1
|
Bakhtiari A, Kähler CJ. A method to prevent clogging and clustering in microfluidic systems using microbubble streaming. BIOMICROFLUIDICS 2024; 18:044101. [PMID: 38984267 PMCID: PMC11232117 DOI: 10.1063/5.0214436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
This paper presents an innovative strategy to address the issues of clogging and cluster-related challenges in microchannels within microfluidic devices. Leveraging three-dimensional (3D) microbubble streaming as a dynamic solution, our approach involves the controlled activation of microbubbles near channel constrictions, inducing microstreaming with distinctive features. This microstreaming, characterized by a high non-uniform 3D gradient and significant shear stress, effectively inhibits arch formation at constrictions and disintegrates particle clusters, demonstrating real-time prevention of clogging incidents and blockages. This study includes experimental validation of the anti-clogging technique, a detailed examination of microstreaming phenomena, and their effects on clogging and clustering issues. It also incorporates statistical analyses performed in various scenarios to verify the method's effectiveness and adaptability. Moreover, a versatile control system has been designed that operates in event-triggered, continuous, or periodic modes, which suits different lab-on-a-chip applications and improves the overall functionality of microfluidic systems.
Collapse
Affiliation(s)
- Amirabas Bakhtiari
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| | - Christian J. Kähler
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| |
Collapse
|
2
|
Lin L, Zhu R, Li W, Dong G, You H. The Shape Effect of Acoustic Micropillar Array Chips in Flexible Label-Free Separation of Cancer Cells. MICROMACHINES 2024; 15:421. [PMID: 38675233 PMCID: PMC11052022 DOI: 10.3390/mi15040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
The precise isolation of circulating tumor cells (CTCs) from blood samples is a potent tool for cancer diagnosis and clinical prognosis. However, CTCs are present in extremely low quantities in the bloodstream, posing a significant challenge to their isolation. In this study, we propose a non-contact acoustic micropillar array (AMPA) chip based on acoustic streaming for the flexible, label-free capture of cancer cells. Three shapes of micropillar array chips (circular, rhombus, and square) were fabricated. The acoustic streaming characteristics generated by the vibration of microstructures of different shapes are studied in depth by combining simulation and experiment. The critical parameters (voltage and flow rate) of the device were systematically investigated using microparticle experiments to optimize capture performance. Subsequently, the capture efficiencies of the three micropillar structures were experimentally evaluated using mouse whole blood samples containing cancer cells. The experimental results revealed that the rhombus microstructure was selected as the optimal shape, demonstrating high capture efficiency (93%) and cell activity (96%). Moreover, the reversibility of the acoustic streaming was harnessed for the flexible release and capture of cancer cells, facilitating optical detection and analysis. This work holds promise for applications in monitoring cancer metastasis, bio-detection, and beyond.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Rongxing Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Wang Li
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Guoqiang Dong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Hui You
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| |
Collapse
|
3
|
Wan TY, Hwa HL, Lee TT, Lu YW. High efficiency sperm enrichment from forensic mock samples in bubble-based acoustic filtration devices for short tandem repeat (STR) analysis. LAB ON A CHIP 2024; 24:434-445. [PMID: 38086663 DOI: 10.1039/d3lc00632h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
A bubble-based acoustofluidic filtration (BAF) microfluidic device, which employs cross-flow filtration (CFF) and acoustic streaming, separates cells with high efficiency for forensic analysis. Forensic samples are typically complex and contain a substantial number of squamous epithelial cells from the female vagina, which tend to have fouling problems during filtration due to their morphological and cell adhesion differences. To overcome this issue, the BAF device utilizes bubble oscillation by bulk acoustic wave (BAW) to generate acoustic streaming, which offers additional hydrodynamic forces for side flushing cleaning and achieves effective removal within a mere 0.5 seconds. Our device is tested with imbalanced cell mixtures of sperm and epithelial cells with large disparity ratios. By concurrently employing CFF and acoustic streaming, the samples with our sperm-enrichment can achieve 91.72-97.78% for the recovery rate and 74.58-89.26% for the purity in the sperm enrichment. They are further subjected to short tandem repeat (STR) profiling, enabling the identification of perpetrators. Notably, even samples with minimal sperm cells demonstrated a significant increase in the male donor DNA ratio, while the peak heights of female alleles became virtually undetectable. The exceptional cell separation capability demonstrated by our BAF device highlights its potential applications in forensic sciences and other areas of cell biology.
Collapse
Affiliation(s)
- Ting-Yu Wan
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Hsiao-Lin Hwa
- Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsui-Ting Lee
- Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Wen Lu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Bakhtiari A, Kähler CJ. Enhanced particle separation through ultrasonically-induced microbubble streaming for automated size-selective particle depletion. RSC Adv 2024; 14:2226-2234. [PMID: 38213973 PMCID: PMC10777360 DOI: 10.1039/d3ra08038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
In this study, we present an automated method for achieving Size-Selective Particle Depletion in microchannels. This technique is notable for its label-free, sheath-free, and cost-effective attributes. It combines continuous Poiseuille flow with microbubble streaming to enable the manipulation of particles in an automatic or semi-automatic manner at periodic intervals. Larger particles are retained in proximity to the microbubble, with the option for subsequent eviction through a designated waste exit or their accumulation within a collection chamber for future analysis or manipulation. Unlike many conventional methods, our approach keeps the target particles in the vortices near the microbubble while the primary fluid flows continuously through the microchannel. Subsequently, these particles are ejected in just a few milliseconds, preserving the primary fluid and significantly reducing fluid wastage. We conducted an analysis covering multiple critical facets of the study. This included a rigorous statistical examination, flow characterization using volumetric micro PTV, high-frequency micro PTV for observing flow field transitions, evaluating the system's particle trapping capabilities across different sizes with a proprietary algorithm, and investigating the z-axis distribution of both incoming and escaped particles using volumetric micro PTV. The invaluable insights gleaned from this data played a pivotal role in refining the system and optimizing its operational parameters to achieve peak efficiency across various conditions, encompassing varying particle sizes, flow rates, and seeding densities.
