1
|
Struts AV, Barmasov AV, Fried SDE, Hewage KSK, Perera SMDC, Brown MF. Osmotic stress studies of G-protein-coupled receptor rhodopsin activation. Biophys Chem 2024; 304:107112. [PMID: 37952496 DOI: 10.1016/j.bpc.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Laboratory of Biomolecular NMR, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Alexander V Barmasov
- Department of Biophysics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia; Department of Physics, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kushani S K Hewage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
2
|
Himbert S, Gaboo D, Brookes E, Nagle JF, Rheinstädter MC. MEDUSA: A cloud-based tool for the analysis of X-ray diffuse scattering to obtain the bending modulus from oriented membrane stacks. PLoS Comput Biol 2024; 20:e1011749. [PMID: 38190400 PMCID: PMC10798642 DOI: 10.1371/journal.pcbi.1011749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/19/2024] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
An important mechanical property of cells is their membrane bending modulus, κ. Here, we introduce MEDUSA (MEmbrane DiffUse Scattering Analysis), a cloud-based analysis tool to determine the bending modulus, κ, from the analysis of X-ray diffuse scattering. MEDUSA uses GPU (graphics processing unit) accelerated hardware and a parallelized algorithm to run the calculations efficiently in a few seconds. MEDUSA's graphical user interface allows the user to upload 2-dimensional data collected from different sources, perform background subtraction and distortion corrections, select regions of interest, run the fitting procedure and output the fitted parameters, the membranes' bending modulus κ, and compressional modulus B.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dorian Gaboo
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Emre Brookes
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana, United States of America
| | - John F. Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- Origins Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Doktorova M, Khelashvili G, Ashkar R, Brown MF. Molecular simulations and NMR reveal how lipid fluctuations affect membrane mechanics. Biophys J 2023; 122:984-1002. [PMID: 36474442 PMCID: PMC10111610 DOI: 10.1016/j.bpj.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid bilayers form the main matrix of functional cell membranes, and their dynamics underlie a host of physical and biological processes. Here we show that elastic membrane properties and collective molecular dynamics (MD) are related by the mean-square amplitudes (order parameters) and relaxation rates (correlation times) of lipid acyl chain motions. We performed all-atom MD simulations of liquid-crystalline bilayers that allow direct comparison with carbon-hydrogen (CH) bond relaxations measured with NMR spectroscopy. Previous computational and theoretical approaches have assumed isotropic relaxation, which yields inaccurate description of lipid chain dynamics and incorrect data interpretation. Instead, the new framework includes a fixed bilayer normal (director axis) and restricted anisotropic motion of the CH bonds in accord with their segmental order parameters, enabling robust validation of lipid force fields. Simulated spectral densities of thermally excited CH bond fluctuations exhibited well-defined spin-lattice (Zeeman) relaxations analogous to those in NMR measurements. Their frequency signature could be fit to a simple power-law function, indicative of nematic-like collective dynamics. Moreover, calculated relaxation rates scaled as the squared order parameters yielding an apparent κC modulus for bilayer bending. Our results show a strong correlation with κC values obtained from solid-state NMR studies of bilayers without and with cholesterol as validated by neutron spin-echo measurements of membrane elasticity. The simulations uncover a critical role of interleaflet coupling in membrane mechanics and thus provide important insights into molecular sites of emerging elastic properties within lipid bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; Institute of Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona; Program in Applied Mathematics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
4
|
Doole FT, Gupta S, Kumarage T, Ashkar R, Brown MF. Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:61-85. [PMID: 36988877 DOI: 10.1007/978-3-031-21547-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.
Collapse
Affiliation(s)
- Fathima T Doole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sudipta Gupta
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Teshani Kumarage
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Rana Ashkar
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA.
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
Molugu TR, Thurmond RL, Alam TM, Trouard TP, Brown MF. Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers. Biophys J 2022; 121:4205-4220. [PMID: 36088534 PMCID: PMC9674990 DOI: 10.1016/j.bpj.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Phospholipid bilayers are liquid-crystalline materials whose intermolecular interactions at mesoscopic length scales have key roles in the emergence of membrane physical properties. Here we investigated the combined effects of phospholipid polar headgroups and acyl chains on biophysical functions of membranes with solid-state 2H NMR spectroscopy. We compared the structural and dynamic properties of phosphatidylethanolamine and phosphatidylcholine with perdeuterated acyl chains in the solid-ordered (so) and liquid-disordered (ld) phases. Our analysis of spectral lineshapes of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the so (gel) phase indicated an all-trans rotating chain structure for both lipids. Greater segmental order parameters (SCD) were observed in the ld (liquid-crystalline) phase for DPPE-d62 than for DPPC-d62 membranes, while their mixtures had intermediate values irrespective of the deuterated lipid type. Our results suggest the SCD profiles of the acyl chains are governed by methylation of the headgroups and are averaged over the entire system. Variations in the acyl chain molecular dynamics were further investigated by spin-lattice (R1Z) and quadrupolar-order relaxation (R1Q) measurements. The two acyl-perdeuterated lipids showed distinct differences in relaxation behavior as a function of the order parameter. The R1Z rates had a square-law dependence on SCD, implying collective mesoscopic dynamics, with a higher bending rigidity for DPPE-d62 than for DPPC-d62 lipids. Remodeling of lipid average and dynamic properties by methylation of the headgroups thus provides a mechanism to control the actions of peptides and proteins in biomembranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | | | - Todd M Alam
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, New Mexico
| | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
6
|
Smith AA, Vogel A, Engberg O, Hildebrand PW, Huster D. A method to construct the dynamic landscape of a bio-membrane with experiment and simulation. Nat Commun 2022; 13:108. [PMID: 35013165 PMCID: PMC8748619 DOI: 10.1038/s41467-021-27417-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Biomolecular function is based on a complex hierarchy of molecular motions. While biophysical methods can reveal details of specific motions, a concept for the comprehensive description of molecular dynamics over a wide range of correlation times has been unattainable. Here, we report an approach to construct the dynamic landscape of biomolecules, which describes the aggregate influence of multiple motions acting on various timescales and on multiple positions in the molecule. To this end, we use 13C NMR relaxation and molecular dynamics simulation data for the characterization of fully hydrated palmitoyl-oleoyl-phosphatidylcholine bilayers. We combine dynamics detector methodology with a new frame analysis of motion that yields site-specific amplitudes of motion, separated both by type and timescale of motion. In this study, we show that this separation allows the detailed description of the dynamic landscape, which yields vast differences in motional amplitudes and correlation times depending on molecular position.
