1
|
Marzouq A, Morgenstein L, Huang-Zhu CA, Yudovich S, Atkins A, Grupi A, Van Lehn RC, Weiss S. Long-Chain Lipids Facilitate Insertion of Large Nanoparticles into Membranes of Small Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10477-10485. [PMID: 38710504 PMCID: PMC11272290 DOI: 10.1021/acs.langmuir.3c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Insertion of hydrophobic nanoparticles into phospholipid bilayers is limited to small particles that can incorporate into a hydrophobic membrane core between two lipid leaflets. Incorporation of nanoparticles above this size limit requires the development of challenging surface engineering methodologies. In principle, increasing the long-chain lipid component in the lipid mixture should facilitate incorporation of larger nanoparticles. Here, we explore the effect of incorporating very long phospholipids (C24:1) into small unilamellar vesicles on the membrane insertion efficiency of hydrophobic nanoparticles that are 5-11 nm in diameter. To this end, we improve an existing vesicle preparation protocol and utilized cryogenic electron microscopy imaging to examine the mode of interaction and evaluate the insertion efficiency of membrane-inserted nanoparticles. We also perform classical coarse-grained molecular dynamics simulations to identify changes in lipid membrane structural properties that may increase insertion efficiency. Our results indicate that long-chain lipids increase the insertion efficiency by preferentially accumulating near membrane-inserted nanoparticles to reduce the thermodynamically unfavorable disruption of the membrane.
Collapse
Affiliation(s)
- Adan Marzouq
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Lion Morgenstein
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Carlos A. Huang-Zhu
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Shimon Yudovich
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ayelet Atkins
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Asaf Grupi
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Shimon Weiss
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Delgado-Buscalioni R. Coverage Effects in Quartz Crystal Microbalance Measurements with Suspended and Adsorbed Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:580-593. [PMID: 38127725 PMCID: PMC10786041 DOI: 10.1021/acs.langmuir.3c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Quartz crystal microbalance (QCM) biosensors often deal with nanoparticles suspended in the solvent at tens of nanometers above the resonator while being linked to some molecular receptor (DNA, antibody, etc.). This work presents a numerical analysis based on the immersed boundary method for the flow and QCM impedance created by an ensemble of spherical particles of radius R at varying surface coverage Θ and particle-surface gap distance Δ. The trends for the frequency Δf and dissipation ΔD shifts against Θ and Δ are shown to be determined by modifications in the structure of the perturbative flow created by the analytes. Simulations are in good agreement with a relatively large experimental database collected from the literature. Qualitative differences between the adsorbed (Δ ≈ 0) and suspended states (Δ > 0) are highlighted. In the case of adsorbed particles, deviations from the linear scaling Δf ∝ Θ are observed above Θ > 0.05 and largely depend on the specific analyte-substrate combination. Moreover, in general, ΔD(Θ) is not monotonous and usually presents a maximum around Θ ∼ 0.2. In the case of suspended analytes, the agreement with the numerical results is quantitative, indicating that the predicted scalings are universal and determined by hydrodynamics. Up to high coverage, the suspended particles present Δf ∼ Θ and ΔD ∼ Θβ, where β ≈ 0.85 is not largely dependent on R. The present findings should help forecast molecular configurations from QCM signals and have implications on QCM analyses, e.g., in the case of suspended ligands (Δf ∝ Θ), it is safe to use Δf to build Langmuir isotherms and estimate equilibrium constants. Open questions on the transition from the suspended-to-adsorbed state are discussed.
Collapse
Affiliation(s)
- Rafael Delgado-Buscalioni
- Departamento de Física de la
Materia Condensada, Universidad Autonoma
de Madrid, and Institute for Condensed Matter Physics, IFIMAC. Campus
de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
3
|
Reviakine I. Quartz crystal microbalance in soft and biological interfaces. Biointerphases 2024; 19:010801. [PMID: 38416603 DOI: 10.1116/6.0003312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
Applications of quartz crystal microbalance with dissipation to studying soft and biological interfaces are reviewed. The focus is primarily on data analysis through viscoelastic modeling and a model-free approach focusing on the acoustic ratio. Current challenges and future research and development directions are discussed.
Collapse
|
4
|
Nanoparticle-blockage-enabled rapid and reversible nanopore gating with tunable memory. Proc Natl Acad Sci U S A 2022; 119:e2200845119. [PMID: 35759673 PMCID: PMC9271175 DOI: 10.1073/pnas.2200845119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gated protein channels act as rapid, reversible, and fully-closeable nanoscale valves to gate chemical transport across the cell membrane. Replicating or outperforming such a high-performance gating and valving function in artificial solid-state nanopores is considered an important yet unsolved challenge. Here we report a bioinspired rapid and reversible nanopore gating strategy based on controlled nanoparticle blockage. By using rigid or soft nanoparticles, we respectively achieve a trapping blockage gating mode with volatile memory where gating is realized by electrokinetically trapped nanoparticles near the pore and contact blockage gating modes with nonvolatile memory where gating is realized by a nanoparticle physically blocking the pore. This gating strategy can respond to an external voltage stimulus (∼200 mV) or pressure stimulus (∼1 atm) with response time down to milliseconds. In particular, when 1,2-diphytanoyl-sn-glycero-3-phosphocholine liposomes are used as the nanoparticles, the gating efficiency, defined as the extent of nanopore closing compared to the opening state, can reach 100%. We investigate the mechanisms for this nanoparticle-blockage-enabled nanopore gating and use it to demonstrate repeatable controlled chemical releasing via single nanopores. Because of the exceptional spatial and temporal control offered by this nanopore gating strategy, we expect it to find applications for drug delivery, biotic-abiotic interfacing, and neuromorphic computing.
Collapse
|
5
|
Sut TN, Tan SW, Jeon WY, Yoon BK, Cho NJ, Jackman JA. Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules. NANOMATERIALS 2022; 12:nano12071153. [PMID: 35407271 PMCID: PMC9000636 DOI: 10.3390/nano12071153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/26/2023]
Abstract
There is broad interest in fabricating cell-membrane-mimicking, hybrid lipid bilayer (HLB) coatings on titanium oxide surfaces for medical implant and drug delivery applications. However, existing fabrication strategies are complex, and there is an outstanding need to develop a streamlined method that can be performed quickly at room temperature. Towards this goal, herein, we characterized the room-temperature deposition kinetics and adlayer properties of one- and two-tail phosphonic acid-functionalized molecules on titanium oxide surfaces in various solvent systems and identified optimal conditions to prepare self-assembled monolayers (SAMs), upon which HLBs could be formed in select cases. Among the molecular candidates, we identified a two-tail molecule that formed a rigidly attached SAM to enable HLB fabrication via vesicle fusion for membrane-based biosensing applications. By contrast, vesicles adsorbed but did not rupture on SAMs composed of one-tail molecules. Our findings support that two-tail phosphonic acid SAMs offer superior capabilities for rapid HLB coating fabrication at room temperature, and these streamlined capabilities could be useful to prepare durable lipid bilayer coatings on titanium-based materials.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (S.W.T.); (W.-Y.J.)
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (S.W.T.); (W.-Y.J.)
| | - Won-Yong Jeon
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (S.W.T.); (W.-Y.J.)
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
- Correspondence: (B.K.Y.); (N.-J.C.); (J.A.J.)
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- Correspondence: (B.K.Y.); (N.-J.C.); (J.A.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (S.W.T.); (W.-Y.J.)