Collapse
Affiliation(s)
- Amirabas Bakhtiari
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich 85577 Neubiberg Germany
| | - Christian J Kähler
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich 85577 Neubiberg Germany
| |
Collapse
|
5
|
Sato T, Kaneko K, Hayakawa T, Suzuki H. Pneumatic Microballoons for Active Control of the Vibration-Induced Flow. MICROMACHINES 2023; 14:2010. [PMID: 38004868 PMCID: PMC10673574 DOI: 10.3390/mi14112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Vibration-induced flow (VIF), in which a mean flow is induced around a microstructure by applying periodic vibrations, is increasingly used as an active flow-control technique at the microscale. In this study, we have developed a microdevice that actively controls the VIF patterns using elastic membrane protrusions (microballoons) actuated by pneumatic pressure. This device enables on-demand spatial and temporal fluid manipulation using a single device that cannot be achieved using a conventional fixed-structure arrangement. We successfully demonstrated that the device achieved displacements of up to 38 µm using the device within a pressure range of 0 to 30 kPa, indicating the suitability of the device for microfluidic applications. Using this active microballoon array, we demonstrated that the device can actively manipulate the flow field and induce swirling flows. Furthermore, we achieved selective actuation of the microballoon using this system. By applying air pressure from a multi-input channel system through a connection tube, the microballoons corresponding to each air channel can be selectively actuated. This enabled precise control of the flow field and periodic switching of the flow patterns using a single chip. In summary, the proposed microdevice provides active control of VIF patterns and has potential applications in advanced microfluidics, such as fluid mixing and particle manipulation.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan; (T.S.); (K.K.); (T.H.)
| |
Collapse
|
6
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Alhamli MK, Sadhal SS. Boundary effects on the streaming flow around a bubble located at the velocity antinode of a standing wave. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1637. [PMID: 37002098 DOI: 10.1121/10.0017456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
This study uses the singular perturbation method to analyze the streaming flow around a pulsating bubble at the velocity antinode of a standing wave. The bubble radially and laterally oscillates with small nondimensional amplitudes of ε` and ε, respectively. The momentum equation is expanded using ε. The frequency parameter M, which is the ratio of the bubble radius to the viscous length, is included in the expanded equations as OM-1. Four boundary conditions are solved: non-pulsating and pulsating assuming no-slip and shear-free boundaries. For the non-pulsating bubble, the streaming is on the order of OM-1 for the shear-free boundary. The flow has a quadrupole pattern, with direction from the equator to the poles. However, for the non-pulsating bubble with the no-slip boundary, the flow pattern is from the poles to the equator and the direction reverses after a critical value of M=13.3. When bubble pulsation is introduced, the intensity of the streaming increases and is proportional to M. The flow pattern is dipole with a direction from the south to the north pole for the shear-free boundary. For the non-slip boundary, the flow is quadrupole for small values of M and varies with the phase shift ϕ. As M increases, the flow intensifies and becomes dipole. For both cases, the maximum velocity is at the phase shift angle ϕ=135° and M=10.
Collapse
Affiliation(s)
- Mohammad K Alhamli
- College of Technological Studies, Mechanical Engineering (Power), P.O. Box 42325, Shuwaikh 70654, Kuwait
| | - Satwindar Singh Sadhal
- Aerospace and Mechanical Engineering and Ophthalmology, University of Southern California, Olin Hall, OHE 430, Los Angeles, California 90089, USA
| |
Collapse
|
8
|
Abstract
Viscous streaming refers to the rectified, steady flows that emerge when a liquid oscillates around an immersed microfeature. Relevant to microfluidics, the resulting local, strong inertial effects allow manipulation of fluid and particles effectively, within short time scales and compact footprints. Nonetheless, practically, viscous streaming has been stymied by a narrow set of achievable flow topologies, limiting scope and application. Here, by moving away from classically employed microfeatures of uniform curvature, we experimentally show how multicurvature designs, computationally obtained, give rise, instead, to rich flow repertoires. The potential utility of these flows is then illustrated in compact, robust, and tunable devices for enhanced manipulation, filtering, and separation of both synthetic and biological particles. Overall, our mixed computational/experimental approach expands the scope of viscous streaming application, with opportunities in manufacturing, environment, health, and medicine, from particle self-assembly to microplastics removal.
Collapse
|
9
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Numerical Study of Baroclinic Acoustic Streaming Phenomenon for Various Flow Parameters. ENERGIES 2022. [DOI: 10.3390/en15030854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The article presents a numerical study of the large-amplitude, acoustically-driven streaming flow for different frequencies of the acoustic wave and different temperature gradients between hot and cold surfaces. The geometries studied were mainly two-dimensional rectangular resonators of different lengths, but also one three-dimensional rectangular resonator and one long and narrow channel, representative of a typical U-shaped resistance thermometer. The applied numerical model was based on the Navier–Stokes compressible equations, the ideal gas model, and finite volume discretization. The oscillating wall of the considered geometries was modeled as a dynamically moving boundary of the numerical mesh. The length of the resonators was adjusted to one period of the acoustic wave. The research confirmed that baroclinic acoustic streaming flow was largely independent of frequency, and its intensity increased with the temperature gradient between the hot and cold surface. Interestingly, a slight maximum was observed for some oscillation frequencies. In the case of the long and narrow channel, acoustic streaming manifested itself as a long row of counter-rotating vortices that varied slightly along the channel. 3D calculations showed that a three-dimensional pair of streaming vortices had formed in the resonator. Examination of the flow in selected cross-sections showed that the intensity of streaming gradually decreased as it approached the side walls of the resonator creating a quasi-parabolic profile. The future development of the research will focus on fully 3D calculations and precise identification of the influence of the bounding walls on the streaming flow.
