1
|
Töpfer K, Boittier E, Devereux M, Pasti A, Hamm P, Meuwly M. Force Fields for Deep Eutectic Mixtures: Application to Structure, Thermodynamics and 2D-Infrared Spectroscopy. J Phys Chem B 2024; 128:10937-10949. [PMID: 39446046 DOI: 10.1021/acs.jpcb.4c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Parametrizing energy functions for ionic systems can be challenging. Here, the total energy function for an eutectic system consisting of water, SCN-, K+ and acetamide is improved vis-a-vis experimentally measured properties. Given the importance of electrostatic interactions, two different types of models are considered: the first (model M0) uses atom-centered multipole whereas the other two (models M1 and M2) are based on fluctuating minimal distributed charges (fMDCM) that respond to geometrical changes of SCN-. The Lennard-Jones parameters of the anion are adjusted to best reproduce experimentally known hydration free energies and densities, which are matched to within a few percent for the final models irrespective of the electrostatic model. Molecular dynamics simulations of the eutectic mixtures with varying water content (between 0 and 100%) yield radial distribution functions and frequency correlation functions for the CN-stretch vibration. Comparison with experiments indicates that models based on fMDCM are considerably more consistent than those using multipoles. Computed viscosities from models M1 and M2 are within 30% of measured values and their change with increasing water content is consistent with experiments. This is not the case for model M0.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Eric Boittier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Mike Devereux
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Andrea Pasti
- Department of Chemistry, University of Zürich, CH-8000 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, CH-8000 Zürich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Qian C, Wang L. Unraveling the Structure-Spectrum Relationship of Yeast Phenylalanine Transfer RNA: Insights from Theoretical Modeling of Infrared Spectroscopy. Biochemistry 2024; 63:2075-2088. [PMID: 39099399 DOI: 10.1021/acs.biochem.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Yeast phenylalanine tRNA (tRNAphe) is a paradigmatic model in structural biology. In this work, we combine molecular dynamics simulations and spectroscopy modeling to establish a direct link between its structure, conformational dynamics, and infrared (IR) spectra. Employing recently developed vibrational frequency maps and coupling models, we apply a mixed quantum/classical treatment of the line shape theory to simulate the IR spectra of tRNAphe in the 1600-1800 cm-1 region across its folded and unfolded conformations and under varying concentrations of Mg2+ ions. The predicted IR spectra of folded and unfolded tRNAphe are in good agreement with experimental measurements, validating our theoretical framework. We then elucidate how the characteristic L-shaped tertiary structure of the tRNA and its modulation in response to diverse chemical environments give rise to distinct IR absorption peaks and line shapes. These calculations effectively bridge IR spectroscopy experiments and atomistic molecular simulations, unraveling the molecular origins of the observed IR spectra of tRNAphe. This work presents a robust theoretical protocol for modeling the IR spectroscopy of nucleic acids, which will facilitate its application as a sensitive probe for detecting the fluctuating secondary and tertiary structures of these essential biological macromolecules.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Jin S, Fan X, Stamper C, Mole RA, Yu Y, Hong L, Yu D, Baggioli M. On the temperature dependence of the density of states of liquids at low energies. Sci Rep 2024; 14:18805. [PMID: 39138323 PMCID: PMC11322638 DOI: 10.1038/s41598-024-69504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
We report neutron-scattering measurements of the density of states (DOS) of water and liquid Fomblin in a wide range of temperatures. In the liquid phase, we confirm the presence of a universal low-energy linear scaling of the experimental DOS as a function of the frequency, g ( ω ) = a ( T ) ω , which persists at all temperatures. The low-frequency scaling of the DOS exhibits a sharp jump at the melting point of water, below which the standard Debye's law, g ( ω ) ∝ ω 2 , is recovered. On the contrary, in Fomblin, we observe a continuous transition between the two exponents reflecting its glassy dynamics, which is confirmed by structure measurements. More importantly, in both systems, we find that the slope a(T) grows with temperature following an exponential Arrhenius-like form, a ( T ) ∝ exp ( - ⟨ E ⟩ / T ) . We confirm this experimental trend using molecular dynamics simulations and show that the prediction of instantaneous normal mode (INM) theory for a(T) is in qualitative agreement with the experimental data.
Collapse
Affiliation(s)
- Sha Jin
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Wilczek Quantum Center, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
| | - Xue Fan
- Shanghai National Center for Applied Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Caleb Stamper
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
- The Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia
| | - Richard A Mole
- The Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia
| | - Yuanxi Yu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai National Center for Applied Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dehong Yu
- The Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia.
| | - Matteo Baggioli
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Wilczek Quantum Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
| |
Collapse
|
4
|
Novelli F. Terahertz spectroscopy of thick and diluted water solutions. OPTICS EXPRESS 2024; 32:11041-11056. [PMID: 38570962 DOI: 10.1364/oe.510393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024]
Abstract
While bright terahertz sources are used to perform nonlinear experiments, they can be advantageous for high-precision linear measurements of opaque samples. By placing the sample away from the focus, nonlinearities can be suppressed, and sizeable amounts of transmitted radiation detected. Here, this approach is demonstrated for a 0.5 mm thick layer of liquid water in a static sample holder. Variations of the index of refraction as small as (7 ± 2) · 10-4 were detected at 0.58 THz for an aqueous salt solution containing ten millimoles of sodium chloride. To my knowledge, this precision is unprecedented in time-domain spectroscopy studies of diluted aqueous systems or other optically thick and opaque materials.
Collapse
|
5
|
Coppola F, Cimino P, Petrone A, Rega N. Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex. J Phys Chem A 2024; 128:1620-1633. [PMID: 38381887 DOI: 10.1021/acs.jpca.3c08366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation. Our protocol provides an accurate description that facilitates a direct comparison between transient vibrational analysis and time-resolved spectroscopic signals. This molecular level perspective enhances our understanding of photorelaxation processes confined in the adiabatic regime and offers an improved interpretation of vibrational spectra. Furthermore, it enables the quantification of anharmonic vibrational couplings between high- and low-frequency modes, specifically the TCNQ "rocking" and "bending" modes. Additionally, it identifies the primary vibrational mode that governs the adiabaticity between the ground state and the CT state. This comprehensive understanding of photorelaxation processes holds significant importance in the rational design and precise control of more efficient photovoltaic and sensor devices.