- Correspondence: (B.K.Y.); (N.-J.C.); (J.A.J.)
| |
Collapse
|
6
|
Alhallak I, Kett PJN. Modelling the adsorption of phospholipid vesicles to a silicon dioxide surface using Langmuir kinetics. Phys Chem Chem Phys 2022; 24:2139-2149. [PMID: 34994358 DOI: 10.1039/d1cp03385a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supported Lipid Bilayers (SLBs) are model biological membranes that have been developed to study the interactions between biomolecules in a cell membrane. Though forming SLBs is relatively easy, their formation mechanism remains a topic of debate. When buffered solutions containing phosphatidylcholine vesicles are flowed over a silicon dioxide (SiO2) surface they adsorb intact to the surface to form a Supported Vesicle Layer (SVL) if the pH of the buffer is above 9. We have run experiments with buffers with a pH at or above 9 to study the kinetics of the adsorption of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles to an SiO2 surface, which is the first step in the formation of an SLB. We used a quartz crystal microbalance (QCM) to monitor the real-time changes in the mass of the SVL as it formed from solutions with different lipid concentrations. Increases in the maximum frequency change with increasing lipid concentration indicated that both adsorption and desorption of DOPC vesicles were occurring, and that an equilibrium was established between the DOPC vesicles in the SVL and in the bulk solution. From the data acquired we were able to determine that the equilibrium constant for the adsorption and desorption of DOPC vesicles was 18 ± 1. The data was fitted to a Langmuir adsorption model from which the rate constants for the adsorption and desorption of DOPC vesicles were determined to be ka = (0.0107 ± 0.0004) mL mg-1 s-1 and kd = (5.8 ± 0.3) × 10-4 s-1. The best fit to the experimental data was achieved if a parameter (α = (0.035 ± 0.003) s-1) was used to account for the time taken for the lipid concentration to reach its steady state value in the flow cell used in the experiments.
Collapse
Affiliation(s)
- Iad Alhallak
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, USA.
| | - Peter J N Kett
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, USA.
| |
Collapse
|
7
|
Sebastiani F, Yanez Arteta M, Lindfors L, Cárdenas M. Screening of the binding affinity of serum proteins to lipid nanoparticles in a cell free environment. J Colloid Interface Sci 2021; 610:766-774. [PMID: 34848062 DOI: 10.1016/j.jcis.2021.11.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
Lipid nanoparticles (LNPs) are promising drug and gene carriers. Upon intravenous administration, LNPs' experience different degree of cellular uptake depending on their formulation. Currently, in vitro and in vivo studies are the gold standard for assessing the fate of nano carriers once administered, but they are time consuming and expensive. In this work, we propose a time and cost-effective method to screen a wide range of LNP formulations and select the most promising candidates for in vitro and in vivo studies. Two different approaches were explored to investigate the binding affinity between LNPs and serum proteins using sensor functionalisation with either protein specific antibody or PEG specific antibody. The first approach allowed to identify the presence of a specific protein in the protein corona of lipid particles (reconstituted and native high-density lipoproteins (rHDL and HDL), and low-density lipoproteins LDL); while the second one provided a versatile platform for the immobilisation of pegylated-particles in order to follow the interaction with serum proteins and hence predict the composition of LNP protein corona. Sensing was done using Quartz Crystal Microbalance with Dissipation (QCM-D) but the approach is extendable to other surface sensing techniques such as Surface Plasmon Resonance (SPR) or ellipsometry.
Collapse
Affiliation(s)
- Federica Sebastiani
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 20506, Sweden.
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marité Cárdenas
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 20506, Sweden.
| |
Collapse
|
8
|
Andrews JT, Baker KE, Handloser JT, Bridges N, Krone AA, Kett PJN. Formation of Supported Lipid Bilayers (SLBs) from Buffers Containing Low Concentrations of Group I Chloride Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12819-12833. [PMID: 34699227 DOI: 10.1021/acs.langmuir.1c01707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported lipid bilayers (SLBs) are a useful tool for studying the interactions between lipids and other biomolecules that make up a cell membrane. SLBs are typically formed by the adsorption and rupture of vesicles from solution. Although it is known that many experimental factors can affect whether SLB formation is successful, there is no comprehensive understanding of the mechanism. In this work, we have used a quartz crystal microbalance (QCM) to investigate the role of the salt in the buffer on the formation of phosphatidylcholine SLBs on a silicon dioxide (SiO2) surface. We varied the concentration of sodium chloride in the buffer, from 5 to 150 mM, to find the minimum concentration of NaCl that was required for the successful formation of an SLB. We then repeated the experiments with other group I chloride salts (LiCl, KCl, and CsCl) and found that at higher salt concentrations (150 mM) SLB formation was successful for all of the salts used, and the degree of deformation of the adsorbed vesicles at the critical vesicle coverage was cation-dependent. The results showed that at an intermediate salt concentration (50 mM) the critical vesicle coverage was cation-dependent and at low salt concentrations (12.5 mM) the cation used determined whether SLB formation was successful. We found that the successful formation of SLBs could occur at lower electrolyte concentrations for KCl and CsCl than it did for NaCl. To understand these results, we calculated the magnitude of the vesicle-surface interaction energy using the Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended-DLVO theory. We managed to explain the results obtained at higher salt concentrations by including cation-dependent surface potentials in the calculations and at lower salt concentrations by the addition of a cation-dependent hydration force. These results showed that the way that different cations in solution affect the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)-SiO2 surface interaction energy depends on the ionic strength of the solution.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Kirstyn E Baker
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Jacob T Handloser
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Natalie Bridges
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Alexis A Krone
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Peter J N Kett
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| |
Collapse
|
9
|
Schofield MM, Delgado-Buscalioni R. Quantitative description of the response of finite size adsorbates on a quartz crystal microbalance in liquids using analytical hydrodynamics. SOFT MATTER 2021; 17:8160-8174. [PMID: 34525162 DOI: 10.1039/d1sm00492a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite being a fundamental tool in soft matter research and biosensing, quartz crystal microbalance (QCM) analyses of discrete macromolecules in liquids so far lack a firm theoretical basis. Quite often, acoustic signals of discrete particles are qualitatively interpreted using ad hoc frameworks based on effective electrical circuits, effective springs and trapped-solvent models with many fitting parameters. Nevertheless, due to its extreme sensitivity, the QCM technique pledges to become an accurate predictive tool. Using unsteady low Reynolds hydrodynamics we derive analytical expressions for the acoustic impedance of adsorbed discrete spheres. The present approach is successfully validated against 3D simulations and a plethora of experimental results covering more than a decade of research on proteins, viruses, liposomes, and massive nanoparticles, with sizes ranging from a few to hundreds of nanometers. The agreement without fitting parameters indicates that the acoustic response is dominated by the hydrodynamic propagation of the particle surface stress over the resonator. Understanding this leading contribution is a prerequisite for deciphering the secondary contributions arising from the relevant specific molecular and physico-chemical forces.