Collapse
|
11
|
An unrecognized inertial force induced by flow curvature in microfluidics. Proc Natl Acad Sci U S A 2021; 118:2103822118. [PMID: 34261792 DOI: 10.1073/pnas.2103822118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modern inertial microfluidics routinely employs oscillatory flows around localized solid features or microbubbles for controlled, specific manipulation of particles, droplets, and cells. It is shown that theories of inertial effects that have been state of the art for decades miss major contributions and strongly underestimate forces on small suspended objects in a range of practically relevant conditions. An analytical approach is presented that derives a complete set of inertial forces and quantifies them in closed form as easy-to-use equations of motion, spanning the entire range from viscous to inviscid flows. The theory predicts additional attractive contributions toward oscillating boundaries, even for density-matched particles, a previously unexplained experimental observation. The accuracy of the theory is demonstrated against full-scale, three-dimensional direct numerical simulations throughout its range.
Collapse
|
12
|
Shim S, Khodaparast S, Lai CY, Yan J, Ault JT, Rallabandi B, Shardt O, Stone HA. CO 2-Driven diffusiophoresis for maintaining a bacteria-free surface. SOFT MATTER 2021; 17:2568-2576. [PMID: 33514979 DOI: 10.1039/d0sm02023k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dissolution and dissociation of CO2 in an aqueous phase induce diffusiophoretic motion of suspended particles with a nonzero surface charge. We report CO2-driven diffusiophoresis of colloidal particles and bacterial cells in a circular Hele-Shaw geometry. Combining experiments and model calculations, we identify the characteristic length and time scales of CO2-driven diffusiophoresis in relation to system dimensions and CO2 diffusivity. The motion of colloidal particles driven by a CO2 gradient is characterized by measuring the average velocities of particles as a function of distance from the CO2 sources. In the same geometrical configurations, we demonstrate that the directional migration of wild-type V. cholerae and a mutant lacking flagella, as well as S. aureus and P. aeruginosa, near a dissolving CO2 source is diffusiophoresis, not chemotaxis. Such a directional response of the cells to CO2 (or an ion) concentration gradient shows that diffusiophoresis of bacteria is achieved independent of cell shape, motility and the Gram stain (cell surface structure). Long-time experiments suggest potential applications for bacterial diffusiophoresis to cleaning systems or anti-biofouling surfaces, by reducing the population of the cells near CO2 sources.
Collapse
Affiliation(s)
- Suin Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | | | - Ching-Yao Lai
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA
| | - Jesse T Ault
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Bhargav Rallabandi
- Department of Mechanical Engineering, University of California, Riverside, California 92521, USA
| | - Orest Shardt
- Bernal Institute and School of Engineering, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
13
|
Direct numerical simulation of microbubble streaming in a microfluidic device: The effect of the bubble protrusion depth on the vortex pattern. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0656-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Comparison of Acoustic Streaming Flow Patterns Induced by Solid, Liquid and Gas Obstructions. MICROMACHINES 2020; 11:mi11100891. [PMID: 32993101 PMCID: PMC7601848 DOI: 10.3390/mi11100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023]
Abstract
In this study, acoustic streaming flows inside micro-channels induced by three different types of obstruction—gaseous bubble, liquid droplet and solid bulge—are compared and investigated experimentally by particle tracking velocimetry (PTV) and numerically using the finite element method (FEM). The micro-channels are made by poly(dimethylsiloxane) (PDMS) using soft lithography with low-cost micro-machined mold. The characteristic dimensions of the media are 0.2 mm in diameter, and the oscillation generated by piezoelectric actuators has frequency of 12 kHz and input voltages of 40 V. The experimental results show that in all three obstruction types, a pair of counter-rotating vortical patterns were observed around the semi-circular obstructions. The gaseous bubble creates the strongest vortical streaming flow, which can reach a maximum of 21 mm/s, and the largest u component happens at Y/D = 0. The solid case is the weakest of the three, which can only reach 2 mm/s. The liquid droplet has the largest v components and speed at Y/D = 0.5 and Y/D = 0.6. Because of the higher density and incompressibility of liquid droplet compared to the gaseous bubble, the liquid droplet obstruction transfers the oscillation of the piezo plate most efficiently, and the induced streaming flow region and average speed are both the largest of the three. An investigation using numerical simulation shows that the differing interfacial conditions between the varying types of obstruction boundaries to the fluid may be the key factor to these differences. These results suggest that it might be more energy-efficient to design an acoustofluidic device using a liquid droplet obstruction to induce the stronger streaming flow.
Collapse
|
15
|
Ahmed H, Ramesan S, Lee L, Rezk AR, Yeo LY. On-Chip Generation of Vortical Flows for Microfluidic Centrifugation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903605. [PMID: 31535785 DOI: 10.1002/smll.201903605] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Indexed: 05/21/2023]
Abstract
Microcentrifugation constitutes an important part of the microfluidic toolkit in a similar way that centrifugation is crucial to many macroscopic procedures, given that micromixing, sample preconcentration, particle separation, component fractionation, and cell agglomeration are essential operations in small scale processes. Yet, the dominance of capillary and viscous effects, which typically tend to retard flow, over inertial and gravitational forces, which are often useful for actuating flows and hence centrifugation, at microscopic scales makes it difficult to generate rotational flows at these dimensions, let alone with sufficient vorticity to support efficient mixing, separation, concentration, or aggregation. Herein, the various technologies-both passive and active-that have been developed to date for vortex generation in microfluidic devices are reviewed. Various advantages or limitations associated with each are outlined, in addition to highlighting the challenges that need to be overcome for their incorporation into integrated microfluidic devices.