Collapse
Affiliation(s)
- Albert A Smith
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Oskar Engberg
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| |
Collapse
|
7
|
Nagle JF. Measuring the bending modulus of lipid bilayers with cholesterol. Phys Rev E 2021; 104:044405. [PMID: 34781561 DOI: 10.1103/physreve.104.044405] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
The effect of cholesterol on the bending modulus of DOPC lipid bilayers has become a controversial topic that has implications for methods of measuring the bending modulus. Recent results using neutron spin echo and nuclear magnetic resonance relaxation methods that involve linear transport properties have conflicted with earlier results from purely equilibrium experiments that do not involve linear transport properties. A general discussion indicates how one can be misled by data obtained by methods that involve linear transport properties. It is then shown specifically how the recent neutron spin echo results can be interpreted to agree with the earlier purely equilibrium experimental results, thereby resolving that conflict. Regarding the nuclear magnetic resonance relaxation method, it is noted that current interpretation of the data is unclear regarding the identity of the modulus that is involved, and an alternative interpretation is explored that does not disagree with the results of the equilibrium experiments.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
8
|
Abstract
Relaxation in nuclear magnetic resonance is a powerful method for obtaining spatially resolved, timescale-specific dynamics information about molecular systems. However, dynamics in biomolecular systems are generally too complex to be fully characterized based on NMR data alone. This is a familiar problem, addressed by the Lipari-Szabo model-free analysis, a method that captures the full information content of NMR relaxation data in case all internal motion of a molecule in solution is sufficiently fast. We investigate model-free analysis, as well as several other approaches, and find that model-free, spectral density mapping, LeMaster's approach, and our detector analysis form a class of analysis methods, for which behavior of the fitted parameters has a well-defined relationship to the distribution of correlation times of motion, independent of the specific form of that distribution. In a sense, they are all "model-free." Of these methods, only detectors are generally applicable to solid-state NMR relaxation data. We further discuss how detectors may be used for comparison of experimental data to data extracted from molecular dynamics simulation, and how simulation may be used to extract details of the dynamics that are not accessible via NMR, where detector analysis can be used to connect those details to experiments. We expect that combined methodology can eventually provide enough insight into complex dynamics to provide highly accurate models of motion, thus lending deeper insight into the nature of biomolecular dynamics.
Collapse
Affiliation(s)
- Kai Zumpfe
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert A Smith
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Abstract
Cell membranes - primarily composed of lipids, sterols, and proteins - form a dynamic interface between living cells and their environment. They act as a mechanical barrier around the cell while selectively facilitating material transport, signal transduction, and various other functions necessary for the cell viability. The complex functionality of cell membranes and the hierarchical motions and responses they exhibit demand a thorough understanding of the origin of different membrane dynamics and how they are influenced by molecular additives and environmental cues. These dynamic modes include single-molecule diffusion, thermal fluctuations, and large-scale membrane deformations, to name a few. This review highlights advances in investigating structure-driven dynamics associated with model cell membranes, with a particular focus on insights gained from neutron scattering and spectroscopy experiments. We discuss the uniqueness of neutron contrast variation and its remarkable potential in probing selective membrane structure and dynamics on spatial and temporal scales over which key biological functions occur. We also present a summary of current and future opportunities in synergistic combinations of neutron scattering with molecular dynamics (MD) simulations to gain further understanding of the molecular mechanisms underlying complex membrane functions.
Collapse
Affiliation(s)
- Sudipta Gupta
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Reply to Nagle et al.: The universal stiffening effects of cholesterol on lipid membranes. Proc Natl Acad Sci U S A 2021; 118:2102845118. [PMID: 33952694 PMCID: PMC8157964 DOI: 10.1073/pnas.2102845118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Zenak S, Sabeur S, López-Cascales J. Study of the insertion of a small symmetric star polymer into different phospholipid bilayers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Abstract
Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.