Collapse
Affiliation(s)
- Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Paola Cimino
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| |
Collapse
|
6
|
Herbert JM. Visualizing and characterizing excited states from time-dependent density functional theory. Phys Chem Chem Phys 2024; 26:3755-3794. [PMID: 38226636 DOI: 10.1039/d3cp04226j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Time-dependent density functional theory (TD-DFT) is the most widely-used electronic structure method for excited states, due to a favorable combination of low cost and semi-quantitative accuracy in many contexts, even if there are well recognized limitations. This Perspective describes various ways in which excited states from TD-DFT calculations can be visualized and analyzed, both qualitatively and quantitatively. This includes not just orbitals and densities but also well-defined statistical measures of electron-hole separation and of Frenkel-type exciton delocalization. Emphasis is placed on mathematical connections between methods that have often been discussed separately. Particular attention is paid to charge-transfer diagnostics, which provide indicators of when TD-DFT may not be trustworthy due to its categorical failure to describe long-range electron transfer. Measures of exciton size and charge separation that are directly connected to the underlying transition density are recommended over more ad hoc metrics for quantifying charge-transfer character.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
7
|
Ono J, Matsumura Y, Mori T, Saito S. Conformational Dynamics in Proteins: Entangled Slow Fluctuations and Nonequilibrium Reaction Events. J Phys Chem B 2024; 128:20-32. [PMID: 38133567 DOI: 10.1021/acs.jpcb.3c05307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Proteins exhibit conformational fluctuations and changes over various time scales, ranging from rapid picosecond-scale local atomic motions to slower microsecond-scale global conformational transformations. In the presence of these intricate fluctuations, chemical reactions occur and functions emerge. These conformational fluctuations of proteins are not merely stochastic random motions but possess distinct spatiotemporal characteristics. Moreover, chemical reactions do not always proceed along a single reaction coordinate in a quasi-equilibrium manner. Therefore, it is essential to understand spatiotemporal conformational fluctuations of proteins and the conformational change processes associated with reactions. In this Perspective, we shed light on the complex dynamics of proteins and their role in enzyme catalysis by presenting recent results regarding dynamic couplings and disorder in the conformational dynamics of proteins and rare but rapid enzymatic reaction events obtained from molecular dynamics simulations.
Collapse
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshihiro Matsumura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Shinji Saito
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
8
|
Sepulveda-Montaño LX, Galindo JF, Kuroda DG. Infrared Spectroscopy of Liquid Solutions as a Benchmarking Tool of Semiempirical QM Methods: The Case of GFN2-xTB. J Phys Chem B 2023; 127:7955-7963. [PMID: 37676972 DOI: 10.1021/acs.jpcb.3c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The accurate description of large molecular systems has triggered the development of new computational methods. Due to the computational cost of modeling large systems, the methods usually require a trade-off between accuracy and speed. Therefore, benchmarking to test the accuracy and precision of the method is an important step in their development. The typical gold standard for evaluating these methods is isolated molecules, because of the low computational cost. However, the advent of high-performance computing has made it possible to benchmark computational methods using observables from more complex systems such as liquid solutions. To this end, infrared spectroscopy provides a suitable set of observables (i.e., vibrational transitions) for liquid systems. Here, IR spectroscopy observables are used to benchmark the predictions of the newly developed GFN2-xTB semiempirical method. Three different IR probes (i.e., N-methylacetamide, benzonitrile, and semiheavy water) in solution are selected for this purpose. The work presented here shows that GFN2-xTB predicts central frequencies with errors of less than 10% in all probes. In addition, the method captures detailed properties of the molecular environment such as weak interactions. Finally, the GFN2-xTB correctly assesses the vibrational solvatochromism for N-methylacetamide and semiheavy water but does not have the accuracy needed to properly describe benzonitrile. Overall, the results indicate not only that GFN2-xTB can be used to predict the central frequencies and their dependence on the molecular environment with reasonable accuracy but also that IR spectroscopy data of liquid solutions provide a suitable set of observables for the benchmarking of computational methods.
Collapse
Affiliation(s)
| | - Johan Fabian Galindo
- Department of Chemistry, Universidad Nacional de Colombia sede Bogotá, 111321 Bogotá, Colombia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Ishikawa D, Shinohara R, Shichishima N, Fujii T. Infrared Spectra in the 1000-100 cm -1 Region Combined with 4000-3000 cm -1 Region to Evaluate the States of Water. APPLIED SPECTROSCOPY 2023; 77:1087-1094. [PMID: 37415528 DOI: 10.1177/00037028231180869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In this study, we evaluated the state of water by performing infrared (IR) spectroscopic analysis in the 4000-100 cm-1 region. The effects of ions on the structure of water molecules were investigated by analyzing specific IR bands of salt solutions in the 1000-100 cm-1 region. Chloride solutions of Li, Na, K, Cs, Ba, and Ca were prepared at different concentrations, and their IR spectra were recorded by the attenuated total reflection method. The isosbestic point was observed in the 1000-100 cm-1 region, and the position was related to the ratio of the Stokes radius and effective ionic radius of each ion. Two bands were identified at around 660 and 400 cm-1 by curve fitting, and the intensity ratio increased linearly with a decrease in water activity. Thus, this demonstrates the potential of the 1000-100 cm-1 region as a marker for the evaluation of water structure subjected to ions. Moreover, it is possible to evaluate different states of water simultaneously by combining this with the band in the 4000-3000 cm-1 region. These results successfully demonstrate the effectiveness of the spectra in the 1000-100 cm-1 region to evaluate the state of water in ionic solutions.
Collapse
Affiliation(s)
- Daitaro Ishikawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Rin Shinohara
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Natsumi Shichishima
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoyuki Fujii
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Moon J, Lindsay L, Egami T. Atomic dynamics in fluids: Normal mode analysis revisited. Phys Rev E 2023; 108:014601. [PMID: 37583138 DOI: 10.1103/physreve.108.014601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/09/2023] [Indexed: 08/17/2023]
Abstract
Developing microscopic understanding of the thermal properties of liquids is challenging due to their strong dynamic disorder, which prevents characterization of the atomic degrees of freedom. There have been significant research interests in the past few decades to extend the normal mode analysis for solids to instantaneous structures of liquids. However, the nature of normal modes that arise from these unstable structures is still elusive. In this paper, we explore the instantaneous eigenmodes of dynamical matrices of various Lennard-Jones argon liquid and gas systems at high temperatures and show that the normal modes can be interpreted as an interpolation of T→∞ (gas) and T=0 (solid) mode descriptions. We find that normal modes become increasingly collisional and translational, recovering atomistic gaslike behavior rather than vibrational with increase in temperature, suggesting that normal modes in liquids may be described by both solidlike and gaslike modes.
Collapse
Affiliation(s)
- Jaeyun Moon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Lucas Lindsay
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA; and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
11
|
Xu Y, Wong KY, Wang M. Theoretical Simulations of Kinetic Isotope Effects on Decarboxylation of 3-Carboxybenzisoxazole. Chemphyschem 2023; 24:e202200571. [PMID: 36409197 DOI: 10.1002/cphc.202200571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Kinetic isotope effect values on the decarboxylation of 3-carboxybenzisoxazole have been computed using the second-order Kleinert's variational perturbation theory in the framework of Feynman's path integrals along with the potential energy surface obtained at the MP2/6-31+G(d) level. Good agreement with the experimental data was obtained, demonstrating that this novel computational approach for computing KIE values of organic reaction is a viable alternative to the traditional method employing the Bigeleisen equation and harmonic vibrational frequencies. Compared with the experimental measurements, consideration of anharmonicity and tunneling effects can significantly improve the calculated KIE values, reducing the root-mean-square deviation from 1.19 % for traditional method to 0.20 % for path-integral method.