Collapse
Affiliation(s)
- Heba Ahmed
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Lillian Lee
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
16
|
On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array. Biomed Microdevices 2020; 22:13. [DOI: 10.1007/s10544-020-0470-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Liu J, Li B, Zhu T, Zhou Y, Li S, Guo S, Li T. Tunable microfluidic standing air bubbles and its application in acoustic microstreaming. BIOMICROFLUIDICS 2019; 13:034114. [PMID: 31186823 PMCID: PMC6554191 DOI: 10.1063/1.5086920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/14/2019] [Indexed: 05/31/2023]
Abstract
Microbubbles are often used in chemistry, biophysics, and medicine. Properly controlled microbubbles have been proved beneficial for various applications by previous scientific endeavors. However, there is still a plenty of room for further development of efficient microbubble handling methods. Here, this paper introduces a tunable, stable, and robust microbubble interface handling mechanism, named as microfluidic standing air bubbles (μSABs), by studying the multiphysical phenomena behind the gas-liquid interface formation and variation. A basic μSAB system consists specially structured fluidic channels, pneumatic channels, and selectively permeable porous barriers between them. The μSABs originate inside the crevice structures on the fluidic channel walls in a repeatable and robust manner. The volumetric variation of the μSAB is a multiphysical phenomenon that dominated by the air diffusion between the pneumatic channel and the bubble. Theoretical analysis and experimental data illustrate the coupling processes of the repeatable and linear μSAB volumetric variation when operated under common handling conditions (control pneumatic pressure: -90 kPa to 200 kPa). Furthermore, an adjustable acoustic microstreaming is demonstrated as an application using the alterable μSAB gas-liquid interface. Derived equations and microscopic observations elucidate the mechanism of the continuous and linear regulation of the acoustic microstreaming using varying μSAB gas-liquid interfaces. The μSAB system provides a new tool to handle the flexible and controllable gas-liquid interfaces in a repeatable and robust manner, which makes it a promising candidate for innovative biochemical, biophysical, and medical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tiejun Li
- Author to whom correspondence should be addressed:
| |
Collapse
|
18
|
Zhao S, Yao C, Dong Z, Liu Y, Chen G, Yuan Q. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Khan M, Mao S, Li W, Lin J. Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis. Chemistry 2018; 24:15398-15420. [DOI: 10.1002/chem.201800305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Liu B, Tian B, Yang X, Li M, Yang J, Li D, Oh KW. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS. BIOMICROFLUIDICS 2018; 12:034111. [PMID: 29937951 PMCID: PMC5993670 DOI: 10.1063/1.5028419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
This paper presents a novel manipulation method for micro-objects using acoustically oscillating bubbles with a controllable position based on the gas permeability of polydimethylsiloxane. The oscillating bubble trapped within the side channel attracts the neighboring micro-objects, and the position of the air-liquid interface is controlled by generating temporary pressure difference between the side channel and the air channel. To demonstrate the feasibility of the method in technological applications, polystyrene microparticles of 10 μm in diameter were successfully captured, transported, and released. The influence of pressure difference on the movement speed of the air-liquid interface was demonstrated in our experiments, and the manipulation performance was also characterized by varying the frequency of the acoustic excitation and the pressure difference. Since the bubble generation and the air-liquid interface movement in our manipulation method do not need any electrochemical reaction and any high temperature, this on-chip manipulation method provides a controllable, efficient, and noninvasive tool for handling micro-objects such as particles, cells, and other entities. The whole manipulation process, including capturing, transporting, and releasing of particles, spent less than 1 min. It can be used to select the cells and particles in the microfluidic device or change the cell culture medium.
Collapse
Affiliation(s)
- Bendong Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Baohua Tian
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Xu Yang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Mohan Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | | | - Desheng Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Kwang W. Oh
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
21
|
Garg N, Westerhof TM, Liu V, Liu R, Nelson EL, Lee AP. Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming. MICROSYSTEMS & NANOENGINEERING 2018; 4:17085. [PMID: 0 DOI: 10.1038/micronano.2017.85] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 05/21/2023]
Abstract
AbstractAnalyzing undiluted whole human blood is a challenge due to its complex composition of hematopoietic cellular populations, nucleic acids, metabolites, and proteins. We present a novel multi-functional microfluidic acoustic streaming platform that enables sorting, enrichment and in situ identification of cellular subsets from whole blood. This single device platform, based on lateral cavity acoustic transducers (LCAT), enables (1) the sorting of undiluted donor whole blood into its cellular subsets (platelets, RBCs, and WBCs), (2) the enrichment and retrieval of breast cancer cells (MCF-7) spiked in donor whole blood at rare cell relevant concentrations (10 mL−1), and (3) on-chip immunofluorescent labeling for the detection of specific target cellular populations by their known marker expression patterns. Our approach thus demonstrates a compact system that integrates upstream sample processing with downstream separation/enrichment, to carry out multi-parametric cell analysis for blood-based diagnosis and liquid biopsy blood sampling.
Collapse
|
22
|
Martínez-Pedrero F, Tierno P. Advances in colloidal manipulation and transport via hydrodynamic interactions. J Colloid Interface Sci 2018; 519:296-311. [PMID: 29505991 DOI: 10.1016/j.jcis.2018.02.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 01/31/2023]
Abstract
In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming.
Collapse
Affiliation(s)
- F Martínez-Pedrero
- Departamento de Química-Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040, Spain.
| | - P Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, E-08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN(2)UB, Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
23
|
Tesař V. What can be done with microbubbles generated by a fluidic oscillator? (survey). EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714302129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Bertin N, Spelman TA, Combriat T, Hue H, Stéphan O, Lauga E, Marmottant P. Bubble-based acoustic micropropulsors: active surfaces and mixers. LAB ON A CHIP 2017; 17:1515-1528. [PMID: 28374878 DOI: 10.1039/c7lc00240h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acoustic micropropulsors present great potential for microfluidic applications. The propulsion is based on encapsulated 20 μm bubbles excited by a contacless ultrasonic transducer. The vibrating bubbles then generate a powerful streaming flow, with speeds 1-100 mm s-1 in water, through the action of viscous stresses. In this paper we introduce a full toolbox of micropropulsors using a versatile three-dimensional (3D) microfabrication setup. Doublets and triplets of propulsors are introduced, and the flows they generate are predicted by a theoretical hydrodynamic model. We then introduce whole surfaces covered with propulsors, which we term active surfaces. These surfaces are excited by a single ultrasonic wave, can generate collective flows and may be harnessed for mixing purposes. Several patterns of propulsors are tested, and the flows produced by the two most efficient mixers are predicted by a simple theoretical model based on flow singularities. In particular, the vortices generated by the most efficient pattern, an L-shaped mixer, are analysed in detail.