Collapse
|
13
|
Doktorova M, Kučerka N, Kinnun JJ, Pan J, Marquardt D, Scott HL, Venable RM, Pastor RW, Wassall SR, Katsaras J, Heberle FA. Molecular Structure of Sphingomyelin in Fluid Phase Bilayers Determined by the Joint Analysis of Small-Angle Neutron and X-ray Scattering Data. J Phys Chem B 2020; 124:5186-5200. [PMID: 32468822 DOI: 10.1021/acs.jpcb.0c03389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have determined the fluid bilayer structure of palmitoyl sphingomyelin (PSM) and stearoyl sphingomyelin (SSM) by simultaneously analyzing small-angle neutron and X-ray scattering data. Using a newly developed scattering density profile (SDP) model for sphingomyelin lipids, we report structural parameters including the area per lipid, total bilayer thickness, and hydrocarbon thickness, in addition to lipid volumes determined by densitometry. Unconstrained all-atom simulations of PSM bilayers at 55 °C using the C36 CHARMM force field produced a lipid area of 56 Å2, a value that is 10% lower than the one determined experimentally by SDP analysis (61.9 Å2). Furthermore, scattering form factors calculated from the unconstrained simulations were in poor agreement with experimental form factors, even though segmental order parameter (SCD) profiles calculated from the simulations were in relatively good agreement with SCD profiles obtained from NMR experiments. Conversely, constrained area simulations at 61.9 Å2 resulted in good agreement between the simulation and experimental scattering form factors, but not with SCD profiles from NMR. We discuss possible reasons for the discrepancies between these two types of data that are frequently used as validation metrics for molecular dynamics force fields.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.,Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, 814 99 Bratislava, Slovakia
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Haden L Scott
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
Kumar S, Scheidt HA, Kaur N, Kang TS, Gahlay GK, Huster D, Mithu VS. Effect of the Alkyl Chain Length of Amphiphilic Ionic Liquids on the Structure and Dynamics of Model Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12215-12223. [PMID: 31424219 DOI: 10.1021/acs.langmuir.9b02128] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We compare the biophysical and structural aspects of the interaction of amphiphilic ionic liquids containing 1-alkyl-3-methylimidazolium cation ([CnMIM]+, n = 8, 12, or 16) with membranes composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG). Liposome affinity and permeabilization were determined using ζ-potential and fluorescence studies, correlated with the cytoxicity of [CnMIM]+Br- toward HeLa cell lines. Membrane affinity is strongest in the case of [C16MIM]+Br- followed by [C12MIM]+Br- and [C8MIM]+Br- for both membranes, and trends remained the same in the case of membrane permeability and cytotoxicity. Solid-state NMR spectroscopy was used to localize [CnMIM]+ inside the lipid bilayers and to study their impact on the head group and acyl chain structures and dynamics of the lipid molecules. The charged ring moiety of the [CnMIM]+ is localized in the lipid-water interface of the membranes irrespective of the chain length and membrane surface charge. While [C8MIM]+ binds the membrane most weakly, it induces the largest disorder in the lipid chain region. A lack of fast flip-flop motions of the amphiphiles in the case of long chain [C16MIM]+ is suggested to render the membrane unstable, which increases its permeability. Between the lipid molecules, the POPC membrane incurs larger disorder in lipid chain packing upon insertion of [CnMIM]+ molecules. The study provides structural details of the impact of increasing chain lengths in [CnMIM]+ on the structural properties of lipid bilayers.
Collapse
Affiliation(s)
| | - Holger A Scheidt
- Institut für Medizinische Physik und Biophysik , Leipzig University , Leipzig 04109 , Germany
| | | | | | | | - Daniel Huster
- Institut für Medizinische Physik und Biophysik , Leipzig University , Leipzig 04109 , Germany
| | | |
Collapse
|
15
|
Liliya V, Dmitry O. Deuterium Rotating Frame NMR Relaxation Measurements in the Solid State under Static Conditions for Quantification of Dynamics. Chemphyschem 2019; 20:333-342. [PMID: 30079456 PMCID: PMC6499496 DOI: 10.1002/cphc.201800454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/07/2022]
Abstract
The feasibility of static deuterium rotating frame NMR relaxation measurements for characterization of slow timescale motions in powder systems is demonstrated. Using a model compound dimethyl sulfone-d6 , we show that these measurements yield conformational exchange rates and activation energy values in accordance with results obtained with other techniques. Furthermore, we demonstrate that the full Liouvillian approach as opposed to the Redfield approximation is necessary to analyze the experimental data.
Collapse
Affiliation(s)
- Vugmeyster Liliya
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Ostrovsky Dmitry
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
16
|
Mallikarjunaiah KJ, Kinnun JJ, Petrache HI, Brown MF. Flexible lipid nanomaterials studied by NMR spectroscopy. Phys Chem Chem Phys 2019; 21:18422-18457. [DOI: 10.1039/c8cp06179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in solid-state nuclear magnetic resonance spectroscopy inform the emergence of material properties from atomistic-level interactions in membrane lipid nanostructures.