Collapse
Affiliation(s)
- Yuqing Xu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China
| | - Kin-Yiu Wong
- PO Box, 68233, Kowloon East Post Office, Hong Kong
| | - Meishan Wang
- School of Integrated Circuits, Ludong University, Yantai, 264025, China
| |
Collapse
|
12
|
Baconnier P, Shohat D, Dauchot O. Discontinuous Tension-Controlled Transition between Collective Actuations in Active Solids. PHYSICAL REVIEW LETTERS 2023; 130:028201. [PMID: 36706411 DOI: 10.1103/physrevlett.130.028201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The recent finding of collective actuation in active solids-solids embedded with active units-is a new promise for the design of multifunctional materials with genuine autonomy, and a better understanding of dense biological systems. Here, we combine the experimental study of centimetric model active solids, the numerical study of an agent-based model, and theoretical arguments to reveal a new form of collective actuation and how mechanical tension can serve as a general mechanism for transitioning between different collective actuation regimes. The presence of hysteresis when varying tension back and forth highlights the nontrivial selectivity of collective actuations.
Collapse
Affiliation(s)
- Paul Baconnier
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Dor Shohat
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Olivier Dauchot
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
13
|
Töpfer K, Pasti A, Das A, Salehi SM, Vazquez-Salazar LI, Rohrbach D, Feurer T, Hamm P, Meuwly M. Structure, Organization, and Heterogeneity of Water-Containing Deep Eutectic Solvents. J Am Chem Soc 2022; 144:14170-14180. [PMID: 35895323 DOI: 10.1021/jacs.2c04169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The spectroscopy and structural dynamics of a deep eutectic mixture (KSCN/acetamide) with varying water content is investigated from 2D IR (with the C-N stretch vibration of the SCN- anions as the reporter) and THz spectroscopy. Molecular dynamics simulations correctly describe the nontrivial dependence of both spectroscopic signatures depending on water content. For the 2D IR spectra, the MD simulations relate the steep increase in the cross-relaxation rate at high water content to the parallel alignment of packed SCN- anions. Conversely, the nonlinear increase of the THz absorption with increasing water content is mainly attributed to the formation of larger water clusters. The results demonstrate that a combination of structure-sensitive spectroscopies and molecular dynamics simulations provides molecular-level insights into the emergence of heterogeneity of such mixtures by modulating their composition.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Andrea Pasti
- Department of Chemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Anuradha Das
- Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
| | | | | | - David Rohrbach
- Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
14
|
Lewis NHC, Dereka B, Zhang Y, Maginn EJ, Tokmakoff A. From Networked to Isolated: Observing Water Hydrogen Bonds in Concentrated Electrolytes with Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2022; 126:5305-5319. [PMID: 35829623 DOI: 10.1021/acs.jpcb.2c03341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superconcentrated electrolytes have emerged as a promising class of materials for energy storage devices, with evidence that high voltage performance is possible even with water as the solvent. Here, we study the changes in the water hydrogen bonding network induced by the dissolution of lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in concentrations ranging from the dilute to the superconcentrated regimes. Using time-resolved two-dimensional infrared spectroscopy, we observe the progressive disruption of the water-water hydrogen bond network and the appearance of isolated water molecules interacting only with ions, which can be identified and spectroscopically isolated through the intermolecular cross-peaks between the water and the TFSI- ions. Analyzing the vibrational relaxation of excitations of the H2O stretching mode, we observe a transition in the dominant relaxation path as the bulk-like water vanishes and is replaced by ion-solvation water with the rapid single-step relaxation of delocalized stretching vibrations into the low frequency modes being replaced by multistep relaxation through the intramolecular H2O bend and into the TFSI- high frequency modes prior to relaxing to the low frequency structural degrees of freedom. These results definitively demonstrate the absence of vibrationally bulk-like water in the presence of high concentrations of LiTFSI and especially in the superconcentrated regime, while additionally revealing aspects of the water hydrogen bond network that have been difficult to discern from the vibrational spectroscopy of the neat liquid.
Collapse
Affiliation(s)
- Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Bogdan Dereka
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yong Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
15
|
Tang Z, Okazaki S. All-atomistic molecular dynamics study of the glass transition of amorphous polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Mukherjee K, Palchowdhury S, Maroncelli M. OH Stretching and Libration Bands of Solitary Water in Ionic Liquids and Dipolar Solvents Share a Single Dependence on Solvent Polarity. J Phys Chem B 2022; 126:4584-4598. [PMID: 35687693 DOI: 10.1021/acs.jpcb.2c02445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ionic liquids are an emerging class of materials which are finding application in a variety of technologically important areas. Because of their hydrophilic character, at least a small concentration of water is often present when ionic liquids are used in practical applications. This study employs infrared spectroscopy in the OH stretching and libration regions together with DFT calculations to better characterize the state of dilute water in ionic liquids. Water mole fractions (xw ∼ 0.1) are chosen such that nearly all water occurs in monomeric form and spectra probe the solvation structure and dynamics of solitary water molecules. New data are reported for a series of 1-ethyl-3-methylimidazolium liquids [Im21][X] with X- = (C2F5)3F3P-, (CF3SO2)2N-, BF4-, B(CN)4-, CF3SO3-, C2H5SO4-, NO3-, SCN-, and CH3CO2-, as well as for the two 1-hexyl-3-methylimidazolium liquids [Im61][Cl] and [Im61][I]. For comparison, spectra are also recorded in a variety of dipolar solvents, and much of the available literature data are summarized, providing a comprehensive perspective on monomeric water in homogeneous solution. Most prior studies of dilute water in ionic liquids interpreted OH stretching spectra only in terms of water being specifically bonded to two anions in A-···H-O-H···A- type solvates. The more detailed analysis presented here indicates the additional presence of asymmetrically solvated water, which in some cases includes both singly solvated (A-···H-O-H) and more subtle forms of asymmetric solvation. The same pattern of solvation also pertains to dipolar solvents capable of accepting hydrogen bonds from water. No clear distinction is found between OH spectra in high-polarity conventional solvents and ionic liquids. In all solvents, OH frequencies are strongly correlated to measures of solvent basicity or hydrogen bond accepting ability. Far-infrared spectra of the water libration band also show common trends in ionic and dipolar solvents. Despite the different character of the libration and OH modes, the frequencies of these vibrations show virtually the same solvent dependence (apart from sign) except in weakly polar or nonpolar solvents.
Collapse
Affiliation(s)
- Kallol Mukherjee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sourav Palchowdhury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Kumar S, Bagchi B. Correlation lengths in nanoconfined water and transport properties. J Chem Phys 2022; 156:224501. [PMID: 35705396 DOI: 10.1063/5.0090811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the existence of disparate static and dynamic correlation lengths that could describe the influence of confinement on nanoconfined water (NCW). Various aspects of viscous properties, such as anisotropy and viscoelasticity, of NCW are studied by varying the separation distance "d" between two confining hydrophobic plates. The transverse component of the mean square stress exhibits slow spatial decay (measured from the surface) beyond ∼1.8 nm, which was not reported before. The static correlation length obtained from fitting the exponential decay of the transverse mean-square stress with d is 0.75 nm, while the decay time of the stress-stress time correlation function gives a dynamic correlation length of only 0.35 nm. The shortness of the dynamic correlation length seems to arise from the low sensitivity of orientational relaxation to confinement. In the frequency-dependent viscosity, we observe a new peak at about 50 cm-1 that is not present in the bulk. This new peak is prominent even at 3 nm separations. The peak is absent in the bulk, although it is close to the intermolecular -O-O-O- bending mode well known in liquid water. We further explore the relationship between diffusion and viscosity in NCW by varying d.