Collapse
Affiliation(s)
- Marc Meléndez Schofield
- Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, and Institute for Condensed Matter Physics, IFIMAC, Campus de Cantoblanco, Madrid 28049, Spain.
| | - Rafael Delgado-Buscalioni
- Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, and Institute for Condensed Matter Physics, IFIMAC, Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
10
|
Gopalakrishna S, Langhoff A, Brenner G, Johannsmann D. Soft Viscoelastic Particles in Contact with a Quartz Crystal Microbalance (QCM): A Frequency-Domain Lattice Boltzmann Simulation. Anal Chem 2021; 93:10229-10235. [PMID: 34270892 DOI: 10.1021/acs.analchem.1c01612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shifts of frequency and bandwidth of a quartz crystal microbalance (QCM) in contact with a structured, viscoelastic sample have been computed with a linearized version of the lattice Boltzmann method (LBM). The algorithm operates in the frequency domain and covers viscoelasticity. The different domains are characterized by different values of the complex viscosity, η, equivalent to different values of the shear modulus, G. Stiff particles are given large |ηSph|, where |ηSph| must be less than ∼100 ηbulk with ηbulk the viscosity of the ambient liquid. Critical to the computational efficiency is a match of the LBM populations at the upper boundary of the simulation box to an analytical solution of the Stokes equation in the bulk above the box. The application example is a test of the ΔΓ/(-Δf)-extrapolation scheme, where Δf and ΔΓ are the shifts in resonance frequency and half bandwidth, respectively. For adsorbed particles, plots of ΔΓ/(-Δf) versus - Δf/n (with n the overtone order) show almost straight lines. The extrapolation of these lines to zero yields a frequency shift, which, after conversion to a thickness with the Sauerbrey equation, closely agrees with the height of the particles. Plots of Δf/n and ΔΓ/n versus n look similar to the corresponding plots obtained for viscoelastic films, where the parameters, which would usually be extracted from those plots (apparent mass and apparent compliance), depend on the geometry and the sample's viscoelasticity in a nontrivial way.
Collapse
Affiliation(s)
- Sunil Gopalakrishna
- Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| | - Arne Langhoff
- Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| | - Gunther Brenner
- Institute of Applied Mechanics, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
11
|
Cawley JL, Jordan LR, Wittenberg NJ. Detection and Characterization of Vesicular Gangliosides Binding to Myelin-Associated Glycoprotein on Supported Lipid Bilayers. Anal Chem 2021; 93:1185-1192. [PMID: 33296186 DOI: 10.1021/acs.analchem.0c04412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the nervous system, a myelin sheath that originates from oligodendrocytes or Schwann cells wraps around axons to facilitate electrical signal transduction. The interface between an axon and myelin is maintained by a number of biomolecular interactions. Among the interactions are those between GD1a and GT1b gangliosides on the axon and myelin-associated glycoprotein (MAG) on myelin. Interestingly, these interactions can also inhibit neuronal outgrowth. Ganglioside-MAG interactions are often studied in cellular or animal models where their relative concentrations are not easily controlled or in assays where the gangliosides and MAG are not presented as part of fluid lipid bilayers. Here, we present an approach to characterize MAG-ganglioside interactions in real time, where MAG, GD1a, and GT1b contents are controlled and they are in their in vivo orientation within fluid lipid bilayers. Using a quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor functionalized with a supported lipid bilayer (SLB) and MAG, we detect vesicular GD1a and GT1b binding and determine the interaction kinetics as a function of vesicular ganglioside content. MAG-bound vesicles are deformed similarly, regardless of the ganglioside or its mole fraction. We further demonstrate how MAG-ganglioside interactions can be disrupted by antiganglioside antibodies that override MAG-based neuron growth inhibition.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
12
|
Bibissidis N, Betlem K, Cordoyiannis G, Bonhorst FPV, Goole J, Raval J, Daniel M, Góźdź W, Iglič A, Losada-Pérez P. Correlation between adhesion strength and phase behaviour in solid-supported lipid membranes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Redondo-Morata L, Losada-Pérez P, Giannotti MI. Lipid bilayers: Phase behavior and nanomechanics. CURRENT TOPICS IN MEMBRANES 2020; 86:1-55. [PMID: 33837691 DOI: 10.1016/bs.ctm.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.
Collapse
Affiliation(s)
- Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille, France
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libre de Bruxelles, Brussels, Belgium
| | - Marina Inés Giannotti
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, Mutalik S. Factors affecting the morphology of some organic and inorganic nanostructures for drug delivery: characterization, modifications, and toxicological perspectives. Expert Opin Drug Deliv 2020; 17:1737-1765. [PMID: 32878492 DOI: 10.1080/17425247.2020.1819237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Abhjieet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Aswathi Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Shaik Mohammad Abdul Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway, NSW, Australia
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| |
Collapse
|
15
|
Xie X, Liu Y, Ye Y. FEM simulation and frequency shift calculation of a quartz crystal resonator adhered with soft micro-particulates considering contact deformation. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/892/1/012072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Flash tooth whitening: A friendly formulation based on a nanoencapsulated reductant. Colloids Surf B Biointerfaces 2020; 195:111241. [PMID: 32679445 DOI: 10.1016/j.colsurfb.2020.111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022]
Abstract
Tooth whitening materials have not undergone relevant advances in the last years. Current materials base their action on the oxidant activity of peroxides, which present the disadvantage of requiring long application times, along with unpleasant side effects of dental hypersensitivity (e.g. sharp pain). In this work, a novel tooth whitening formulation based on the encapsulation of a reducing agent (sodium metabisulfite) in liposomes is developed. An experimental design was applied to optimize the formulation in terms of whitening action and safety, using bovine teeth as in vitro model. Results were obtained by colorimetry, profilometry and nanoindentation techniques. The comparison with standard whitening treatments showed a similar whitening action of the optimized formulation but in remarkable shorter application times. Moreover, teeth roughness values obtained with the presented formulation conformed with ISO 28399. As mechanism of action, results obtained from fluorescent confocal microscopy showed the liposomal formulation to form a layer surrounding the enamel surface, enhancing the treatment efficacy in terms of diffusion of the protected reductant towards the enamel. The better efficiency of this formulation encourages its use as an alternative to current oxidative treatments.
Collapse
|
17
|
Ridolfi A, Brucale M, Montis C, Caselli L, Paolini L, Borup A, Boysen AT, Loria F, van Herwijnen MJC, Kleinjan M, Nejsum P, Zarovni N, Wauben MHM, Berti D, Bergese P, Valle F. AFM-Based High-Throughput Nanomechanical Screening of Single Extracellular Vesicles. Anal Chem 2020; 92:10274-10282. [DOI: 10.1021/acs.analchem.9b05716] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Ridolfi
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Lucrezia Caselli
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Lucia Paolini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Anne Borup
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Anders T. Boysen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Francesca Loria
- HansaBiomed Life Sciences, Mäealuse 2/1, 12618 Tallinn, Estonia
| | - Martijn J. C. van Herwijnen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Marije Kleinjan
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Natasa Zarovni
- HansaBiomed Life Sciences, Mäealuse 2/1, 12618 Tallinn, Estonia
| | - Marca H. M. Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
18
|
Milioni D, Mateos-Gil P, Papadakis G, Tsortos A, Sarlidou O, Gizeli E. Acoustic Methodology for Selecting Highly Dissipative Probes for Ultrasensitive DNA Detection. Anal Chem 2020; 92:8186-8193. [PMID: 32449355 DOI: 10.1021/acs.analchem.0c00366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The objective of this work is to present a methodology for the selection of nanoparticles such as liposomes to be used as acoustic probes for the detection of very low concentrations of DNA. Liposomes, applied in the past as mass amplifiers and detected through frequency measurement, are employed in the current work as probes for energy-dissipation enhancement. Because the dissipation signal is related to the structure of the sensed nanoentity, a systematic investigation of the geometrical features of the liposome/DNA complex was carried out. We introduce the parameter of dissipation capacity by which several sizes of liposome and DNA structures were compared with respect to their ability to dissipate acoustic energy at the level of a single molecule/particle. Optimized 200 nm liposomes anchored to a dsDNA chain led to an improvement of the limit of detection (LoD) by 3 orders of magnitude when compared to direct DNA detection, with the new LoD being 1.2 fmol (or 26 fg/μL or 2 pM). Dissipation monitoring was also shown to be 8 times more sensitive than the corresponding frequency response. The high versatility of this new methodology is demonstrated in the detection of genetic biomarkers down to 1-2 target copies in real samples such as blood. This study offers new prospects in acoustic detection with potential use in real-world diagnostics.