Collapse
Affiliation(s)
- Nicolas Bertin
- Univ. Grenoble Alpes and CNRS, UMR 5588 LIPhy, F-38402 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Nivedita N, Garg N, Lee AP, Papautsky I. A high throughput microfluidic platform for size-selective enrichment of cell populations in tissue and blood samples. Analyst 2017. [DOI: 10.1039/c7an00290d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We present an integrated platform for highly selective separation and enrichment of cells from blood and tissue samples.
Collapse
Affiliation(s)
- Nivedita Nivedita
- Department of Pharmacology
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Neha Garg
- BioMiNT Lab
- Biomedical Engineering Department
- University of California
- Irvine
- USA
| | - Abraham P. Lee
- BioMiNT Lab
- Biomedical Engineering Department
- University of California
- Irvine
- USA
| | - Ian Papautsky
- NSF Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM)
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
26
|
Orbay S, Ozcelik A, Lata J, Kaynak M, Wu M, Huang TJ. Mixing high-viscosity fluids via acoustically driven bubbles. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2016; 27:015008. [PMID: 31588165 PMCID: PMC6777744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 milliseconds.
Collapse
Affiliation(s)
- Sinem Orbay
- Department of Biomedical Engineering, The Pennsylvania State University, University park, PA 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - James Lata
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - Murat Kaynak
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - Mengxi Wu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| | - Tony Jun Huang
- Department of Biomedical Engineering, The Pennsylvania State University, University park, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University park, PA 16802, USA
| |
Collapse
|
27
|
Doinikov AA, Combriat T, Thibault P, Marmottant P. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel. Phys Rev E 2016; 94:033109. [PMID: 27739843 DOI: 10.1103/physreve.94.033109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 06/06/2023]
Abstract
A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.
Collapse
Affiliation(s)
| | - Thomas Combriat
- LIPhy, UMR 5588, CNRS/Université Grenoble-Alpes, Grenoble F-38401, France
| | - Pierre Thibault
- LIPhy, UMR 5588, CNRS/Université Grenoble-Alpes, Grenoble F-38401, France
| | | |
Collapse
|
28
|
Chen Y, Fang Z, Merritt B, Strack D, Xu J, Lee S. Onset of particle trapping and release via acoustic bubbles. LAB ON A CHIP 2016; 16:3024-32. [PMID: 26805706 DOI: 10.1039/c5lc01420d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Trapping and sorting of micro-sized objects is one important application of lab on a chip devices, with the use of acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force (FSR) on micro-particles and stabilize them on the bubble surface, when this radiation force exceeds the external hydrodynamic forces that act to keep the particles in motion. While the theoretical expression of FSR has been derived by Nyborg decades ago, no direct experimental validation of this force has been performed, and the relationship between FSR and the bubble's ability to trap particles in a given lab on a chip device remains largely empirical. In order to quantify the connection between the bubble oscillation and the resultant FSR, we experimentally measure the amplitude of bubble oscillations that give rise to FSR and observe the trapping and release of a single microsphere in the presence of the mean flow at the corresponding acoustic parameters using an acoustofluidic device. By combining well-developed theories that connect bubble oscillations to the acoustic actuation, we derive the expression for the critical input voltage that leads to particle release into the flow, in good agreement with the experiments.
Collapse
Affiliation(s)
- Yun Chen
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| | - Zecong Fang
- Department of Mechanical Engineering, Washington State University, Vancouver, WA 98686, USA
| | - Brett Merritt
- Department of Mechanical Engineering, Washington State University, Vancouver, WA 98686, USA
| | - Dillon Strack
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL 60607, USA.
| | - Sungyon Lee
- Department of Mechanical Engineering, Texas A & M University, College Station, TX 77840, USA.
| |
Collapse
|
29
|
Phan HV, Alan T, Neild A. Droplet Manipulation Using Acoustic Streaming Induced by a Vibrating Membrane. Anal Chem 2016; 88:5696-703. [PMID: 27119623 DOI: 10.1021/acs.analchem.5b04481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a simple method for on-demand manipulation of aqueous droplets in oil. With numerical simulations and experiments, we show that a vibrating membrane can produce acoustic streaming. By making use of this vortical flow, we manage to repulse the droplets away from the membrane edges. Then, by simply aligning the membrane at 45° to the flow, the droplets can be forced to follow the membrane's boundaries, thus steering them across streamlines and even between different oil types. We also characterize the repulsion and steering effect with various excitation voltages at different water and oil flow rates. The maximum steering frequency we have achieved is 165 Hz. The system is extremely robust and reliable: the same membrane can be reused after many days and with different oils and/or surfactants at the same operating frequency.
Collapse
Affiliation(s)
- Hoang Van Phan
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Tuncay Alan
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang TJ. Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 2016; 7:11085. [PMID: 27004764 PMCID: PMC4814581 DOI: 10.1038/ncomms11085] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. The precise rotational manipulation of single cells is technically challenging and relies on the optical, magnetic and electrical properties of the biospecimen. Here the authors develop an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nagagireesh Bojanala
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Awani Upadhyay
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
31
|
Radziuk D, Möhwald H. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources. Chemphyschem 2016; 17:931-53. [DOI: 10.1002/cphc.201500960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Darya Radziuk
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| | - Helmuth Möhwald
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| |
Collapse
|
32
|
Bouakaz A, Zeghimi A, Doinikov AA. Sonoporation: Concept and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:175-89. [PMID: 26486338 DOI: 10.1007/978-3-319-22536-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Contrast agents for ultrasound are now routinely used for diagnosis and imaging. In recent years, new promising possibilities for targeted drug delivery have been proposed that can be realized by using the microbubble composing ultrasound contrast agents (UCAs). The microbubbles can carry drugs and selectively adhere to specific sites in the human body. This capability, in combination with the effect known as sonoporation, provides great possibilities for localized drug delivery. Sonoporation is a process in which ultrasonically activated UCAs, pulsating nearby biological barriers (cell membrane or endothelial layer), increase their permeability and thereby enhance the extravasation of external substances. In this way drugs and genes can be delivered inside individual cells without serious consequences for the cell viability. Sonoporation has been validated both in-vitro using cell cultures and in-vivo in preclinical studies. However, today, the mechanisms by which molecules cross the biological barriers remain unrevealed despite a number of proposed theories. This chapter will provide a survey of the current studies on various hypotheses regarding the routes by which drugs are incorporated into cells or across the endothelial layer and possible associated microbubble acoustic phenomena.