Collapse
Affiliation(s)
- Shubham Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Stamper C, Cortie D, Yue Z, Wang X, Yu D. Experimental Confirmation of the Universal Law for the Vibrational Density of States of Liquids. J Phys Chem Lett 2022; 13:3105-3111. [PMID: 35362320 DOI: 10.1021/acs.jpclett.2c00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An analytical model describing the vibrational density of states (VDOS) of liquids has long been elusive, owing to the complexities of liquid dynamics. Nevertheless, Zaccone and Baggioli have recently developed such a model which was proposed to be the universal law for the vibrational density of states of liquids. Distinct from the Debye law, g(ω) ∝ ω2, for solids, the universal law for liquids reveals a linear relationship, g(ω) ∝ ω, in the low-energy region. We have confirmed this universal law with experimental VDOS measured by inelastic neutron scattering on real liquid systems including water, liquid metal, and polymer liquids, and have applied this model to extract the effective relaxation rate for the short time dynamics for each liquid. The model has also been further evaluated in the prediction of the specific heat with comparison to existing experimental data as well as with values obtained by different approaches.
Collapse
Affiliation(s)
- Caleb Stamper
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
- Institute for Superconducting and Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - David Cortie
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
- Institute for Superconducting and Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Zengji Yue
- Institute for Superconducting and Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Xiaolin Wang
- Institute for Superconducting and Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Dehong Yu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| |
Collapse
|
19
|
Salehi SM, Meuwly M. Site-Selective Dynamics of Ligand-Free and Ligand-Bound Azidolysozyme. J Chem Phys 2022; 156:105105. [DOI: 10.1063/5.0077361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Markus Meuwly
- Department of Chemistry, University of Basel Department of Chemistry, Switzerland
| |
Collapse
|
20
|
Ohmine I, Saito S. Dynamical Behavior of Water; Fluctuation, Reactions and Phase Transitions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iwao Ohmine
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
21
|
Floyd C, Levine H, Jarzynski C, Papoian GA. Understanding cytoskeletal avalanches using mechanical stability analysis. Proc Natl Acad Sci U S A 2021; 118:e2110239118. [PMID: 34611021 PMCID: PMC8521716 DOI: 10.1073/pnas.2110239118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic cells are mechanically supported by a polymer network called the cytoskeleton, which consumes chemical energy to dynamically remodel its structure. Recent experiments in vivo have revealed that this remodeling occasionally happens through anomalously large displacements, reminiscent of earthquakes or avalanches. These cytoskeletal avalanches might indicate that the cytoskeleton's structural response to a changing cellular environment is highly sensitive, and they are therefore of significant biological interest. However, the physics underlying "cytoquakes" is poorly understood. Here, we use agent-based simulations of cytoskeletal self-organization to study fluctuations in the network's mechanical energy. We robustly observe non-Gaussian statistics and asymmetrically large rates of energy release compared to accumulation in a minimal cytoskeletal model. The large events of energy release are found to correlate with large, collective displacements of the cytoskeletal filaments. We also find that the changes in the localization of tension and the projections of the network motion onto the vibrational normal modes are asymmetrically distributed for energy release and accumulation. These results imply an avalanche-like process of slow energy storage punctuated by fast, large events of energy release involving a collective network rearrangement. We further show that mechanical instability precedes cytoquake occurrence through a machine-learning model that dynamically forecasts cytoquakes using the vibrational spectrum as input. Our results provide a connection between the cytoquake phenomenon and the network's mechanical energy and can help guide future investigations of the cytoskeleton's structural susceptibility.
Collapse
Affiliation(s)
- Carlos Floyd
- Biophysics Program, University of Maryland, College Park, MD 20742
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115
- Department of Physics, Northeastern University, Boston, MA 02115
- Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742;
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742;
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| |
Collapse
|
22
|
Mondal P, Cazade PA, Das AK, Bereau T, Meuwly M. Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine Trimer. J Phys Chem B 2021; 125:10928-10938. [PMID: 34559531 DOI: 10.1021/acs.jpcb.1c05423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics and spectroscopy of N-methyl-acetamide (NMA) and trialanine in solution are characterized from molecular dynamics simulations using different energy functions, including a conventional point charge (PC)-based force field, one based on a multipolar (MTP) representation of the electrostatics, and a semiempirical DFT method. For the 1D infrared spectra, the frequency splitting between the two amide-I groups is 10 cm-1 from the PC, 13 cm-1 from the MTP, and 47 cm-1 from self-consistent charge density functional tight-binding (SCC-DFTB) simulations, compared with 25 cm-1 from experiment. The frequency trajectory required for the frequency fluctuation correlation function (FFCF) is determined from individual normal mode (INM) and full normal mode (FNM) analyses of the amide-I vibrations. The spectroscopy, time-zero magnitude of the FFCF C(t = 0), and the static component Δ02 from simulations using MTP and analysis based on FNM are all consistent with experiments for (Ala)3. Contrary to this, for the analysis excluding mode-mode coupling (INM), the FFCF decays to zero too rapidly and for simulations with a PC-based force field, the Δ02 is too small by a factor of two compared with experiments. Simulations with SCC-DFTB agree better with experiment for these observables than those from PC-based simulations. The conformational ensemble sampled from simulations using PCs is consistent with the literature (including PII, β, αR, and αL), whereas that covered by the MTP-based simulations is dominated by PII with some contributions from β and αR. This agrees with and confirms recently reported Bayesian-refined populations based on 1D infrared experiments. FNM analysis together with a MTP representation provides a meaningful model to correctly describe the dynamics of hydrated trialanine.