Collapse
Affiliation(s)
- Dimitra Milioni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - George Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Achilleas Tsortos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Olga Sarlidou
- Department of Biology, University of Crete, Heraklion, Crete 71110, Greece
| | - Electra Gizeli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece.,Department of Biology, University of Crete, Heraklion, Crete 71110, Greece
| |
Collapse
|
19
|
Neupane S, Cordoyiannis G, Renner FU, Losada-Pérez P. Real-Time Monitoring of Interactions between Solid-Supported Lipid Vesicle Layers and Short- and Medium-Chain Length Alcohols: Ethanol and 1-Pentanol. Biomimetics (Basel) 2019; 4:biomimetics4010008. [PMID: 31105194 PMCID: PMC6477617 DOI: 10.3390/biomimetics4010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Lipid bilayers represent the interface between the cell and its environment, serving as model systems for the study of various biological processes. For instance, the addition of small molecules such as alcohols is a well-known process that modulates lipid bilayer properties, being considered as a reference for general anesthetic molecules. A plethora of experimental and simulation studies have focused on alcohol’s effect on lipid bilayers. Nevertheless, most studies have focused on lipid membranes formed in the presence of alcohols, while the effect of n-alcohols on preformed lipid membranes has received much less research interest. Here, we monitor the real-time interaction of short-chain alcohols with solid-supported vesicles of dipalmitoylphosphatidylcholine (DPPC) using quartz crystal microbalance with dissipation monitoring (QCM-D) as a label-free method. Results indicate that the addition of ethanol at different concentrations induces changes in the bilayer organization but preserves the stability of the supported vesicle layer. In turn, the addition of 1-pentanol induces not only changes in the bilayer organization, but also promotes vesicle rupture and inhomogeneous lipid layers at very high concentrations.
Collapse
Affiliation(s)
- Shova Neupane
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.
- IMEC vzw. Division IMOMEC, 3590 Diepenbeek, Belgium.
| | - George Cordoyiannis
- Faculty for Industrial Engineering, 8000 Novo Mesto, Slovenia.
- Biomolecular Physics Laboratory, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Frank Uwe Renner
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.
- IMEC vzw. Division IMOMEC, 3590 Diepenbeek, Belgium.
| | - Patricia Losada-Pérez
- Soft Matter Physics Laboratory, Physics Department, Université Libre de Bruxelles (ULB), Campus de La Plaine, CP223, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
20
|
Ariga K, Jackman JA, Cho NJ, Hsu SH, Shrestha LK, Mori T, Takeya J. Nanoarchitectonic-Based Material Platforms for Environmental and Bioprocessing Applications. CHEM REC 2018; 19:1891-1912. [PMID: 30230688 DOI: 10.1002/tcr.201800103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The challenges of pollution, environmental science, and energy consumption have become global issues of broad societal importance. In order to address these challenges, novel functional systems and advanced materials are needed to achieve high efficiency, low emission, and environmentally friendly performance. A promising approach involves nanostructure-level controls of functional material design through a novel concept, nanoarchitectonics. In this account article, we summarize nanoarchitectonic approaches to create nanoscale platform structures that are potentially useful for environmentally green and bioprocessing applications. The introduced platforms are roughly classified into (i) membrane platforms and (ii) nanostructured platforms. The examples are discussed together with the relevant chemical processes, environmental sensing, bio-related interaction analyses, materials for environmental remediation, non-precious metal catalysts, and facile separation for biomedical uses.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,Department of Medicine, Stanford University Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun Takeya
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
21
|
Wang L, Biswas KH, Yoon BK, Kawakami LM, Park S, Groves JT, Li L, Huang W, Cho NJ. Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10764-10773. [PMID: 30049212 DOI: 10.1021/acs.langmuir.8b01348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monoamine oxidase A and B (MAO-A and B) are mitochondrial outer membrane enzymes that are implicated in a number of human diseases, and the pharmacological inhibition of these enzymes is a promising therapeutic strategy to alleviate disease symptoms. It has been suggested that optimal levels of enzymatic activity occur in the membrane-associated state, although details of the membrane association process remain to be understood. Herein, we have developed a supported lipid bilayer platform to study MAO-A and B binding and evaluate the effects of known pharmacological inhibitors on the membrane association process. By utilizing the quartz crystal microbalance-dissipation (QCM-D) technique, it was determined that both MAOs exhibit tight binding to negatively and positively charged bilayers with distinct concentration-dependent binding profiles while only transiently binding to neutral bilayers. Importantly, in the presence of known inhibitors, the MAOs showed increased binding to negatively charged bilayers, although there was no effect of inhibitor treatment on binding to positively charged bilayers. Taken together, our findings establish that the membrane association of MAOs is highly dependent on membrane surface charge, and we outline an experimental platform to support the in vitro reconstitution of monoamine oxidases on synthetic membranes, including the evaluation of pharmacological drug candidates.
Collapse
Affiliation(s)
- Liulin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , China
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Kabir H Biswas
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Lisa M Kawakami
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Jay T Groves
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States of America
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , China
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637459 , Singapore
| |
Collapse
|
22
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
23
|
Ferhan AR, Jackman JA, Cho NJ. Investigating how vesicle size influences vesicle adsorption on titanium oxide: a competition between steric packing and shape deformation. Phys Chem Chem Phys 2018; 19:2131-2139. [PMID: 28045148 DOI: 10.1039/c6cp07930j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the adsorption behavior of lipid vesicles at solid-liquid interfaces is important for obtaining fundamental insights into soft matter adsorbates as well as for practical applications such as supported lipid bilayer (SLB) fabrication. While the process of SLB formation has been highly scrutinized, less understood are the details of vesicle adsorption without rupture, especially at high surface coverages. Herein, we tackle this problem by employing simultaneous quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurements in order to investigate the effect of vesicle size (84-211 nm diameter) on vesicle adsorption onto a titanium oxide surface. Owing to fundamental differences in the measurement principles of the two techniques as well as a mismatch in probing volumes, it was possible to determine both the lipid mass adsorbed near the sensor surface as well as the total mass of adsorbed lipid and hydrodynamically coupled solvent in the adsorbed vesicle layer as a whole. With increasing vesicle size, the QCM-D frequency signal exhibited monotonic behavior reaching an asymptotic value, whereas the QCM-D energy dissipation signal continued to increase according to the vesicle size. In marked contrast, the LSPR-tracked lipid mass near the sensor surface followed a parabolic trend, with the greatest corresponding measurement response occurring for intermediate-size vesicles. The findings reveal that the maximum extent of adsorbed vesicles contacting a solid surface occurs at an intermediate vesicle size due to the competing influences of vesicle deformation and steric packing. Looking forward, such information can be applied to control the molecular self-assembly of phospholipid assemblies as well as provide the basis for investigating deformable, soft matter adsorbates.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore. and School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
24
|
Biswas KH, Jackman JA, Park JH, Groves JT, Cho NJ. Interfacial Forces Dictate the Pathway of Phospholipid Vesicle Adsorption onto Silicon Dioxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1775-1782. [PMID: 29281791 DOI: 10.1021/acs.langmuir.7b03799] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pathway of vesicle adsorption onto a solid support depends on the material composition of the underlying support, and there is significant interest in developing material-independent strategies to modulate the spectrum of vesicle-substrate interactions on a particular surface. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we systematically investigated how solution pH and membrane surface charge affect vesicle adsorption onto a silicon dioxide surface. While vesicle adsorption and spontaneous rupture to form complete supported lipid bilayer (SLBs) occurred in acidic conditions, it was discovered that a wide range of adsorption pathways occurred in alkaline conditions, including (i) vesicle adsorption and spontaneous rupture to form complete SLBs, (ii) vesicle adsorption and spontaneous rupture to form incomplete SLBs, (iii) irreversible adsorption of intact vesicles, (iv) reversible adsorption of intact vesicles, and (v) negligible adsorption. In general, SLB formation became more favorable with increasingly positive membrane surface charge although there were certain conditions at which attractive electrostatic forces were insufficient to promote vesicle rupture. To rationalize these findings, we discuss how solution pH and membrane surface charge affect interfacial forces involved in vesicle-substrate interactions. Taken together, our findings present a comprehensive picture of how interfacial forces dictate the pathway of phospholipid vesicle adsorption onto silicon dioxide surfaces and offer a broadly applicable framework to characterize the interactions between phospholipid vesicles and inorganic material surfaces.
