchio E, De Luigi A, Colombo L, Natale C, Cagnotto A, Corbelli A, Fiordaliso F, Diomede L, Salmona M, Gobbi M. Nonphosphorylated tau slows down Aβ 1-42 aggregation, binds to Aβ 1-42 oligomers, and reduces Aβ 1-42 toxicity. J Biol Chem 2021; 296:100664. [PMID: 33865852 PMCID: PMC8113980 DOI: 10.1016/j.jbc.2021.100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022] Open
Abstract
The formation of neurofibrillary tangles and amyloid plaques accompanies the progression of Alzheimer's disease. Tangles are made of fibrillar aggregates formed by the microtubule-associated protein tau, whereas plaques comprise fibrillar forms of amyloid-beta (Aβ). Both form toxic oligomers during aggregation and are thought to interact synergistically to each promote the accumulation of the other. Recent in vitro studies have suggested that the monomeric nonphosphorylated full-length tau protein hinders the aggregation of Aβ1–40 peptide, but whether the same is true for the more aggregation-prone Aβ1–42 was not determined. We used in vitro and in vivo techniques to explore this question. We have monitored the aggregation kinetics of Aβ1–42 by thioflavine T fluorescence in the presence or the absence of different concentrations of nonphosphorylated tau. We observed that elongation of Aβ1–42 fibrils was inhibited by tau in a dose-dependent manner. Interestingly, the fibrils were structurally different in the presence of tau but did not incorporate tau. Surface plasmon resonance indicated that tau monomers bound to Aβ1–42 oligomers (but not monomers) and hindered their interaction with the anti-Aβ antibody 4G8, suggesting that tau binds to the hydrophobic central core of Aβ recognized by 4G8. Tau monomers also antagonized the toxic effects of Aβ oligomers in Caenorhabditis elegans. This suggests that nonphosphorylated tau might have a neuroprotective effect by binding Aβ1–42 oligomers formed during the aggregation and shielding their hydrophobic patches.
Collapse
Affiliation(s)
- Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisabetta Battocchio
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ada De Luigi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
48
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
49
|
Protofibril–Fibril Interactions Inhibit Amyloid Fibril Assembly by Obstructing Secondary Nucleation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Hasecke F, Niyangoda C, Borjas G, Pan J, Matthews G, Muschol M, Hoyer W. Protofibril-Fibril Interactions Inhibit Amyloid Fibril Assembly by Obstructing Secondary Nucleation. Angew Chem Int Ed Engl 2021; 60:3016-3021. [PMID: 33095508 PMCID: PMC7898819 DOI: 10.1002/anie.202010098] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Indexed: 12/29/2022]
Abstract
Amyloid-β peptides (Aβ) assemble into both rigid amyloid fibrils and metastable oligomers termed AβO or protofibrils. In Alzheimer's disease, Aβ fibrils constitute the core of senile plaques, but Aβ protofibrils may represent the main toxic species. Aβ protofibrils accumulate at the exterior of senile plaques, yet the protofibril-fibril interplay is not well understood. Applying chemical kinetics and atomic force microscopy to the assembly of Aβ and lysozyme, protofibrils are observed to bind to the lateral surfaces of amyloid fibrils. When utilizing Aβ variants with different critical oligomer concentrations, the interaction inhibits the autocatalytic proliferation of amyloid fibrils by secondary nucleation on the fibril surface. Thus, metastable oligomers antagonize their replacement by amyloid fibrils both by competing for monomers and blocking secondary nucleation sites. The protofibril-fibril interaction governs their temporal evolution and potential to exert specific toxic activities.
Collapse
Affiliation(s)
- Filip Hasecke
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | | | - Gustavo Borjas
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| | - Jianjun Pan
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| | | | - Martin Muschol
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| | - Wolfgang Hoyer
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
- Strukturbiochemie (IBI-7)Forschungszentrum Jülich52425JülichGermany
| |
Collapse
|