Collapse
Affiliation(s)
- Padmabati Mondal
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Tristan Bereau
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.,Department of Chemistry, Brown University, Providence/RI 02912, United States
| |
Collapse
|
23
|
Effects of hydrophobic solute on water normal modes. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Novelli F, Hoberg C, Adams EM, Klopf JM, Havenith M. Terahertz pump-probe of liquid water at 12.3 THz. Phys Chem Chem Phys 2021; 24:653-665. [PMID: 34570144 PMCID: PMC9096911 DOI: 10.1039/d1cp03207k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The dynamical complexity of the hydrogen-bonded water network can be investigated with intense Terahertz (THz) spectroscopy, which can drive the liquid into the nonlinear response regime and probe anharmonicity effects. Here we report single-color and polarization-dependent pump–probe experiments at 12.3 THz on liquid water, exciting the librational mode. By comparing results obtained on a static sample and a free-flowing water jet, we are able to disentangle the distinct contributions by thermal, acoustic, and nonlinear optical effects. We show that the transient transmission by the static water layer on a time scale of hundreds of microseconds can be described by thermal (slow) and acoustic (temperature-dependent) effects. In addition, during pump probe overlap we observe an anisotropic nonlinear optical response. This nonlinear signal is more prominent in the liquid jet than in the static cell, where temperature and density perturbations are more pronounced. Our measurements confirm that the THz excitation resonates with the rotationally-damped motion of water molecules, resulting in enhanced transient anisotropy. This model can be used to explain the non-linear response of water in the frequency range between about 1 and 20 THz. The excitation on the librational band of liquid water at 12.3 THz resonates with the rotationally-damped motion of water molecules.![]()
Collapse
Affiliation(s)
- Fabio Novelli
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Claudius Hoberg
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Ellen M Adams
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| | - J Michael Klopf
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
25
|
Ishikawa D, Yang J, Fujii T. Quantification of Starch Order in Physically Modified Rice Flours Using Small-Angle X-ray Scattering (SAXS) and Fourier Transform Infrared (FT-IR) Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:1033-1042. [PMID: 34264122 DOI: 10.1177/00037028211028278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to understand the ordered structure of starch in rice flour based on a physical modification with non-heating, milling, and water sorption through the structural evaluation of rice flour using small-angle X-ray scattering (SAXS) and infrared spectroscopy within the 4000-100 cm-1 region. The SAXS pattern of the samples with low moisture contents subjected to milling yield a band within the 0.4-0.9 nm-1 of the q range owing to a lamellar repeat of starch with an ordered structure in rice flour. We proposed an order parameter using the intensity of the SAXS band to quantify the order structure of starch in rice flour, and the true density was negatively correlated with the order parameter. Infrared band at 990 cm-1 in COH bending mode applied to the hydroxyl group of C6 shifted to a low wavenumber corresponding to the order parameter. A linear correlation was found between the order parameter and the 990 cm-1 and band at 861 cm-1 owing to COC symmetrical stretching of glycoside bond and CH2 deformation of the glucose unit of starch, 572, 472, and 436 cm-1, owing to the pyranose ring in the glucose unit of starch. The identified infrared bands are effective for quantifying the ordered structure of starch at the lamellar level. When subjected to water sorption, the band position at 990 cm-1 shifted to a higher wavenumber above a water activity of 0.7. This result revealed that the water-induced transition of glass to rubber of starch in rice flour can be clearly evaluated through infrared spectroscopy using the band at 990 cm-1. In addition, the band at 861 cm-1 also shifted to a higher wavenumber, whereas those at 572 and 436 cm-1 did not show a significant shift. These results indicate that water sorption slightly affects the internal structure and may mainly affect the surface of starch.
Collapse
Affiliation(s)
- Daitaro Ishikawa
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Jiamin Yang
- Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Tomoyuki Fujii
- Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| |
Collapse
|
26
|
Coppola F, Cimino P, Raucci U, Chiariello MG, Petrone A, Rega N. Exploring the Franck-Condon region of a photoexcited charge transfer complex in solution to interpret femtosecond stimulated Raman spectroscopy: excited state electronic structure methods to unveil non-radiative pathways. Chem Sci 2021; 12:8058-8072. [PMID: 34194695 PMCID: PMC8208128 DOI: 10.1039/d1sc01238j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 01/12/2023] Open
Abstract
We present electronic structure methods to unveil the non-radiative pathways of photoinduced charge transfer (CT) reactions that play a main role in photophysics and light harvesting technologies. A prototypical π-stacked molecular complex consisting of an electron donor (1-chloronaphthalene, 1ClN) and an electron acceptor (tetracyanoethylene, TCNE) was investigated in dichloromethane solution for this purpose. The characterization of TCNE:π:1ClN in both its equilibrium ground and photoinduced low-lying CT electronic states was performed by using a reliable and accurate theoretical-computational methodology exploiting ab initio molecular dynamics simulations. The structural and vibrational time evolution of key vibrational modes is found to be in excellent agreement with femtosecond stimulated Raman spectroscopy experiments [R. A. Mathies et al., J. Phys. Chem. A, 2018, 122, 14, 3594], unveiling a correlation between vibrational fingerprints and electronic properties. The evaluation of nonadiabatic coupling matrix elements along generalized normal modes has made possible the interpretation on the molecular scale of the activation of nonradiative relaxation pathways towards the ground electronic state. In particular, two low frequency vibrational modes such as the out of plane bending and dimer breathing and the TCNE central C[double bond, length as m-dash]C stretching play a prominent role in relaxation phenomena from the electronic CT state to the ground state one.
Collapse
Affiliation(s)
- Federico Coppola
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Paola Cimino
- Department of Pharmaceutical Sciences, University of Salerno Salerno 84084 Italy
| | - Umberto Raucci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Maria Gabriella Chiariello
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
- Centro Interdipartimentale di Ricerca sui Biomateriali (CRIB) Piazzale Tecchio Napoli I-80125 Italy
| |
Collapse
|
27
|
Meng W, Jiang Y, Rothschild D, Lipke M, Hall G, Wang L. Modeling the structure and infrared spectra of omega-3 fatty acid esters. J Chem Phys 2021; 153:035101. [PMID: 32716186 DOI: 10.1063/5.0015402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 dietary supplements provide a rich source of the active moieties eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which exist in the form of triacylglycerols or ethyl esters. Infrared (IR) spectroscopy provides a rapid and quantitative tool to assess the quality of these products as specific normal modes, in particular the ester carbonyl stretch modes, exhibit characteristic spectral features for the two ester forms of omega-3 fatty acids. To uncover the origin of the observed spectra, in this work, we perform molecular dynamics simulations of EPA and DHA ethyl esters and triacylglycerols to characterize their conformation, packing, and dynamics in the liquid phase and use a mixed quantum/classical approach to calculate their IR absorption spectra in the ester carbonyl stretch region. We show that the ester liquids exhibit slow dynamics in spectral diffusion and translational and rotational motion, consistent with the diffusion ordered NMR spectroscopy measurements. We further demonstrate that the predicted IR spectra are in good agreement with experiments and reveal how a competition between intermolecular and intramolecular interactions gives rise to distinct absorption peaks for the fatty acid esters.
Collapse
Affiliation(s)
- Wenting Meng
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yaoyukun Jiang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Daniel Rothschild
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Mark Lipke
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Gene Hall
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
28
|
Romo TD, Grossfield A, Markelz AG. Persistent Protein Motions in a Rugged Energy Landscape Revealed by Normal Mode Ensemble Analysis. J Chem Inf Model 2020; 60:6419-6426. [PMID: 33103888 DOI: 10.1021/acs.jcim.0c00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins are allosteric machines that couple motions at distinct, often distant, sites to control biological function. Low-frequency structural vibrations are a mechanism of this long-distance connection and are often used computationally to predict correlations, but experimentally identifying the vibrations associated with specific motions has proved challenging. Spectroscopy is an ideal tool to explore these excitations, but measurements have been largely unable to identify important frequency bands. The result is at odds with some previous calculations and raises the question what methods could successfully characterize protein structural vibrations. Here we show the lack of spectral structure arises in part from the variations in protein structure as the protein samples the energy landscape. However, by averaging over the energy landscape as sampled using an aggregate 18.5 μs of all-atom molecular dynamics simulation of hen egg white lysozyme and normal-mode analyses, we find vibrations with large overlap with functional displacements are surprisingly concentrated in narrow frequency bands. These bands are not apparent in either the ensemble averaged vibrational density of states or isotropic absorption. However, in the case of the ensemble averaged anisotropic absorption, there is persistent spectral structure and overlap between this structure and the functional displacement frequency bands. We systematically lay out heuristics for calculating the spectra robustly, including the need for statistical sampling of the protein and inclusion of adequate water in the spectral calculation. The results show the congested spectrum of these complex molecules obscures important frequency bands associated with function and reveal a method to overcome this congestion by combining structurally sensitive spectroscopy with robust normal mode ensemble analysis.