Collapse
Affiliation(s)
- K. J. Mallikarjunaiah
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| | - Jacob J. Kinnun
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Horia I. Petrache
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| |
Collapse
|
17
|
Molugu TR, Brown MF. Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:99-133. [PMID: 30649757 DOI: 10.1007/978-3-030-04278-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this chapter, we review the physical properties of lipid/cholesterol mixtures involving studies of model membranes using solid-state NMR spectroscopy. The approach allows one to quantify the average membrane structure, fluctuations, and elastic deformation upon cholesterol interaction. Emphasis is placed on understanding the membrane structural deformation and emergent fluctuations at an atomistic level. Lineshape measurements using solid-state NMR spectroscopy give equilibrium structural properties, while relaxation time measurements study the molecular dynamics over a wide timescale range. The equilibrium properties of glycerophospholipids, sphingolipids, and their binary and tertiary mixtures with cholesterol are accessible. Nonideal mixing of cholesterol with other lipids explains the occurrence of liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids, and may drive formation of lipid rafts. The functional dependence of 2H NMR spin-lattice relaxation (R 1Z) rates on segmental order parameters (S CD) for lipid membranes is indicative of emergent viscoelastic properties. Addition of cholesterol shows stiffening of the bilayer relative to the pure lipids and this effect is diminished for lanosterol. Opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale can potentially affect lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA. .,Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Vugmeyster L, Ostrovsky D. Basic experiments in 2H static NMR for the characterization of protein side-chain dynamics. Methods 2018; 148:136-145. [PMID: 29705208 PMCID: PMC6133770 DOI: 10.1016/j.ymeth.2018.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/02/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022] Open
Abstract
The focus of this review is the basic methodology for applications of static deuteron NMR for studies of dynamics in the side chains of proteins. We review experimental approaches for the measurements of static line shapes and relaxation rates as well as signal enhancement strategies using the multiple echo acquisition scheme. Further, we describe computational strategies for modeling jump and diffusive motions underlying experimental data. Applications are chosen from studies of amyloid fibrils comprising the amyloid-β protein.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
19
|
Frigini EN, López Cascales JJ, Porasso RD. Molecular dynamics simulations of glyphosate in a DPPC lipid bilayer. Chem Phys Lipids 2018; 213:111-117. [PMID: 29684323 DOI: 10.1016/j.chemphyslip.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
Extensive molecular dynamics simulations have been performed to study the effect of glyphosate (in their neutral and charged forms, GLYP and GLYP2-, respectively) on fully hydrated DiPalmitoylPhosphatidylCholine (DPPC) lipid bilayer. First, we calculated the free energy profile (using the Umbrella Sampling technique) for both states of charge of glyphosate. The minimum value for the free energy for GLYP is ∼-60 kJ mol-1 located at z = ±1.7 nm (from the lipid bilayer center), and there is almost no maximum at the center of the lipid bilayer. By contrast, the minimum for GLYP2- is ∼-35 kJ mol-1 located at z = ± 1.4 nm (from the lipid bilayer center), and the maximum reaches ∼35 kJ mol-1 at the center of the lipid bilayer. Then, different lipid bilayer properties were analyzed for different glyphosate:lipid (G:L) ratios. The mean area per lipid was slightly affected, increasing only 5% (in the presence of glyphosate at high concentrations), which is in agreement with the slight decrease in deuterium order parameters. As for the thickness of the bilayer, it is observed that the state of charge produces opposite effects. On one hand, the neutral state produces an increase in the thickness of the lipid bilayer; on the other, the charged form produces a decrease in the thickness, which not depend linearly on the G:L ratios, either. The orientation of the DPPC head groups is practically unaffected throughout the range of the G:L ratios studied. Finally, the mobility of the lipids of the bilayer is strongly affected by the presence of glyphosate, considerably increasing its lateral diffusion coefficient noteworthy (one order of magnitude), with increasing G:L ratio.
Collapse
Affiliation(s)
- Ezequiel N Frigini
- Instituto de Matemática Aplicada San Luis, IMASL, Universidad Nacional de San Luis and CONICET, Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - J J López Cascales
- Universidad Politécnica de Cartagena, Grupo de Bioinformática y Macromoléculas (BioMac), Área de Química Física, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain
| | - Rodolfo D Porasso
- Instituto de Matemática Aplicada San Luis, IMASL, Universidad Nacional de San Luis and CONICET, Ejército de los Andes 950, D5700HHW San Luis, Argentina.
| |
Collapse
|
20
|
Kumar S, Scheidt HA, Kaur N, Kaur A, Kang TS, Huster D, Mithu VS. Amphiphilic Ionic Liquid-Induced Membrane Permeabilization: Binding Is Not Enough. J Phys Chem B 2018; 122:6763-6770. [DOI: 10.1021/acs.jpcb.8b03733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 04109, Germany
| | - Navleen Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Anupreet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Tejwant S. Kang
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 04109, Germany
| | - Venus S. Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
21
|
López
Cascales JJ, Zenak S, García de la Torre J, Lezama OG, Garro A, Enriz RD. Small Cationic Peptides: Influence of Charge on Their Antimicrobial Activity. ACS OMEGA 2018; 3:5390-5398. [PMID: 30221230 PMCID: PMC6130792 DOI: 10.1021/acsomega.8b00293] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/11/2018] [Indexed: 05/28/2023]
Abstract
The first stage of the action mechanism of small cationic peptides with antimicrobial activity is ruled by electrostatic interactions between the peptide and the pathogen cell membrane. Thus, an increase in its activity could be expected with an increase in the positive charge on the peptide. By contrast, the opposite behavior has been observed when the charge increases to reach a critical value, beyond which the activity falls. This work studies the perturbation effects in a cell membrane model for two small cationic peptides with similar length and morphology but with different cationic charges. The synthesis and antibacterial activity of the two peptides used in this study are described. The thermodynamic study associated with the insertion of these peptides into the membrane and the perturbing effects on the bilayer structure provide valuable insights into the molecular action mechanism associated with the charge of these small cationic peptides.