Collapse
Affiliation(s)
- Ayache Bouakaz
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France.
| | - Aya Zeghimi
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Alexander A Doinikov
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
33
|
Chong K, Kelly SD, Smith ST, Eldredge JD. Transport of inertial particles by viscous streaming in arrays of oscillating probes. Phys Rev E 2016; 93:013109. [PMID: 26871157 DOI: 10.1103/physreve.93.013109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Indexed: 06/05/2023]
Abstract
A mechanism for the transport of microscale particles in viscous fluids is demonstrated. The mechanism exploits the trapping of such particles by rotational streaming cells established in the vicinity of an oscillating cylinder, recently analyzed in previous work. The present work explores a strategy of transporting particles between the trapping points established by multiple cylinders undergoing oscillations in sequential intervals. It is demonstrated that, by controlling the sequence of oscillation intervals, an inertial particle is effectively and predictably transported between the stable trapping points. Arrays of cylinders in various arrangements are investigated, revealing a technique for constructing arbitrary particle trajectories. It is found that the domain from which particles can be transported and trapped by an oscillator is extended, even to regions in which particles are shielded, by the presence of other stationary cylinders. The timescales for transport are examined, as are the mechanisms by which particles are drawn away from an obstacle toward the trapping point of an oscillator.
Collapse
Affiliation(s)
- Kwitae Chong
- Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Scott D Kelly
- Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Stuart T Smith
- Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Jeff D Eldredge
- Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Thameem R, Rallabandi B, Hilgenfeldt S. Particle migration and sorting in microbubble streaming flows. BIOMICROFLUIDICS 2016; 10:014124. [PMID: 26958103 PMCID: PMC4769263 DOI: 10.1063/1.4942458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/09/2016] [Indexed: 05/30/2023]
Abstract
Ultrasonic driving of semicylindrical microbubbles generates strong streaming flows that are robust over a wide range of driving frequencies. We show that in microchannels, these streaming flow patterns can be combined with Poiseuille flows to achieve two distinctive, highly tunable methods for size-sensitive sorting and trapping of particles much smaller than the bubble itself. This method allows higher throughput than typical passive sorting techniques, since it does not require the inclusion of device features on the order of the particle size. We propose a simple mechanism, based on channel and flow geometry, which reliably describes and predicts the sorting behavior observed in experiment. It is also shown that an asymptotic theory that incorporates the device geometry and superimposed channel flow accurately models key flow features such as peak speeds and particle trajectories, provided it is appropriately modified to account for 3D effects caused by the axial confinement of the bubble.
Collapse
Affiliation(s)
- Raqeeb Thameem
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| | - Bhargav Rallabandi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| | - Sascha Hilgenfeldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| |
Collapse
|
35
|
Volk A, Rossi M, Kähler CJ, Hilgenfeldt S, Marin A. Growth control of sessile microbubbles in PDMS devices. LAB ON A CHIP 2015; 15:4607-4613. [PMID: 26517506 DOI: 10.1039/c5lc00982k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In a microfluidic environment, the presence of bubbles is often detrimental to the functionality of the device, leading to clogging or cavitation, but microbubbles can also be an indispensable asset in other applications such as microstreaming. In either case, it is crucial to understand and control the growth or shrinkage of these bodies of air, in particular in common soft-lithography devices based on polydimethylsiloxane (PDMS), which is highly permeable to gases. In this work, we study the gas transport into and out of a bubble positioned in a microfluidic device, taking into account the direct gas exchange through PDMS as well as the transport of gas through the liquid in the device. Hydrostatic pressure regulation allows for the quantitative control of growth, shrinkage, or the attainment of a stable equilibrium bubble size. We find that the vapor pressure of the liquid plays an important role for the balance of gas transport, accounting for variability in experimental conditions and suggesting additional means of bubble size control in applications.
Collapse
Affiliation(s)
- Andreas Volk
- Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, 85577 Neubiberg, Germany.
| | | | | | | | | |
Collapse
|
36
|
Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE J 2015. [DOI: 10.1002/aic.15091] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Alfahani F, Antonelli M, Kreft Pearce J. Separation of DNA by length in rotational flow: Lattice-Boltzmann-based simulations. BIOMICROFLUIDICS 2015; 9:044107. [PMID: 26339308 PMCID: PMC4522015 DOI: 10.1063/1.4926667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/01/2015] [Indexed: 06/05/2023]
Abstract
We use a lattice-Boltzmann based Brownian dynamics simulation to investigate the separation of different lengths of DNA through the combination of a trapping force and the microflow created by counter-rotating vortices. We can separate most long DNA molecules from shorter chains that have lengths differing by as little as 30%. The sensitivity of this technique is determined by the flow rate, size of the trapping region, and the trapping strength. We expect that this technique can be used in microfluidic devices to separate long DNA fragments that result from techniques such as restriction enzyme digests of genomic DNA.