Collapse
Affiliation(s)
- Tod D Romo
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Andrea G Markelz
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| |
Collapse
|
29
|
Xu Y, Wong KY, Wang M, Liu D, Zhao W, Zou D, Li X. Theoretical Simulations of Heavy-Atom Kinetic Isotope Effects in Aliphatic Claisen Rearrangement. J Phys Chem A 2020; 124:10678-10686. [DOI: 10.1021/acs.jpca.0c07784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuqing Xu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Kin-Yiu Wong
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, People’s Republic of China
| | - Meishan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Desheng Liu
- School of Physics, Shandong University, Jinan 250100, People’s Republic of China
- Department of Physics, Jining University, Qufu 273155, People’s Republic of China
| | - Wenkai Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Dongqing Zou
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Xiaoteng Li
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| |
Collapse
|
30
|
Donati G, Petrone A, Rega N. Multiresolution continuous wavelet transform for studying coupled solute-solvent vibrations via ab initio molecular dynamics. Phys Chem Chem Phys 2020; 22:22645-22661. [PMID: 33015693 DOI: 10.1039/d0cp02495c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibrational analysis in solution and the theoretical determination of infrared and Raman spectra are of key importance in many fields of chemical interest. Vibrational band dynamics of molecules and their sensitivity to the environment can also be captured by these spectroscopies in their time dependent version. However, it is often difficult to provide an interpretation of the experimental data at the molecular scale, such as molecular mechanisms or the processes hidden behind them. In this work, we present a theoretical-computational protocol based on ab initio molecular dynamics simulations and a combination of normal-like (generalized) mode analysis of solute-solvent clusters with a wavelet transform, for the first time. The case study is the vibrational dynamics of N-methyl-acetamide (NMA) in water solution, a well-known model of hydration of peptides and proteins. Amide modes are typical bands of peptide and protein backbone, and their couplings with the environment are very challenging in terms of the accurate prediction of solvent induced intensity and frequency shifts. The contribution of water molecules surrounding NMA to the composition of generalized and time resolved modes is introduced in our vibrational analysis, showing unequivocally its influence on the amide mode spectra. It is also shown that such mode compositions need the inclusion of the first shell solvent molecules to be accurately described. The wavelet analysis is proven to be strongly recommended to follow the time evolution of the spectra, and to capture vibrational band couplings and frequency shifts over time, preserving at the same time a well-balanced time-frequency resolution. This peculiar feature also allows one to perform a combined structural-vibrational analysis, where the different strengths of hydrogen bond interactions can quantitatively affect the amide bands over time at finite temperature. The proposed method allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, in this case the peptide backbone, and its hydration layouts.
Collapse
Affiliation(s)
- Greta Donati
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M. S. Angelo, Via Cintia, I-80126 Napoli, Italy.
| | | | | |
Collapse
|
31
|
Farrell A, González-Jiménez M, Ramakrishnan G, Wynne K. Low-Frequency (Gigahertz to Terahertz) Depolarized Raman Scattering Off n-Alkanes, Cycloalkanes, and Six-Membered Rings: A Physical Interpretation. J Phys Chem B 2020; 124:7611-7624. [PMID: 32790389 PMCID: PMC7476039 DOI: 10.1021/acs.jpcb.0c03769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/06/2020] [Indexed: 11/29/2022]
Abstract
Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.
Collapse
Affiliation(s)
- Andrew
J. Farrell
- School of Chemistry, University
of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | - Klaas Wynne
- School of Chemistry, University
of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
32
|
Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, Backus EHG, Mukamel S, Bonn M, Nagata Y. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Chem Rev 2020; 120:3633-3667. [PMID: 32141737 PMCID: PMC7181271 DOI: 10.1021/acs.chemrev.9b00512] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 12/26/2022]
Abstract
From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Collapse
Affiliation(s)
- Fujie Tang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Jérémy R. Rouxel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, State Key Laboratory of Surface Physics and Key Laboratory
of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Ueno S, Tanimura Y. Modeling Intermolecular and Intramolecular Modes of Liquid Water Using Multiple Heat Baths: Machine Learning Approach. J Chem Theory Comput 2020; 16:2099-2108. [DOI: 10.1021/acs.jctc.9b01288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seiji Ueno
- HPC Systems Inc., Nakagyoku, Kyoto 604, Japan
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
34
|
Tang PH, Wu TM. Instantaneous normal mode analysis for OKE reduced spectra of liquid and supercooled water: Contributions of low-density and high-density liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Tanaka H, Yagasaki T, Matsumoto M. On the role of intermolecular vibrational motions for ice polymorphs. II. Atomic vibrational amplitudes and localization of phonons in ordered and disordered ices. J Chem Phys 2020; 152:074501. [PMID: 32087662 DOI: 10.1063/1.5139697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigate the vibrational amplitudes and the degree of the phonon localization in 19 ice forms, both crystalline and amorphous, by a quasi-harmonic approximation with a reliable classical intermolecular interaction model for water. The amplitude in the low pressure ices increases with compression, while the opposite trend is observed in the medium and high pressure ices. The amplitude of the oxygen atom does not differ from that of hydrogen in low pressure ices apart from the contribution from the zero-point vibrations. This is accounted for by the coherent but opposite phase motions in the mixed translational and rotational vibrations. A decoupling of translation-dominant and rotation-dominant motions significantly reduces the vibrational amplitudes in any ice form. The amplitudes in ice III are found to be much larger than any other crystalline ice form. In order to investigate the vibrational mode characteristics, the moment ratio of the atomic displacements for individual phonon modes, called the inverse participation ratio, is calculated and the degree of the phonon localization in crystalline and amorphous ices is discussed. It is found that the phonon modes in the hydrogen-ordered ice forms are remarkably spread over the entire crystal having propagative or diffusive characteristic, while many localized modes appear at the edges of the vibrational bands, called dissipative modes, in the hydrogen-disordered counterparts. The degree of localization is little pronounced in low density amorphous and high density amorphous due to disordering of oxygen atoms.