Collapse
Affiliation(s)
- Kabir H Biswas
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Jay T Groves
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
25
|
Gillissen JJJ, Jackman JA, Tabaei SR, Cho NJ. A Numerical Study on the Effect of Particle Surface Coverage on the Quartz Crystal Microbalance Response. Anal Chem 2018; 90:2238-2245. [DOI: 10.1021/acs.analchem.7b04607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jurriaan J. J. Gillissen
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
| | - Joshua A. Jackman
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
| | - Seyed R. Tabaei
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
| | - Nam-Joon Cho
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre
for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang
Drive 637553, Singapore
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
26
|
An investigation of kinetic and physicochemical properties of vesicular surfactants with oximate and hydroxamate ions: Hydrolytic reactions of organophosphorus pesticides. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Gillissen JJJ, Jackman JA, Tabaei SR, Yoon BK, Cho NJ. Quartz Crystal Microbalance Model for Quantitatively Probing the Deformation of Adsorbed Particles at Low Surface Coverage. Anal Chem 2017; 89:11711-11718. [DOI: 10.1021/acs.analchem.7b03179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jurriaan J. J. Gillissen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Joshua A. Jackman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Seyed R. Tabaei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
28
|
Grunewald C, Schmudde M, Graf C, Risse T. Structural Characterization of Ordered, Non-Close-Packed Functionalized Silica Nanoparticles on Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7494-7502. [PMID: 28718292 DOI: 10.1021/acs.langmuir.7b01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanostructured surfaces play an important role in modern science and technology. In particular, ordered arrangements of nonclose-packed nanoparticles created by self-assembly offer a versatile route to prepare systems, which can be used in various applications such as sensing, plasmonic devices or antireflection coatings. Self-assembly based systems are particularly appealing as preparation is rather simple. The ability of nanoparticle systems to form nonclosed packed monolayers by self-assembly depends on the balance of various energetic contributions in particular the adsorption energy, the lateral barrier for diffusion and the repulsion between particles. Even for simple model systems such as the monodispersed silica particles adsorbed on a bare gold surface investigated here, none of these quantities is easy to determine experimentally. To this end, we will report on a detailed characterization of the adsorption in particular with respect to the structural properties of the above-mentioned model system. Based on experimental results obtained by using quartz crystal microbalance with dissipation monitoring (QCM-D) as well as scanning electron microscopy (SEM) it is possible to determine the electrostatic pair potential from the lateral arrangement of the nano particles in the limit of low coverage.
Collapse
Affiliation(s)
- Christian Grunewald
- Freie Universität Berlin, Institut für Chemie und Biochemie , Takustr. 3, 14195 Berlin, Germany
| | - Madlen Schmudde
- Freie Universität Berlin, Institut für Chemie und Biochemie , Takustr. 3, 14195 Berlin, Germany
| | - Christina Graf
- Freie Universität Berlin, Institut für Chemie und Biochemie , Takustr. 3, 14195 Berlin, Germany
| | - Thomas Risse
- Freie Universität Berlin, Institut für Chemie und Biochemie , Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
29
|
Takechi-Haraya Y, Goda Y, Sakai-Kato K. Control of Liposomal Penetration into Three-Dimensional Multicellular Tumor Spheroids by Modulating Liposomal Membrane Rigidity. Mol Pharm 2017; 14:2158-2165. [PMID: 28410440 DOI: 10.1021/acs.molpharmaceut.7b00051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective penetration of drug-carrying nanoparticles into solid tumors is a major challenge in cancer therapy. Exploration of the physicochemical properties of nanoparticles that affect penetration efficiency is required to achieve maximum therapeutic effects. Here, we used confocal laser scanning microscopy to evaluate the efficiencies of penetration of fluorescently labeled liposomes into three-dimensional spheroids composed of HeLa cells. The prepared liposomes were composed of phosphatidylcholines and varying contents of cholesterol and/or a polyethylene glycol-modified phospholipid. We demonstrated that the efficiency of penetration into spheroids increased with the bending modulus (i.e., membrane rigidity) of the liposome, as determined by atomic force microscopy (correlation coefficient, 0.84). To clarify the mechanism by which membrane rigidity contributes to the penetration behavior of liposomes, we also analyzed the cellular uptake using monolayer cells. We showed that penetration efficiency was explained partially by cellular uptake efficiency, but that other factors such as liposome diffusion efficiency in the intercellular space of tumor spheroids contributed. Our results quantitatively demonstrate that the bending modulus of the liposomal membrane is a major determinant of liposomal penetration into three-dimensional spheroids. The present study will contribute to the understanding and control of tumor penetration of liposomal formulations.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yukihiro Goda
- Division of Drugs, National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kumiko Sakai-Kato
- Division of Drugs, National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
30
|
Peschel A, Langhoff A, Uhl E, Dathathreyan A, Haindl S, Johannsmann D, Reviakine I. Lipid phase behavior studied with a quartz crystal microbalance: A technique for biophysical studies with applications in screening. J Chem Phys 2017; 145:204904. [PMID: 27908120 DOI: 10.1063/1.4968215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quartz crystal microbalance (QCM) is emerging as a versatile tool for studying lipid phase behavior. The technique is attractive for fundamental biophysical studies as well applications because of its simplicity, flexibility, and ability to work with very small amounts of material crucial for biomedical studies. Further progress hinges on the understanding of the mechanism, by which a surface-acoustic technique such as QCM, senses lipid phase changes. Here, we use a custom-built instrument with improved sensitivity to investigate phase behavior in solid-supported lipid systems of different geometries (adsorbed liposomes and bilayers). We show that we can detect a model anesthetic (ethanol) through its effect on the lipid phase behavior. Further, through the analysis of the overtone dependence of the phase transition parameters, we show that hydrodynamic effects are important in the case of adsorbed liposomes, and viscoelasticity is significant in supported bilayers, while layer thickness changes make up the strongest contribution in both systems.
Collapse
Affiliation(s)
- Astrid Peschel
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Arne Langhoff
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Eva Uhl
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Aruna Dathathreyan
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Susanne Haindl
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Ilya Reviakine
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
31
|
Agthe M, Wetterskog E, Bergström L. Following the Assembly of Iron Oxide Nanocubes by Video Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:303-310. [PMID: 27991791 DOI: 10.1021/acs.langmuir.6b03570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have studied the growth of ordered arrays by evaporation-induced self-assembly of iron oxide nanocubes with edge lengths of 6.8 and 10.1 nm using video microscopy (VM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ex situ electron diffraction of the ordered arrays demonstrates that the crystal axes of the nanocubes are coaligned and confirms that the ordered arrays are mesocrystals. Time-resolved video microscopy shows that growth of the highly ordered arrays at slow solvent evaporation is controlled by particle diffusion and can be described by a simple growth model. The growth of each mesocrystal depends only on the number of nanoparticles within the accessible region irrespective of the relative time of formation. The mass of the dried mesocrystals estimated from the analysis of the bandwidth-shift-to-frequency-shift ratio correlates well with the total mass of the oleate-coated nanoparticles in the deposited dispersion drop.