Collapse
Affiliation(s)
- José Javier López
Cascales
- Grupo
de Bioinformatica y Macromoleculas (BioMac), Area de Química
Física, Universidad Politécnica
de Cartagena, Aulario
II, Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain
| | - Siham Zenak
- Laboratoire
d’Etude Physique des Matériaux, Département de
Physique Energétique, Faculté de Physique, Université des Sciences et de la Technologie
d’Oran, BP 1505
El M’Naouer, Oran 31000, Algeria
| | - José García de la Torre
- Facultad
de Química, Departamento de Química Física, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | | | - Adriana Garro
- Facultad
de Química, Bioquímica y Farmacia, IMIBIO-CONICET, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | - Ricardo Daniel Enriz
- Facultad
de Química, Bioquímica y Farmacia, IMIBIO-CONICET, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| |
Collapse
|
22
|
Korb JP. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:12-55. [PMID: 29405980 DOI: 10.1016/j.pnmrs.2017.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The nuclear magnetic relaxation dispersion (NMRD) technique consists of measurement of the magnetic-field dependence of the longitudinal nuclear-spin-lattice relaxation rate 1/T1. Usually, the acquisition of the NMRD profiles is made using a fast field cycling (FFC) NMR technique that varies the magnetic field and explores a very large range of Larmor frequencies (10 kHz < ω0/(2π) <40 MHz). This allows extensive explorations of the fluctuations to which nuclear spin relaxation is sensitive. The FFC technique thus offers opportunities on multiple scales of both time and distance for characterizing the molecular dynamics and transport properties of complex liquids in bulk or embedded in confined environments. This review presents the principles, theories and applications of NMRD for characterizing fundamental properties such as surface correlation times, diffusion coefficients and dynamical surface affinity (NMR wettability) for various confined liquids. The basic longitudinal and transverse relaxation equations are outlined for bulk liquids. The nuclear relaxation of a liquid confined in pores is considered in detail in order to find the biphasic fast exchange relations for a liquid at proximity of a solid surface. The physical-chemistry of liquids at solid surfaces induces striking differences between NMRD profiles of aprotic and protic (water) liquids embedded in calibrated porous disordered materials. A particular emphasis of this review concerns the extension of FFC NMR relaxation to industrial applications. For instance, it is shown that the FFC technique is sufficiently rapid for following the progressive setting of cement-based materials (plasters, cement pastes, concretes). The technique also allows studies of the dynamics of hydrocarbons in proximity of asphaltene nano-aggregates and macro-aggregates in heavy crude oils as a function of the concentration of asphaltenes. It also gives new information on the wettability of petroleum fluids (brine and oil) embedded in shale oil rocks. It is useful for understanding the relations and correlations between NMR relaxation times T1 and T2, diffusion coefficients D, and viscosity η of heavy crude oils. This is of particular importance for interpreting T1, T2, 2D T1-T2 and D-T2 correlation spectra that could be obtained down-hole, thus giving a valuable tool for investigating in situ the molecular dynamics of petroleum fluids. Another domain of interest concerns biological applications. This is of particular importance for studying the complex dynamical spectrum of a folded polymeric structure that may span many decades in frequency or time. A direct NMRD characterization of water diffusional dynamics is presented at the protein interface. NMR experiments using a shuttle technique give results well above the frequency range accessible via the FFC technique; examples of this show protein dynamics over a range from fast and localized motions to slow and delocalized collective motions involving the whole protein. This review ends by an interpretation of the origin of the proton magnetic field dependence of T1 for different biological tissues of animals; this includes a proposal for interpreting in vivo MRI data from human brain at variable magnetic fields, where the FFC relaxation analysis suggests that brain white-matter is distinct from grey-matter, in agreement with diffusion-weighted MRI imaging.
Collapse
Affiliation(s)
- Jean-Pierre Korb
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université de Paris Saclay, 91128 Palaiseau Cedex, France; Sorbonne Universités, UPMC Univ. Paris 06, CNRS, PHENIX Laboratory, F-75005 Paris, France.
| |
Collapse
|
23
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
24
|
Affiliation(s)
- Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
- Department of Physics, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
25
|
Combining NMR Spectroscopy and Molecular Dynamics Simulation to Investigate the Structure and Dynamics of Membrane-Associated Proteins. SPRINGER SERIES IN BIOPHYSICS 2017. [DOI: 10.1007/978-3-319-66601-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Molugu TR, Brown MF. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem Phys Lipids 2016; 199:39-51. [PMID: 27154600 DOI: 10.1016/j.chemphyslip.2016.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state (2)H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C-(2)H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of (13)C-(1)H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For (2)H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
27
|
Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy. Biophys J 2015; 107:2274-86. [PMID: 25418296 DOI: 10.1016/j.bpj.2014.07.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Constantin Job
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Klaus Beyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
28
|
Asami S, Porter JR, Lange OF, Reif B. Access to Cα backbone dynamics of biological solids by 13C T1 relaxation and molecular dynamics simulation. J Am Chem Soc 2015; 137:1094-100. [PMID: 25564702 DOI: 10.1021/ja509367q] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We introduce a labeling scheme for magic angle spinning (MAS) solid-state NMR that is based on deuteration in combination with dilution of the carbon spin system. The labeling strategy achieves spectral editing by simplification of the HαCα and aliphatic side chain spectral region. A reduction in both proton and carbon spin density in combination with fast spinning (≥50 kHz) is essential to retrieve artifact-free (13)C-R1 relaxation data for aliphatic carbons. We obtain good agreement between the NMR experimental data and order parameters extracted from a molecular dynamics (MD) trajectory, which indicates that carbon based relaxation parameters can yield complementary information on protein backbone as well as side chain dynamics.