Collapse
Affiliation(s)
- Hideki Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Takuma Yagasaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Masakazu Matsumoto
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
36
|
Dasgupta S, Rana B, Herbert JM. Ab Initio Investigation of the Resonance Raman Spectrum of the Hydrated Electron. J Phys Chem B 2019; 123:8074-8085. [PMID: 31442044 DOI: 10.1021/acs.jpcb.9b04895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the conventional picture, the aqueous or "hydrated" electron, e-(aq), occupies an excluded volume (cavity) in the structure of liquid water. However, simulations with certain one-electron models predict a more delocalized spin density for the unpaired electron, with no distinct cavity structure. It has been suggested that only the latter (non-cavity) structure can explain the hydrated electron's resonance Raman spectrum, although this suggestion is based on calculations using empirical frequency maps developed for neat liquid water, not for e-(aq). All-electron ab initio calculations presented here demonstrate that both cavity and non-cavity models of e-(aq) afford significant red-shifts in the O-H stretching region. This effect is nonspecific and arises due to electron penetration into frontier orbitals of the water molecules. Only the conventional cavity model, however, reproduces the splitting of the H-O-D bend (in isotopically mixed water) that is observed experimentally and arises due to the asymmetric environments of the hydroxyl moieties in the electron's first solvation shell. We conclude that the cavity model of e-(aq) is more consistent with the measured resonance Raman spectrum than is the delocalized, non-cavity model, despite previous suggestions to the contrary. Furthermore, calculations with hybrid density functionals and with Hartree-Fock theory predict that non-cavity liquid geometries afford only unbound (continuum) states for an extra electron, whereas in reality this energy level should lie more than 3 eV below vacuum level. As such, the non-cavity model of e-(aq) appears to be inconsistent with available vibrational spectroscopy, photoelectron spectroscopy, and quantum chemistry.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
37
|
Vondracek H, Imoto S, Knake L, Schwaab G, Marx D, Havenith M. Hydrogen-Bonding in Liquid Water at Multikilobar Pressures. J Phys Chem B 2019; 123:7748-7753. [PMID: 31419128 DOI: 10.1021/acs.jpcb.9b06821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-precision THz (30 to 360 cm-1) spectra of bulk liquid water are presented from ambient conditions up to hydrostatic pressures of 10 kbar. In concert with ab initio simulations, this allows us to characterize the molecular-level changes of the H-bond network under solvent stress conditions. Both the experimental and theoretical THz spectra reveal a blue shift in the intermolecular translational mode at 180 cm-1 by 40 cm-1 at 10 kbar and a blue shift together with an intensity increase in the relaxation mode. These changes can be traced back to a pressure-induced increase of the population of so-called short H-bond double donor configurations at the expense of those with longer such intermolecular bonds. Distinct electronic polarization effects are critical to capture the characteristic intensity changes of the THz line shape function. These advances in high-pressure THz spectroscopy open the door to investigate the pressure response of solvation shells and solute-solvent couplings.
Collapse
Affiliation(s)
- Hendrik Vondracek
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Sho Imoto
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Lukas Knake
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| |
Collapse
|
38
|
Bistafa C, Kitamura Y, Martins-Costa MTC, Nagaoka M, Ruiz-López MF. Vibrational Spectroscopy in Solution through Perturbative ab Initio Molecular Dynamics Simulations. J Chem Theory Comput 2019; 15:4615-4622. [DOI: 10.1021/acs.jctc.9b00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Bistafa
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
| | - Yukichi Kitamura
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
| | - Marilia T. C. Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Masataka Nagaoka
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
- ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 6158520, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 3320012, Japan
- Future Value Creation Research Center, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
| | - Manuel F. Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
- Future Value Creation Research Center, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
| |
Collapse
|
39
|
Ojha D, Chandra A. Urea in Water: Structure, Dynamics, and Vibrational Echo Spectroscopy from First-Principles Simulations. J Phys Chem B 2019; 123:3325-3336. [DOI: 10.1021/acs.jpcb.9b01904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deepak Ojha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
40
|
Imoto S, Marx D. Pressure response of the THz spectrum of bulk liquid water revealed by intermolecular instantaneous normal mode analysis. J Chem Phys 2019; 150:084502. [PMID: 30823759 DOI: 10.1063/1.5080381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The radial distribution functions of liquid water are known to change significantly their shape upon hydrostatic compression from ambient conditions deep into the kbar pressure regime. It has been shown that despite their eye-catching changes, the fundamental locally tetrahedral fourfold H-bonding pattern that characterizes ambient water is preserved up to about 10 kbar (1 GPa), which is the stability limit of liquid water at 300 K. The observed increase in coordination number comes from pushing water molecules into the first coordination sphere without establishing an H-bond, resulting in roughly two such additional interstitial molecules at 10 kbar. THz spectroscopy has been firmly established as a powerful experimental technique to analyze H-bonding in aqueous solutions given that it directly probes the far-infrared lineshape and thus the prominent H-bond network mode around 180 cm-1. We, therefore, set out to assess pressure effects on the THz response of liquid water at 10 kbar in comparison to the 1 bar (0.1 MPa) reference, both at 300 K, with the aim to trace back the related lineshape changes to the structural level. To this end, we employ the instantaneous normal mode approximation to rigorously separate the H-bonding peak from the large background arising from the pronounced librational tail. By exactly decomposing the total molecular dynamics into hindered translations, hindered rotations, and intramolecular vibrations, we find that the H-bonding peak arises from translation-translation and translation-rotation correlations, which are successively decomposed down to the level of distinct local H-bond environments. Our utmost detailed analysis based on molecular pair classifications unveils that H-bonded double-donor water pairs contribute most to the THz response around 180 cm-1, whereas interstitial waters are negligible. Moreover, short double-donor H-bonds have their peak maximum significantly shifted toward higher frequencies with respect to such long H-bonds. In conjunction with an increasing relative population of these short H-bonds versus the long ones (while the population of other water pair classes is essentially pressure insensitive), this explains not only the blue-shift of the H-bonding peak by about 20-30 cm-1 in total from 1 bar to 10 kbar but also the filling of the shallow local minimum of the THz lineshape located in between the network peak and the red-wing of the librational band at 1 bar. Based on the changing populations as a function of pressure, we are also able to roughly estimate the pressure-dependence of the H-bond network mode and find that its pressure response and thus the blue-shifting are most pronounced at low kbar pressures.