Collapse
Affiliation(s)
- Michael Agthe
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| | - Erik Wetterskog
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University , SE-75121 Uppsala, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| |
Collapse
|
32
|
Gillissen JJJ, Tabaei SR, Jackman JA, Cho NJ. A model derived from hydrodynamic simulations for extracting the size of spherical particles from the quartz crystal microbalance. Analyst 2017; 142:3370-3379. [DOI: 10.1039/c7an00456g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A model derived from hydrodynamic simulations is presented for extracting the size of adsorbed nanoparticles in QCM-D measurements, and is applicable to both low and high surface coverage regimes.
Collapse
Affiliation(s)
- Jurriaan J. J. Gillissen
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Seyed R. Tabaei
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Joshua A. Jackman
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
33
|
Jackman JA, Yorulmaz Avsar S, Ferhan AR, Li D, Park JH, Zhdanov VP, Cho NJ. Quantitative Profiling of Nanoscale Liposome Deformation by a Localized Surface Plasmon Resonance Sensor. Anal Chem 2016; 89:1102-1109. [PMID: 27983791 DOI: 10.1021/acs.analchem.6b02532] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Characterizing the shape of sub-100 nm, biological soft-matter particulates (e.g., liposomes and exosomes) adsorbed at a solid-liquid interface remains a challenging task. Here, we introduce a localized surface plasmon resonance (LSPR) sensing approach to quantitatively profile the deformation of nanoscale, fluid-phase 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes contacting a titanium dioxide substrate. Experimental and theoretical results validate that, due to its high sensitivity to the spatial proximity of phospholipid molecules near the sensor surface, the LSPR sensor can discriminate fine differences in the extent of ionic strength-modulated liposome deformation at both low and high surface coverages. By contrast, quartz crystal microbalance-dissipation (QCM-D) measurements performed with equivalent samples were qualitatively sensitive to liposome deformation only at saturation coverage. Control experiments with stiffer, gel-phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes verified that the LSPR measurement discrimination arises from the extent of liposome deformation, while the QCM-D measurements yield a more complex response that is also sensitive to the motion of adsorbed liposomes and coupled solvent along with lateral interactions between liposomes. Collectively, our findings demonstrate the unique measurement capabilities of LSPR sensors in the area of biological surface science, including competitive advantages for probing the shape properties of adsorbed, nanoscale biological particulates.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Saziye Yorulmaz Avsar
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Danlin Li
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Vladimir P Zhdanov
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore.,Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
34
|
Ferhan AR, Jackman JA, Cho NJ. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis. Anal Chem 2016; 88:12524-12531. [DOI: 10.1021/acs.analchem.6b04303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Abdul Rahim Ferhan
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Joshua A. Jackman
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Nam-Joon Cho
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| |
Collapse
|
35
|
Na JH, Koo H, Lee S, Han SJ, Lee KE, Kim S, Lee H, Lee S, Choi K, Kwon IC, Kim K. Precise Targeting of Liver Tumor Using Glycol Chitosan Nanoparticles: Mechanisms, Key Factors, and Their Implications. Mol Pharm 2016; 13:3700-3711. [DOI: 10.1021/acs.molpharmaceut.6b00507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin Hee Na
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
- The Center
for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| | - Heebeom Koo
- Department of Medical Lifescience, College
of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sangmin Lee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
- The Center
for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| | - Seung Jin Han
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Sunjin Kim
- Department of Chemistry and Institute for NanoCentury
and BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry and Institute for NanoCentury
and BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Seulki Lee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
- The Center
for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| | - Kuiwon Choi
- Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E7.1, 66123 Saarbrücken, Germany
| | - Ick Chan Kwon
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
- KU-KIST School, Korea University, 1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| |
Collapse
|
36
|
Tabaei SR, Gillissen JJJ, Block S, Höök F, Cho NJ. Hydrodynamic Propulsion of Liposomes Electrostatically Attracted to a Lipid Membrane Reveals Size-Dependent Conformational Changes. ACS NANO 2016; 10:8812-8820. [PMID: 27603118 DOI: 10.1021/acsnano.6b04572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficiency of lipid nanoparticle uptake across cellular membranes is strongly dependent on the very first interaction step. Detailed understanding of this step is in part hampered by the large heterogeneity in the physicochemical properties of lipid nanoparticles, such as liposomes, making conventional ensemble-averaging methods too blunt to address details of this complex process. Here, we contribute a means to explore whether individual liposomes become deformed upon binding to fluid cell-membrane mimics. This was accomplished by using hydrodynamic forces to control the propulsion of nanoscale liposomes electrostatically attracted to a supported lipid bilayer. In this way, the size of individual liposomes could be determined by simultaneously measuring both their individual drift velocity and diffusivity, revealing that for a radius of ∼45 nm, a close agreement with dynamic light scattering data was observed, while larger liposomes (radius ∼75 nm) displayed a significant deformation unless composed of a gel-phase lipid. The relevance of being able to extract this type of information is discussed in the context of membrane fusion and cellular uptake.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Jurriaan J J Gillissen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Stephan Block
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Göteborg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Göteborg, Sweden
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
37
|
Olsson ALJ, Wargenau A, Tufenkji N. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13698-13706. [PMID: 27171886 DOI: 10.1021/acsami.6b02227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface immobilized bacteriophages (phages) are increasingly used as biorecognition elements on bacterial biosensors (e.g., on acoustical, electrical, or optical platforms). The phage surface density is a critical factor determining a sensor's bacterial binding efficiencies; in fact, phage surface densities that are too low or too high can result in significantly reduced bacterial binding capacities. Identifying an optimum phage surface density is thus crucial when exploiting the bacteriophages' bacterial capture capabilities in biosensing applications. Herein, we investigated surface immobilization of the Pseudomonas aeruginosa specific E79 (tailed) phage and the Salmonella Typhimurium specific PRD1 (nontailed) phage and their subsequent bacterial capture abilities using quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D was used in two experimental setups: (i) a conventional setup and (ii) a combined setup with ellipsometry. Both setups were exploited to link the phages' immobilization behaviors to their bacterium capture efficiency. While E79 displayed characteristic optima in both the mechanical (QCM-D) and the optical (ellipsometry) data that coincided with its specific bacterial capture optimum, no optima were observed during PRD1 immobilization. The characteristic optima suggests that the E79 phage undergoes a surface rearrangement event that changes the hydration state of the phage film, thereby impairing the E79 phage's ability to capture bacteria. However, the absence of such optima during deposition of the nontailed PRD1 phage suggests that other mechanisms may also lead to reduced bacterial capture by surface immobilized bacteriophages.