Collapse
Affiliation(s)
- Faihan Alfahani
- School of Engineering, Roger Williams University , Bristol, Rhode Island 02809, USA
| | - Michael Antonelli
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University , Bristol, Rhode Island 02809, USA
| | - Jennifer Kreft Pearce
- Department of Chemistry and Physics, Roger Williams University , Bristol, Rhode Island 02809, USA
| |
Collapse
|
38
|
Chong ZZ, Tor SB, Loh NH, Wong TN, Gañán-Calvo AM, Tan SH, Nguyen NT. Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. LAB ON A CHIP 2015; 15:996-999. [PMID: 25510843 DOI: 10.1039/c4lc01139b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper reports a method to control the bubble size generated in a microfluidic flow-focusing configuration. With an ultrasonic transducer, we induce acoustic streaming using a forward moving, oscillating gas-liquid interface. The induced streaming substantially affects the formation process of gas bubbles. The oscillating interface acts as a pump that increases the gas flow rate significantly and forms a larger bubble. This method is applicable to a wide range of gas pressure from 30 to 90 kPa and flow rate from 380 to 2700 μL h(-1). The bubble size can be tuned repeatedly with the response time on the order of seconds. We believe that this method will enhance the capability of a microfluidic bubble generator to produce a tunable bubble size.
Collapse
Affiliation(s)
- Zhuang Zhi Chong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | | | | | | | | | | | | |
Collapse
|
39
|
Dong Z, Yao C, Zhang X, Xu J, Chen G, Zhao Y, Yuan Q. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification. LAB ON A CHIP 2015; 15:1145-52. [PMID: 25537767 DOI: 10.1039/c4lc01431f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The combination of ultrasound and microreactor is an emerging and promising area, but the report of designing high-power ultrasonic microreactor (USMR) is still limited. This work presents a robust, high-power and highly efficient USMR by directly coupling a microreactor plate with a Langevin-type transducer. The USMR is designed as a longitudinal half wavelength resonator, for which the antinode plane of the highest sound intensity is located at the microreactor. According to one dimension design theory, numerical simulation and impedance analysis, a USMR with a maximum power of 100 W and a resonance frequency of 20 kHz was built. The strong and uniform sound field in the USMR was then applied to intensify gas-liquid mass transfer of slug flow in a microfluidic channel. Non-inertial cavitation with multiple surface wave oscillation was excited on the slug bubbles, enhancing the overall mass transfer coefficient by 3.3-5.7 times.
Collapse
Affiliation(s)
- Zhengya Dong
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Patel MV, Nanayakkara IA, Simon MG, Lee AP. Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. LAB ON A CHIP 2014; 14:3860-72. [PMID: 25124727 DOI: 10.1039/c4lc00447g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a microfluidic platform for simultaneous on-chip pumping and size-based separation of cells and particles without external fluidic control systems required for most existing platforms. The device utilizes an array of acoustically actuated air/liquid interfaces generated using dead-end side channels termed Lateral Cavity Acoustic Transducers (LCATs). The oscillating interfaces generate local streaming flow while the angle of the LCATs relative to the main channel generates a global bulk flow from the inlet to the outlet. The interaction of these two competing velocity fields (i.e. global bulk velocity vs. local streaming velocity) is responsible for the observed separation. It is shown that the separation of 5 μm and 10 μm polystyrene beads is dependent on the ratio of these two competing velocity fields. The experimental and simulation results suggest that particle trajectories based only on Stokes drag force cannot fully explain the separation behavior and that the impact of additional forces due to the oscillating flow field must be considered to determine the trajectory of the beads and ultimately the separation behavior of the device. To demonstrate an application of this separation platform with cellular components, smaller red blood cells (7.5 ± 0.8 μm) are separated from larger K562 cells (16.3 ± 2.0 μm) with viabilities comparable to those of controls based on a trypan blue exclusion assay.
Collapse
Affiliation(s)
- Maulik V Patel
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
41
|
Tesař V. Mechanisms of fluidic microbubble generation Part II: Suppressing the conjunctions. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
|
43
|
Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guo F, Huang TJ. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. LAB ON A CHIP 2013; 13:1772-1779. [PMID: 23511348 PMCID: PMC3988908 DOI: 10.1039/c3lc00043e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it "optoacoustic tweezers". The optoacoustic tweezers are capable of concentrating particles/cells at any prescribed locations in a microfluidic chamber without the use of permanent structures, rendering it particularly useful for the formation of flexible, complex cell patterns. Additionally, this technique has demonstrated excellent biocompatibility and can be conveniently integrated with other microfluidic units. In our experiments, micro-bubbles were generated by focusing a 405 nm diode laser onto a gold-coated glass chamber. By properly tuning the laser, we demonstrate precise control over the position and size of the generated bubbles. Acoustic waves were then applied to activate the surface bubbles, causing them to oscillate at an optimized frequency. The resulting acoustic radiation force allowed us to locally trap particles/cells, including 15 μm polystyrene beads and HeLa cells, around each bubble. Cell-adhesion tests were also conducted after cell concentrating to confirm the biocompatibility of this technique.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chenglong Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph Rufo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shikuan Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
44
|
Karimi A, Yazdi S, Ardekani AM. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. BIOMICROFLUIDICS 2013; 7:21501. [PMID: 24404005 PMCID: PMC3631262 DOI: 10.1063/1.4799787] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 05/03/2023]
Abstract
Focusing and sorting cells and particles utilizing microfluidic phenomena have been flourishing areas of development in recent years. These processes are largely beneficial in biomedical applications and fundamental studies of cell biology as they provide cost-effective and point-of-care miniaturized diagnostic devices and rare cell enrichment techniques. Due to inherent problems of isolation methods based on the biomarkers and antigens, separation approaches exploiting physical characteristics of cells of interest, such as size, deformability, and electric and magnetic properties, have gained currency in many medical assays. Here, we present an overview of the cell/particle sorting techniques by harnessing intrinsic hydrodynamic effects in microchannels. Our emphasis is on the underlying fluid dynamical mechanisms causing cross stream migration of objects in shear and vortical flows. We also highlight the advantages and drawbacks of each method in terms of throughput, separation efficiency, and cell viability. Finally, we discuss the future research areas for extending the scope of hydrodynamic mechanisms and exploring new physical directions for microfluidic applications.