Collapse
Affiliation(s)
- Sam Asami
- Munich Center for Integrated Protein Science (CIPSM) at Department of Chemie, Technische Universität München (TUM) , Lichtenbergstr. 4, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
29
|
Struts AV, Chawla U, Perera SMDC, Brown MF. Investigation of rhodopsin dynamics in its signaling state by solid-state deuterium NMR spectroscopy. Methods Mol Biol 2015; 1271:133-58. [PMID: 25697522 DOI: 10.1007/978-1-4939-2330-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state (2)H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. Moreover (2)H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state (2)H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition we review optimized conditions for trapping the rhodopsin photointermediates; and we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
30
|
Schwartz DH, Dickie E, Pangelinan MM, Leonard G, Perron M, Pike GB, Richer L, Veillette S, Pausova Z, Paus T. Adiposity is associated with structural properties of the adolescent brain. Neuroimage 2014; 103:192-201. [PMID: 25255944 DOI: 10.1016/j.neuroimage.2014.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
Obesity, a major risk factor for cardiometabolic disease, is associated with variations in a number of structural properties in the adult brain, as assessed with magnetic resonance imaging (MRI). In this study, we investigated the cross-sectional relationship between visceral fat (VF), total body fat (TBF) and three MRI parameters in the brains of typically developing adolescents: (i) T1-weighted (T1W) signal intensity; (ii) T1W signal contrast between white matter (WM) and gray matter (GM); and (iii) magnetization transfer ratio (MTR). In a community-based sample of 970 adolescents (12-18 years old, 466 males), VF was quantified using MRI, and total body fat was measured using a multifrequency bioimpedance. T1W images of the brain were used to determine signal intensity in lobar GM and WM, as well as WM:GM signal contrast. A magnetization transfer (MT) sequence of MT(ON) and MT(OFF) was used to obtain MTR in GM and WM. We found that both larger volumes of VF and more TBF were independently associated with higher signal intensity in WM and higher WM:GM signal contrast, as well as higher MTR in both GM and WM. These relationships were independent of a number of potential confounders, including age, sex, puberty stage, household income and height. Our results suggest that both visceral fat and fat deposited elsewhere in the body are associated independently with structural properties of the adolescent brain. We speculate that these relationships suggest the presence of adiposity-related variations in phospholipid composition of brain lipids.
Collapse
Affiliation(s)
- Deborah H Schwartz
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada; Department of Psychology, University of Toronto, Canada
| | - Erin Dickie
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada
| | | | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Canada
| | | | - Suzanne Veillette
- Université du Québec à Chicoutimi, Canada; ÉCOBES, Recherche et transfert, Cégep de Jonquière, Jonquière, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Tomáš Paus
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada; Department of Psychology, University of Toronto, Canada.
| |
Collapse
|
31
|
Kinnun JJ, Mallikarjunaiah KJ, Petrache HI, Brown MF. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:246-59. [PMID: 24946141 DOI: 10.1016/j.bbamem.2014.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
This article reviews the application of solid-state ²H nuclear magnetic resonance (NMR) spectroscopy for investigating the deformation of lipid bilayers at the atomistic level. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Solid-state ²H NMR yields observables directly related to the stress field of the lipid bilayer. The extent to which lipid bilayers are deformed by osmotic pressure is integral to how lipid-protein interactions affect membrane functions. Calculations of the average area per lipid and related structural properties are pertinent to bilayer remodeling and molecular dynamics (MD) simulations of membranes. To establish structural quantities, such as area per lipid and volumetric bilayer thickness, a mean-torque analysis of ²H NMR order parameters is applied. Osmotic stress is introduced by adding polymer solutions or by gravimetric dehydration, which are thermodynamically equivalent. Solid-state NMR studies of lipids under osmotic stress probe membrane interactions involving collective bilayer undulations, order-director fluctuations, and lipid molecular protrusions. Removal of water yields a reduction of the mean area per lipid, with a corresponding increase in volumetric bilayer thickness, by up to 20% in the liquid-crystalline state. Hydrophobic mismatch can shift protein states involving mechanosensation, transport, and molecular recognition by G-protein-coupled receptors. Measurements of the order parameters versus osmotic pressure yield the elastic area compressibility modulus and the corresponding bilayer thickness at an atomistic level. Solid-state ²H NMR thus reveals how membrane deformation can affect protein conformational changes within the stress field of the lipid bilayer.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Horia I Petrache
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F Brown
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
32
|
|
33
|
High-resolution NMR reveals secondary structure and folding of amino acid transporter from outer chloroplast membrane. PLoS One 2013; 8:e78116. [PMID: 24205117 PMCID: PMC3812221 DOI: 10.1371/journal.pone.0078116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 09/16/2013] [Indexed: 12/05/2022] Open
Abstract
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein.