Collapse
Affiliation(s)
- Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
41
|
Mukherjee S, Mondal S, Bagchi B. Mechanism of Solvent Control of Protein Dynamics. PHYSICAL REVIEW LETTERS 2019; 122:058101. [PMID: 30822020 DOI: 10.1103/physrevlett.122.058101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 06/09/2023]
Abstract
We find that the coupled interactions between protein and water polarization fluctuations play a dominant role in driving the configuration space random walk of solvated proteins. We perform atomistic molecular dynamics simulations on five proteins. Owing to a very low dielectric constant of protein, its dipolar groups experience forces from water along with local forces due to protein atoms. Energy fluctuations reveal a pronounced anticorrelation between protein and water contributions. The protein energy spectrum shows bimodal 1/f noise, which can be attributed to the influence of water on the dynamics of protein.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
42
|
Saito S, Bagchi B. Thermodynamic picture of vitrification of water through complex specific heat and entropy: A journey through “no man’s land”. J Chem Phys 2019; 150:054502. [DOI: 10.1063/1.5079594] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shinji Saito
- Institute for Molecular Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585,
Japan
| | - Biman Bagchi
- Indian Institute of Science,
Bangalore 560012, India
| |
Collapse
|
43
|
Lewis NHC, Fournier JA, Carpenter WB, Tokmakoff A. Direct Observation of Ion Pairing in Aqueous Nitric Acid Using 2D Infrared Spectroscopy. J Phys Chem B 2018; 123:225-238. [DOI: 10.1021/acs.jpcb.8b10019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicholas H. C. Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph A. Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William B. Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
44
|
Shiraga K, Tanaka K, Arikawa T, Saito S, Ogawa Y. Reconsideration of the relaxational and vibrational line shapes of liquid water based on ultrabroadband dielectric spectroscopy. Phys Chem Chem Phys 2018; 20:26200-26209. [PMID: 30318523 DOI: 10.1039/c8cp04778b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Debye relaxation function is widely used to describe the large dielectric dispersion of ambient water around 20 GHz. However, from a theoretical point of view, this function is supposed to give incorrect predictions at high frequencies owing to the inappropriate assumption that inertial effects and intermolecular interactions do not affect the relaxation dynamics. Our ultrabroadband spectroscopy investigation of liquid water ranging from 500 MHz to 400 THz did demonstrate that the Debye function is inaccurate far above the microwave region. As an alternative, we tried a stochastic frequency modulation (SFM) model assuming instantaneous modification of the line shapes by the correlation with the surrounding system. The SFM relaxation model reproduced the experimental dielectric spectra up to 400 THz, showing that the hydrogen-bond dynamics are associated with the inertial effect that causes the non-exponential relaxation behaviour in a very short time (typically 25 fs). Within the framework of this relaxation model, the hindered translation modes are able to be approximated as fast modulation (homogeneous) line shapes because the interaction time with frequency modulation is too short. Compared with them, the libation mode is found to have a relatively slow modulation (inhomogeneous) origin, where disturbance of water hydrogen bonds induced by the hindered translations leads to fluctuations in the libration frequency.
Collapse
Affiliation(s)
- Keiichiro Shiraga
- RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Koichiro Tanaka
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan. and Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Arikawa
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan. and The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Ogawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
45
|
Inakollu VSS, Yu H. A systematic benchmarking of computational vibrational spectroscopy with DFTB3: Normal mode analysis and fast Fourier transform dipole autocorrelation function. J Comput Chem 2018; 39:2067-2078. [DOI: 10.1002/jcc.25390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Affiliation(s)
- V. S. Sandeep Inakollu
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2522 Australia
- Molecular Horizons University of Wollongong New South Wales 2522 Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2522 Australia
- Molecular Horizons University of Wollongong New South Wales 2522 Australia
- Illawarra Health and Medical Research Institute Wollongong New South Wales 2522 Australia
| |
Collapse
|
46
|
|
47
|
Kuffel A, Szałachowska M. The significance of the properties of water for the working cycle of the kinesin molecular motor. J Chem Phys 2018; 148:235101. [DOI: 10.1063/1.5020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Monika Szałachowska
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
48
|
Carpenter WB, Fournier JA, Biswas R, Voth GA, Tokmakoff A. Delocalization and stretch-bend mixing of the HOH bend in liquid water. J Chem Phys 2018; 147:084503. [PMID: 28863511 DOI: 10.1063/1.4987153] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid water's rich sub-picosecond vibrational dynamics arise from the interplay of different high- and low-frequency modes evolving in a strong yet fluctuating hydrogen bond network. Recent studies of the OH stretching excitations of H2O indicate that they are delocalized over several molecules, raising questions about whether the bending vibrations are similarly delocalized. In this paper, we take advantage of an improved 50 fs time-resolution and broadband infrared (IR) spectroscopy to interrogate the 2D IR lineshape and spectral dynamics of the HOH bending vibration of liquid H2O. Indications of strong bend-stretch coupling are observed in early time 2D IR spectra through a broad excited state absorption that extends from 1500 cm-1 to beyond 1900 cm-1, which corresponds to transitions from the bend to the bend overtone and OH stretching band between 3150 and 3550 cm-1. Pump-probe measurements reveal a fast 180 fs vibrational relaxation time, which results in a hot-ground state spectrum that is the same as observed for water IR excitation at any other frequency. The fastest dynamical time scale is 80 fs for the polarization anisotropy decay, providing evidence for the delocalized or excitonic character of the bend. Normal mode analysis conducted on water clusters extracted from molecular dynamics simulations corroborate significant stretch-bend mixing and indicate delocalization of δHOH on 2-7 water molecules.
Collapse
Affiliation(s)
- William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph A Fournier
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rajib Biswas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
49
|
Berg MC, Benetti AR, Telling MTF, Seydel T, Yu D, Daemen LL, Bordallo HN. Nanoscale Mobility of Aqueous Polyacrylic Acid in Dental Restorative Cements. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9904-9915. [PMID: 29504390 DOI: 10.1021/acsami.7b15735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen dynamics in a time range from hundreds of femtoseconds to nanoseconds can be directly analyzed using neutron spectroscopy, where information on the inelastic and quasi-elastic scattering, hereafter INS and QENS, can be obtained. In this study, we applied these techniques to understand how the nanoscale mobility of the aqueous solution of polyacrylic acid (PAA) used in conventional glass ionomer cements (GICs) changes under confinement. Combining the spectroscopic analysis with calorimetric results, we were able to separate distinct motions within both the liquid and the GICs. The QENS analysis revealed that the self-diffusion translational motion identified in the liquid is also visible in the GIC. However, as a result of the formation of the cement matrix and its setting, both translational diffusion and residence time differed from the PAA solution. When comparing the local diffusion obtained for the selected GIC, the only noticeable difference was observed for the slow dynamics associated with the polymer chain. Additionally, over short-term aging, progressive water binding to the polymer chain occurred in one of the investigated GICs. Finally, a considerable change in the density of the GIC without progressive water binding indicates an increased polymer cross-linking. Taken together, our results suggest that accurate and deep understanding of polymer-water binding, polymer cross-linking, as well as material density changes occurring during the maturation process of GIC are necessary for the development of advanced dental restorative materials.
Collapse
Affiliation(s)
- Marcella C Berg
- The Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
- European Spallation Source ESS ERIC , P.O. Box 176 , SE-221 00 Lund , Sweden
| | - Ana R Benetti
- Department of Odontology, Faculty of Health and Medical Sciences , University of Copenhagen , DK-2200 Copenhagen , Denmark
| | - Mark T F Telling
- ISIS Facility , Rutherford Appleton Laboratory , Chilton, Oxford OX11 0QX , U.K
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , U.K
| | - Tilo Seydel
- Institut Max von Laue-Paul Langevin , CS 20156 , F-38042 Grenoble , France
| | - Dehong Yu
- Australian Nuclear Science and Technology Organisation , New Illawarra Road , Lucas Heights , New South Wales 2234 , Australia
| | - Luke L Daemen
- Oak Ridge National Laboratory , P.O. Box 2008 , Oak Ridge , Tennessee 37831 , United States
| | - Heloisa N Bordallo
- The Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
- European Spallation Source ESS ERIC , P.O. Box 176 , SE-221 00 Lund , Sweden
| |
Collapse
|
50
|
Hazra MK, Bagchi B. Collective excitations and ultrafast dipolar solvation dynamics in water-ethanol binary mixture. J Chem Phys 2018; 148:114506. [DOI: 10.1063/1.5019405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Milan K. Hazra
- SSCU, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- SSCU, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|