Collapse
Affiliation(s)
- Adam L J Olsson
- Department of Chemical Engineering, McGill University , Montreal, Quebec H3A 0C5, Canada
| | - Andreas Wargenau
- Department of Chemical Engineering, McGill University , Montreal, Quebec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University , Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
38
|
Affiliation(s)
- Achilleas Tsortos
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013, Heraklion, Greece
| | - George Papadakis
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013, Heraklion, Greece
| | - Electra Gizeli
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013, Heraklion, Greece
- Department
of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
| |
Collapse
|
39
|
Garello F, Vibhute S, Gündüz S, Logothetis NK, Terreno E, Angelovski G. Innovative Design of Ca-Sensitive Paramagnetic Liposomes Results in an Unprecedented Increase in Longitudinal Relaxivity. Biomacromolecules 2016; 17:1303-11. [PMID: 26956911 DOI: 10.1021/acs.biomac.5b01668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bioresponsive MRI contrast agents sensitive to Ca(II) fluctuations may play a critical role in the development of functional molecular imaging methods to study brain physiology or abnormalities in muscle contraction. A great challenge in their chemistry is the preparation of probes capable of inducing a strong signal variation that could be detected in a robust way. To this end, the incorporation of small molecular weight bioresponsive agents into nanocarriers can improve the overall properties in a few ways: (i) the agent can be delivered into the tissue of interest, increasing the local concentration; (ii) its biokinetic properties and retention time will improve; (iii) the high molecular weight and size of the nanocarrier may cause additional changes in the MRI signal and raise the chances for their detection in functional experiments. In this work, we report the preparation of the new class of liposome-based, Ca-sensitive MRI agents. We synthesized a novel amphiphilic ligand which was incorporated into the liposome bilayer. A remarkable increase of ∼420% in longitudinal relaxivity r1, from 7.3 mM(-1) s(-1) to 38.1 mM(-1) s(-1) at 25 °C and 21.5 MHz in the absence and presence of Ca(II), respectively, was achieved by the most active liposomal formulation. To the best of our knowledge, this is the highest change in r1 observed for Ca-sensitive agents at physiological pH and can be explained by simultaneous Ca-triggered increase in hydration and reduction of local motion of Gd(III) complex, which can be followed at low magnetic fields.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino , Via Nizza 52, 10126 Torino, Italy
| | - Sandip Vibhute
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , 72076 Tübingen, Germany
| | - Serhat Gündüz
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstrasse 41, 72076 Tübingen, Germany
| | - Nikos K Logothetis
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , 72076 Tübingen, Germany.,Department of Imaging Science and Biomedical Engineering, University of Manchester , Manchester M13 9PT, United Kingdom
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino , Via Nizza 52, 10126 Torino, Italy
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstrasse 41, 72076 Tübingen, Germany
| |
Collapse
|
40
|
Fenzl C, Genslein C, Domonkos C, Edwards KA, Hirsch T, Baeumner AJ. Investigating non-specific binding to chemically engineered sensor surfaces using liposomes as models. Analyst 2016; 141:5265-73. [DOI: 10.1039/c6an00820h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clever surface engineering strategies lead to the minimization of non-specific binding of liposomes to sensor substrates.
Collapse
Affiliation(s)
- C. Fenzl
- Institute of Analytical Chemistry
- Chemo- and Biosensors
- University of Regensburg
- 93053 Regensburg
- Germany
| | - C. Genslein
- Institute of Analytical Chemistry
- Chemo- and Biosensors
- University of Regensburg
- 93053 Regensburg
- Germany
| | - C. Domonkos
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
- Hungary
| | - K. A. Edwards
- Department of Biological and Environmental Engineering
- Cornell University
- Ithaca
- USA
| | - T. Hirsch
- Institute of Analytical Chemistry
- Chemo- and Biosensors
- University of Regensburg
- 93053 Regensburg
- Germany
| | - A. J. Baeumner
- Institute of Analytical Chemistry
- Chemo- and Biosensors
- University of Regensburg
- 93053 Regensburg
- Germany
| |
Collapse
|
41
|
Jackman JA, Kim MC, Zhdanov VP, Cho NJ. Relationship between vesicle size and steric hindrance influences vesicle rupture on solid supports. Phys Chem Chem Phys 2016; 18:3065-72. [DOI: 10.1039/c5cp06786c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although it is thermodynamically favorable for adsorbed vesicles to rupture with increasing vesicle size, this study demonstrates that steric hindrance acts as a kinetic barrier to impede large vesicles from rupturing.
Collapse
Affiliation(s)
- Joshua A. Jackman
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Min Chul Kim
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Vladimir P. Zhdanov
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
42
|
Mateos-Gil P, Tsortos A, Vélez M, Gizeli E. Monitoring structural changes in intrinsically disordered proteins using QCM-D: application to the bacterial cell division protein ZipA. Chem Commun (Camb) 2016; 52:6541-4. [DOI: 10.1039/c6cc02127a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Characterization of structural changes in an intrinsically disordered protein attached on a QCM-D, with a sensitivity of 1.8 nm or better.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC)
- 28049 Madrid
- Spain
| | | | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC)
- 28049 Madrid
- Spain
| | - Electra Gizeli
- Institute of Molecular Biology & Biotechnology
- Heraklion
- Greece
- Department of Biology
- University of Crete
| |
Collapse
|
43
|
Calver CF, Liu HW, Cosa G. Exploiting Conjugated Polyelectrolyte Photophysics toward Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single-Particle Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11842-11850. [PMID: 25955885 DOI: 10.1021/acs.langmuir.5b00979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein we report the real-time observation of the interaction dynamics between cationic liposomes flowing in solution and a surface-immobilized charged scaffolding formed by the deposition of conjugated polyanion poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) onto 100-nm-diameter SiO2 nanoparticles (NPs). Contact of the freely floating liposomes with the polymer-coated surfaces led to the formation of supported lipid bilayers (SLBs). The interaction of the incoming liposomes with MPS-PPV adsorbed on individual SiO2 nanoparticles promoted the deaggregation of the polymer conformation and led to large emission intensity enhancements. Single-particle total internal reflection fluorescence microscopy studies exploited this phenomenon as a way to monitor the deformation dynamics of liposomes on surface-immobilized NPs. The MPS-PPV emission enhancement (up to 25-fold) reflected on the extent of membrane contact with the surface of the NP and was correlated with the size of the incoming liposome. The time required for the MPS-PPV emission to reach a maximum (ranging from 400 to 1000 ms) revealed the dynamics of membrane deformation and was also correlated with the liposome size. Cryo-TEM experiments complemented these results by yielding a structural view of the process. Immediately following the mixing of liposomes and NPs the majority of NPs had one or more adsorbed liposomes, yet the presence of a fully formed SLB was rare. Prolonged incubation of liposomes and NPs showed completely formed SLBs on all of the NPs, confirming that the liposomes eventually ruptured to form SLBs. We foresee that the single-particle studies we report herein may be readily extended to study membrane dynamics of other lipids including cellular membranes in live cell studies and to monitor the formation of polymer-cushioned SLBs.
Collapse
Affiliation(s)
- Christina F Calver
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Hsiao-Wei Liu
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
44
|
Grunewald C, Schmudde M, Noufele CN, Graf C, Risse T. Ordered Structures of Functionalized Silica Nanoparticles on Gold Surfaces: Correlation of Quartz Crystal Microbalance with Structural Characterization. Anal Chem 2015; 87:10642-9. [DOI: 10.1021/acs.analchem.5b03572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Christian Grunewald
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Madlen Schmudde
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Christelle Njiki Noufele
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Christina Graf
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Thomas Risse
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
45
|
Oh E, Jackman JA, Yorulmaz S, Zhdanov VP, Lee H, Cho NJ. Contribution of temperature to deformation of adsorbed vesicles studied by nanoplasmonic biosensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:771-781. [PMID: 25531903 DOI: 10.1021/la504267g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
With increasing temperature, biological macromolecules and nanometer-sized aggregates typically undergo complex and poorly understood reconfigurations, especially in the adsorbed state. Herein, we demonstrate the strong potential of using localized surface plasmon resonance (LSPR) sensors to address challenging questions related to this topic. By employing an LSPR-based gold nanodisk array platform, we have studied the adsorption of sub-100-nm diameter 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles on titanium oxide at two temperatures, 23 and 50 °C. Inside this temperature range, DPPC lipid vesicles undergo the gel-to-fluid phase transition accompanied by membrane area expansion, while DOPC lipid vesicles remain in the fluid-phase state. To interpret the corresponding measurement results, we have derived general equations describing the effect of deformation of adsorbed vesicles on the LSPR signal. At the two temperatures, the shape of adsorbed DPPC lipid vesicles on titanium oxide remains nearly equivalent, while DOPC lipid vesicles become less deformed at higher temperature. Adsorption and rupture of DPPC lipid vesicles on silicon oxide were also studied for comparison. In contrast to the results obtained on titanium oxide, adsorbed vesicles on silicon oxide become more deformed at higher temperature. Collectively, the findings demonstrate that increasing temperature may ultimately promote, hinder, or have negligible effect on the deformation of adsorbed vesicles. The physics behind these observations is discussed, and helps to clarify the interplay of various, often hidden, factors involved in adsorption of biological macromolecules at interfaces.