Collapse
|
34
|
Abstract
Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry and Biochemistry and Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
35
|
Porasso RD, López Cascales JJ. A criterion to identify the equilibration time in lipid bilayer simulations. PAPERS IN PHYSICS 2012. [DOI: 10.4279/pip.040005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
36
|
Mertz B, Struts AV, Feller SE, Brown MF. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:241-51. [PMID: 21851809 PMCID: PMC5270601 DOI: 10.1016/j.bbamem.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Andrey V. Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Physics, St. Petersburg State Medical University, St. Petersburg 194100, Russia
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville, IN 47933, USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
37
|
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci U S A 2011; 108:8263-8. [PMID: 21527723 DOI: 10.1073/pnas.1014692108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation allows investigation of light-induced changes in local ps-ns time scale motions of retinal bound to rhodopsin. Site-specific (2)H labels were introduced into methyl groups of the retinal ligand that are essential to the activation process. We conducted solid-state (2)H NMR relaxation (spin-lattice, T(1Z), and quadrupolar-order, T(1Q)) experiments in the dark, Meta I, and Meta II states of the photoreceptor. Surprisingly, we find the retinylidene methyl groups exhibit site-specific differences in dynamics that change upon light excitation--even more striking, the C9-methyl group is a dynamical hotspot that corresponds to a crucial functional hotspot of rhodopsin. Following 11-cis to trans isomerization, the (2)H NMR data suggest the β-ionone ring remains in its hydrophobic binding pocket in all three states of the protein. We propose a multiscale activation mechanism with a complex energy landscape, whereby the photonic energy is directed against the E2 loop by the C13-methyl group, and toward helices H3 and H5 by the C5-methyl of the β-ionone ring. Changes in retinal structure and dynamics initiate activating fluctuations of transmembrane helices H5 and H6 in the Meta I-Meta II equilibrium of rhodopsin. Our proposals challenge the Standard Model whereby a single light-activated receptor conformation yields the visual response--rather an ensemble of substates is present, due to the entropy gain produced by photolysis of the inhibitory retinal lock.
Collapse
|
38
|
Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:818-39. [PMID: 21134351 PMCID: PMC5176272 DOI: 10.1016/j.bbamem.2010.11.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
39
|
Penk A, Müller M, Scheidt HA, Langosch D, Huster D. Structure and dynamics of the lipid modifications of a transmembrane α-helical peptide determined by 2H solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:784-91. [DOI: 10.1016/j.bbamem.2010.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 01/11/2023]
|
40
|
Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 2011; 18:392-4. [PMID: 21278756 DOI: 10.1038/nsmb.1982] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
X-ray and magnetic resonance approaches, though central to studies of G protein-coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state (2)H NMR relaxation elucidates picosecond-to-nanosecond-timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I-meta II equilibrium on the microsecond-to-millisecond timescale.
Collapse
|
41
|
Mallikarjunaiah K, Leftin A, Kinnun JJ, Justice MJ, Rogozea AL, Petrache HI, Brown MF. Solid-state ²H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Biophys J 2011; 100:98-107. [PMID: 21190661 PMCID: PMC3010004 DOI: 10.1016/j.bpj.2010.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 11/28/2022] Open
Abstract
Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state ²H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our ²H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (S(CD)) of DMPC approach very large values of ≈ 0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state ²H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10-100 atm or lower. This research demonstrates the applicability of solid-state ²H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins.
Collapse
Affiliation(s)
| | - Avigdor Leftin
- Department of Chemistry, University of Arizona, Tucson, Arizona
| | - Jacob J. Kinnun
- Department of Physics, University of Arizona, Tucson, Arizona
| | - Matthew J. Justice
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Adriana L. Rogozea
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Horia I. Petrache
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona
- Department of Physics, University of Arizona, Tucson, Arizona
| |
Collapse
|
42
|
Thompson TE, Sankaram MB, Huang C. Organization and Dynamics of the Lipid Components of Biological Membranes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Kaczmarek O, Scheidt HA, Bunge A, Föse D, Karsten S, Arbuzova A, Huster D, Liebscher J. 2′-Linking of Lipids and Other Functions to Uridine through 1,2,3-Triazoles and Membrane Anchoring of the Amphiphilic Products. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Investigating the membrane orientation and transversal distribution of 17beta-estradiol in lipid membranes by solid-state NMR. Chem Phys Lipids 2010; 163:356-61. [PMID: 20153306 DOI: 10.1016/j.chemphyslip.2010.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 12/26/2022]
Abstract
17beta-Estradiol (E(2)) is a potent estrogen, which modulates many important cellular functions by binding to specific estrogen receptors located in the cell nucleus and also on the plasma membrane. We have studied the membrane interaction of E(2) using a combination of solid-state NMR methods. (2)H NMR results indicate that E(2) does not cause a condensation effect of the surrounding phospholipids, which is contrary to the effects of cholesterol, and only very modest E(2) induced alterations of the membrane structure were detected. (1)H magic-angle spinning NMR showed well resolved signals from E(2) as well as of POPC in the membrane-lipid layer. Two-dimensional NOESY spectra revealed intense cross-peaks between E(2) and the membrane lipids indicating that E(2) is stably inserted into the membrane. The determination of intermolecular cross-relaxation rates revealed that E(2) is broadly distributed in the membrane with a maximum of the E(2) distribution function in the upper chain region of the membrane. We conclude that E(2) is highly dynamic in lipid membranes and may undergo rotations as it exhibits two polar hydroxyl groups on either side of the molecule.