Collapse
Affiliation(s)
- A Karimi
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S Yazdi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - A M Ardekani
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
45
|
Xu X, Sarder P, Li Z, Nehorai A. Optimization of microfluidic microsphere-trap arrays. BIOMICROFLUIDICS 2013; 7:14112. [PMID: 24404004 PMCID: PMC3598822 DOI: 10.1063/1.4793713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/28/2012] [Indexed: 05/11/2023]
Abstract
Microarray devices are powerful for detecting and analyzing biological targets. However, the potential of these devices may not be fully realized due to the lack of optimization of their design and implementation. In this work, we consider a microsphere-trap array device by employing microfluidic techniques and a hydrodynamic trapping mechanism. We design a novel geometric structure of the trap array in the device, and develop a comprehensive and robust framework to optimize the values of the geometric parameters to maximize the microsphere arrays' packing density. We also simultaneously optimize multiple criteria, such as efficiently immobilizing a single microsphere in each trap, effectively eliminating fluidic errors such as channel clogging and multiple microspheres in a single trap, minimizing errors in subsequent imaging experiments, and easily recovering targets. We use finite element simulations to validate the trapping mechanism of the device, and to study the effects of the optimization geometric parameters. We further perform microsphere-trapping experiments using the optimized device and a device with randomly selected geometric parameters, which we denote as the un-optimized device. These experiments demonstrate easy control of the transportation and manipulation of the microspheres in the optimized device. They also show that the optimized device greatly outperforms the un-optimized device by increasing the packing density by a factor of two, improving the microsphere trapping efficiency from 58% to 99%, and reducing fluidic errors from 48% to a negligible level (less than 1%). The optimization framework lays the foundation for the future goal of developing a modular, reliable, efficient, and inexpensive lab-on-a-chip system.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- The Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Pinaki Sarder
- The Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Zhenyu Li
- Department of Electrical and Computer Engineering, The George Washington University, Washington, D.C. 20052, USA
| | - Arye Nehorai
- The Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
46
|
Mampallil D, Tiwari D, van den Ende D, Mugele F. Sample preconcentration inside sessile droplets using electrowetting. BIOMICROFLUIDICS 2013; 7:44102. [PMID: 24404036 PMCID: PMC3724702 DOI: 10.1063/1.4815931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/02/2013] [Indexed: 05/12/2023]
Abstract
Electrowetting with alternate voltage (AC) creates azimuthal flow vortices inside sessile droplets. These flow vortices can be controlled by introducing pinning sites at the contact line. When the frequency of the applied AC voltage is gradually ramped from a few hundreds of hertz to a few tens of kilohertz the azimuthal flow vortices contract and move towards the contact line near the pinning site. Dispersed particles in the liquid are collected in the center of these vortices leading to an increase in the local particle concentration by up to more than one order of magnitude. We provide a qualitative explanation for symmetry of the flow patterns within the drops and discuss possible scenarios explaining the particle collection and preconcentration.
Collapse
Affiliation(s)
- Dileep Mampallil
- Physics of Complex Fluids, MESA + Institute, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dhirendra Tiwari
- Physics of Complex Fluids, MESA + Institute, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dirk van den Ende
- Physics of Complex Fluids, MESA + Institute, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids, MESA + Institute, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
47
|
Hashmi A, Yu G, Reilly-Collette M, Heiman G, Xu J. Oscillating bubbles: a versatile tool for lab on a chip applications. LAB ON A CHIP 2012; 12:4216-27. [PMID: 22864283 DOI: 10.1039/c2lc40424a] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
With the fast development of acoustic and multiphase microfluidics in recent years, oscillating bubbles have drawn more-and-more attention due to their great potential in various Lab on a Chip (LOC) applications. Many innovative bubble-based devices have been explored in the past decade. In this article, we first briefly summarize current understanding of the physics of oscillating bubbles, and then critically summarize recent advancements, including some of our original work, on the applications of oscillating bubbles in microfluidic devices. We intend to highlight the advantages of using oscillating bubbles along with the challenges that accompany them. We believe that these emerging studies on microfluidic oscillating bubbles will be revolutionary to the development of next-generation LOC technologies.
Collapse
Affiliation(s)
- Ali Hashmi
- Mechanical Engineering, Washington State University, Vancouver, USA
| | | | | | | | | |
Collapse
|
48
|
Wang ZP, Yang C. Preface to special topic: selected papers from the second conference on advances in microfluidics and nanofluidics and Asia-pacific international symposium on lab on chip. BIOMICROFLUIDICS 2012; 6:12701-127012. [PMID: 22662068 PMCID: PMC3365320 DOI: 10.1063/1.3692256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Indexed: 06/01/2023]
|
49
|
Yazdi S, Ardekani AM. Bacterial aggregation and biofilm formation in a vortical flow. BIOMICROFLUIDICS 2012; 6:44114. [PMID: 24339847 PMCID: PMC3555698 DOI: 10.1063/1.4771407] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/27/2012] [Indexed: 05/08/2023]
Abstract
Bacterial aggregation and patchiness play an important role in a variety of ecological processes such as competition, adaptation, epidemics, and succession. Here, we demonstrate that hydrodynamics of their environment can lead to their aggregation. This is specially important since microbial habitats are rarely at rest (e.g., ocean, blood stream, flow in porous media, and flow through membrane filtration processes). In order to study the dynamics of bacterial collection in a vortical flow, we utilize a microfluidic system to mimic some of the important microbial conditions at ecologically relevant spatiotemporal scales. We experimentally demonstrate the formation of "ring"-shaped bacterial collection patterns and subsequently the formation of biofilm streamers in a microfluidic system. Acoustic streaming of a microbubble is used to generate a vortical flow in a microchannel. Due to bacteria's finite-size, the microorganisms are directed to closed streamlines and trapped in the vortical flow. The collection of bacteria in the vortices occurs in a matter of seconds, and unexpectedly, triggers the formation of biofilm streamers within minutes. Swimming bacteria have a competitive advantage to respond to their environmental conditions. In order to investigate the role of bacterial motility on the rate of collection, two strains of Escherichia coli bacteria with different motilities are used. We show that the bacterial collection in a vortical flow is strongly pronounced for high motile bacteria.
Collapse
Affiliation(s)
- Shahrzad Yazdi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|