Collapse
Affiliation(s)
- Eunkyul Oh
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
| | | | | | | | | | | |
Collapse
|
46
|
Mashaghi A, Mashaghi S, Reviakine I, Heeren RMA, Sandoghdar V, Bonn M. Label-free characterization of biomembranes: from structure to dynamics. Chem Soc Rev 2014; 43:887-900. [PMID: 24253187 DOI: 10.1039/c3cs60243e] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applying such techniques to biological and model membranes for biophysical studies and biosensing applications are presented, and future prospects are discussed.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Jackman JA, Zhdanov VP, Cho NJ. Nanoplasmonic biosensing for soft matter adsorption: kinetics of lipid vesicle attachment and shape deformation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9494-503. [PMID: 25035920 DOI: 10.1021/la502431x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An indirect nanoplasmonic sensing platform is reported for investigating the kinetics of attachment and shape deformation associated with lipid vesicle adsorption onto a titanium oxide-coated substrate. The localized surface plasmon resonance (LSPR) originates from embedded gold nanodisks and is highly sensitive to the local lipid environment. To interpret the corresponding results, we have extended treatments of diffusion-limited adsorption kinetics and adsorbate-related LSPR physics, identified the expected scaling laws for the LSPR-tracked kinetics measured at different lipid concentrations and/or nanometer-scale vesicle sizes in the case when vesicle deformation is negligible, and scrutinized experimental deviations accordingly. After adsorption, the smallest 58 nm diameter vesicles were found to maintain shape on the time scale of adsorption at high lipid concentrations in solution, and shape deformation became more appreciable at lower lipid concentrations. Higher saturation coverage was observed with increasing lipid concentration, which is attributed to the difference in relative time scales of vesicle attachment and deformation. For larger vesicles between 80 and 160 nm diameter, deviations associated with their shape deformation and correlations with the location of gold nanodisks became more apparent at moderate and high coverages. Taken together, the results obtained support that the quantitative measurement capabilities of nanoplasmonic biosensing should be considered for applications demanding highly surface-sensitive characterization of soft matter adsorption and related phenomena at liquid-solid interfaces.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | | | | |
Collapse
|
48
|
Jackman JA, Zan GH, Zhao Z, Cho NJ. Contribution of the hydration force to vesicle adhesion on titanium oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5368-5372. [PMID: 24796732 DOI: 10.1021/la404581d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Titanium oxide is a biocompatible material that supports vesicle adhesion. Depending on experimental parameters, adsorbed vesicles remain intact or rupture spontaneously. Vesicle rupture has been attributed to electrostatic attraction between vesicles and titanium oxide, although the relative contribution of various interfacial forces remains to be clarified. Herein, we investigated the influence of vesicle surface charge on vesicle adsorption onto titanium oxide and observed that electrostatic attraction is insufficient for vesicle rupture. Following this line of evidence, a continuum model based on the DLVO forces and a non-DLVO hydration force was applied to investigate the role of different interfacial forces in modulating the lipid-substrate interaction. Within an experimentally significant range of conditions, the model shows that the magnitude of the repulsive hydration force strongly influences the behavior of adsorbed vesicles, thereby supporting that the hydration force makes a strong contribution to the fate of adsorbed vesicles on titanium oxide. The findings are consistent with literature reports concerning phospholipid assemblies on solid supports and nanoparticles and underscore the importance of the hydration force in influencing the behavior of phospholipid films on hydrophilic surfaces.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, ‡Centre for Biomimetic Sensor Science, and §School of Chemical and Biomedical Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore
| | | | | | | |
Collapse
|
49
|
Mitsakakis K, Tsortos A, Gizeli E. Quantitative determination of protein molecular weight with an acoustic sensor; significance of specific versus non-specific binding. Analyst 2014; 139:3918-25. [DOI: 10.1039/c4an00616j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-analyte acoustic biosensor determines the molecular weight of proteinsviathe phase change of the acoustic signal.
Collapse
Affiliation(s)
- Konstantinos Mitsakakis
- Institute of Molecular Biology & Biotechnology
- Foundation for Research & Technology Hellas
- GR-70013 Heraklion, Greece
- Department of Materials Science & Technology
- University of Crete
| | - Achilleas Tsortos
- Institute of Molecular Biology & Biotechnology
- Foundation for Research & Technology Hellas
- GR-70013 Heraklion, Greece
| | - Electra Gizeli
- Institute of Molecular Biology & Biotechnology
- Foundation for Research & Technology Hellas
- GR-70013 Heraklion, Greece
- Department of Biology
- University of Crete
| |
Collapse
|
50
|
Hellstrand E, Nowacka A, Topgaard D, Linse S, Sparr E. Membrane lipid co-aggregation with α-synuclein fibrils. PLoS One 2013; 8:e77235. [PMID: 24146972 PMCID: PMC3795653 DOI: 10.1371/journal.pone.0077235] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/30/2013] [Indexed: 11/27/2022] Open
Abstract
Amyloid deposits from several human diseases have been found to contain membrane lipids. Co-aggregation of lipids and amyloid proteins in amyloid aggregates, and the related extraction of lipids from cellular membranes, can influence structure and function in both the membrane and the formed amyloid deposit. Co-aggregation can therefore have important implications for the pathological consequences of amyloid formation. Still, very little is known about the mechanism behind co-aggregation and molecular structure in the formed aggregates. To address this, we study in vitro co-aggregation by incubating phospholipid model membranes with the Parkinson's disease-associated protein, α-synuclein, in monomeric form. After aggregation, we find spontaneous uptake of phospholipids from anionic model membranes into the amyloid fibrils. Phospholipid quantification, polarization transfer solid-state NMR and cryo-TEM together reveal co-aggregation of phospholipids and α-synuclein in a saturable manner with a strong dependence on lipid composition. At low lipid to protein ratios, there is a close association of phospholipids to the fibril structure, which is apparent from reduced phospholipid mobility and morphological changes in fibril bundling. At higher lipid to protein ratios, additional vesicles adsorb along the fibrils. While interactions between lipids and amyloid-protein are generally discussed within the perspective of different protein species adsorbing to and perturbing the lipid membrane, the current work reveals amyloid formation in the presence of lipids as a co-aggregation process. The interaction leads to the formation of lipid-protein co-aggregates with distinct structure, dynamics and morphology compared to assemblies formed by either lipid or protein alone.
Collapse
Affiliation(s)
- Erik Hellstrand
- Division of Biophysical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Agnieszka Nowacka
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Sara Linse
- Division of Biochemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|