Collapse
|
45
|
A solid-state NMR study of the structure and dynamics of the myristoylated N-terminus of the guanylate cyclase-activating protein-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:266-74. [DOI: 10.1016/j.bbamem.2009.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/16/2009] [Accepted: 06/29/2009] [Indexed: 11/30/2022]
|
46
|
Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:177-93. [PMID: 19716801 DOI: 10.1016/j.bbamem.2009.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/25/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
47
|
Scheidt HA, Huster D. Structure and dynamics of the myristoyl lipid modification of SRC peptides determined by 2H solid-state NMR spectroscopy. Biophys J 2009; 96:3663-72. [PMID: 19413971 DOI: 10.1016/j.bpj.2009.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/11/2009] [Accepted: 02/17/2009] [Indexed: 10/20/2022] Open
Abstract
Lipid modifications of proteins are widespread in nature and play an important role in numerous biological processes. The nonreceptor tyrosine kinase Src is equipped with an N-terminal myristoyl chain and a cluster of basic amino acids for the stable membrane association of the protein. We used (2)H NMR spectroscopy to investigate the structure and dynamics of the myristoyl chain of myr-Src(2-19), and compare them with the hydrocarbon chains of the surrounding phospholipids in bilayers of varying surface potentials and chain lengths. The myristoyl chain of Src was well inserted in all bilayers investigated. In zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes, the myristoyl chain of Src was significantly longer and appears "stiffer" than the phospholipid chains. This can be explained by an equilibrium between the attraction attributable to the insertion of the myristoyl chain and the Born repulsion. In a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] membrane, where attractive electrostatic interactions come into play, the differences between the peptide and the phospholipid chain lengths were attenuated, and the molecular dynamics of all lipid chains were similar. In a much thicker 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine]/cholesterol membrane, the length of the myristoyl chain of Src was elongated nearly to its maximum, and the order parameters of the Src chain were comparable to those of the surrounding membrane.
Collapse
Affiliation(s)
- Holger A Scheidt
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
| | | |
Collapse
|
48
|
Brown MF, Martínez-Mayorga K, Nakanishi K, Salgado GFJ, Struts AV. Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy. Photochem Photobiol 2009; 85:442-53. [PMID: 19267870 DOI: 10.1111/j.1751-1097.2008.00510.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Solid-state NMR spectroscopy gives a powerful avenue for investigating G protein-coupled receptors and other integral membrane proteins in a native-like environment. This article reviews the use of solid-state (2)H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site-specific (2)H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability (2)H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three-fold (C(3)) axes with an order parameter for the off-axial motion of SC(3) approximately 0.9. For the dark state, the (2)H NMR structure of 11-cis-retinal manifests torsional twisting of both the polyene chain and the beta-ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11-cis to trans isomerization. In addition, (2)H NMR has been applied to study the retinylidene dynamics in the dark and light-activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the beta-ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the beta-ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid-state (2)H NMR thus provides information about the flow of energy that triggers changes in hydrogen-bonding networks and helix movements in the activation mechanism of the photoreceptor.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
49
|
Sivanandam VN, Cai J, Redfield AG, Roberts MF. Phosphatidylcholine "wobble" in vesicles assessed by high-resolution 13C field cycling NMR spectroscopy. J Am Chem Soc 2009; 131:3420-1. [PMID: 19243091 DOI: 10.1021/ja808431h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High resolution (13)C NMR field cycling (covering 11.7 down to 0.002 T) relaxation studies of the sn-2 carbonyl of phosphatidylcholines in vesicles provide a detailed look at the dynamics of this position of the phospholipid in vesicles. The spin-lattice relaxation rate, R(1), observed down to 0.05 T is the result of dipolar and CSA relaxation components characterized by a single correlation time tau(c), with a small contribution from a faster motion contributing to CSA relaxation. At lower fields, R(1) increases further with a correlation time consistent with vesicle tumbling. The tau(c) is particularly interesting since it is 2-3 times slower than what is observed for (31)P of the same phospholipid. However, cholesterol increases the tau(c) for both (31)P and (13)C sites to the same value, approximately 25 ns. These observations suggest faster local motion dominates the dipolar relaxation of the (31)P, while a slower rotation or wobble dominates the relaxation of the carbonyl carbon by the alpha-CH(2) group. The faster motion must be damped with the sterol present. As a general methodology, high resolution (13)C field cycling may be useful for quantifying dynamics in other complex systems as long as a (13)C label (without attached protons) can be introduced.
Collapse
Affiliation(s)
- V N Sivanandam
- Department of Chemistry and Biochemistry and the Rosenstiel Basic Medical Sciences Research Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
50
|
Porasso RD, López Cascales JJ. Study of the effect of Na+ and Ca2+ ion concentration on the structure of an asymmetric DPPC/DPPC + DPPS lipid bilayer by molecular dynamics simulation. Colloids Surf B Biointerfaces 2009; 73:42-50. [PMID: 19487110 DOI: 10.1016/j.colsurfb.2009.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 11/30/2022]
Abstract
A molecular dynamics simulation study of the steady and dynamic properties of an asymmetric phospholipid bilayer was carried out in the presence of sodium or calcium ions. The asymmetric lipid bilayer was seen to resemble a cellular membrane of an eukaryotic cell, which was modeled by dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS), placing the DPPS in one of the two leaflets of the lipid bilayer. From a numerical analysis of the simulated trajectories, information was obtained with atomic resolution for both membrane leaflet concerning the effect of bilayer asymmetry on different properties of the lipid/water interface, such as the translational diffusion coefficient and rotational relaxation time of the water molecules, lipid hydration, and residence time of water around different lipid atoms. In addition, information related to lipid conformation, and lipid-lipid interactions was also analyzed.
Collapse
Affiliation(s)
- Rodolfo D Porasso
- Universidad Politécnica de Cartagena, Grupo de Bioinformática y Macromoléculas (BioMac) Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain
| | | |
Collapse
|