1
|
Lemke Y, Kussmann J, Ochsenfeld C. Highly Accurate and Robust Constraint-Based Orbital-Optimized Core Excitations. J Phys Chem A 2024. [PMID: 39495940 DOI: 10.1021/acs.jpca.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We adapt our recently developed constraint-based orbital-optimized excited-state method (COOX) for the computation of core excitations. COOX is a constrained density functional theory (cDFT) approach based on excitation amplitudes from linear-response time-dependent DFT (LR-TDDFT), and has been shown to provide accurate excitation energies and excited-state properties for valence excitations within a spin-restricted formalism. To extend COOX to core-excited states, we introduce a spin-unrestricted variant which allows us to obtain orbital-optimized core excitations with a single constraint. Using a triplet purification scheme in combination with the constrained unrestricted Hartree-Fock formalism, scalar-relativistic zero-order regular approximation corrections, and a semiempirical treatment of spin-orbit coupling, COOX is shown to produce highly accurate results for K- and L-edge excitations of second- and third-period atoms with subelectronvolt errors despite being based on LR-TDDFT, for which core excitations pose a well-known challenge. L- and M-edge excitations of heavier atoms up to uranium are also computationally feasible and numerically stable, but may require more advanced treatment of relativistic effects. Furthermore, COOX is shown to perform on par with or better than the popular ΔSCF approach while exhibiting more robust convergence, highlighting it as a promising tool for inexpensive and accurate simulations of X-ray absorption spectra.
Collapse
Affiliation(s)
- Yannick Lemke
- Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Jörg Kussmann
- Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, Stuttgart D-70569, Germany
| |
Collapse
|
2
|
Huang M, Evangelista FA. Benchmark Study of Core-Ionization Energies with the Generalized Active Space-Driven Similarity Renormalization Group. J Chem Theory Comput 2024. [PMID: 39271297 PMCID: PMC11428169 DOI: 10.1021/acs.jctc.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) is a powerful experimental technique for probing the electronic structure of molecules and materials; however, interpreting XPS data requires accurate computational methods to model core-ionized states. This work proposes and benchmarks a new approach based on the generalized active space-driven similarity renormalization group (GAS-DSRG) for calculating core-ionization energies and treating correlation effects at the perturbative and nonperturbative levels. We tested the GAS-DSRG across three data sets. First, the vertical core-ionization energies of small molecules containing first-row elements are evaluated. GAS-DSRG achieves mean absolute errors below 0.3 eV, which is comparable to high-level coupled cluster methods. Next, the accuracy of GAS-DSRG is evaluated for larger organic molecules using the CORE65 data set, with the DSRG-MRPT3 level yielding a mean absolute error of only 0.34 eV for 65 core-ionization transitions. Insights are provided into the treatment of static and dynamic correlation, the importance of high-order perturbation theory, and notable differences from density functional theory in the predicted energy ordering of core-ionized states for specific molecules. Finally, vibrationally resolved XPS spectra of diatomic molecules (CO, N2, and O2) are simulated, showing excellent agreement with experimental data.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Leitner J, Dempwolff AL, Dreuw A. Fourth-Order Algebraic Diagrammatic Construction for Electron Detachment and Attachment: The IP- and EA-ADC(4) Methods. J Phys Chem A 2024; 128:7680-7690. [PMID: 39213621 DOI: 10.1021/acs.jpca.4c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We present a non-Dyson fourth-order algebraic diagrammatic construction formulation of the electron propagator, featuring the distinct IP- and EA-ADC(4) schemes for the treatment of ionization and electron attachment processes. The algebraic expressions have been derived automatically using the intermediate state representation approach and implemented in the Q-Chem quantum-chemical program package. The performance of the novel methods is assessed with respect to high-level reference data for ionization potentials and electron affinities of closed- and open-shell systems. While only minor improvements over the corresponding third-order methods are observed for one-hole ionization and one-particle electron attachment processes from closed-shell systems (MAEIP-ADC(4) = 0.27 eV and MAEEA-ADC(4) = 0.05 eV), a significantly enhanced performance is found in case of open-shell reference states (MAEIP-ADC(4) = 0.11 eV and MAEEA-ADC(4) = 0.02 eV). A particularly appealing feature of the novel methods is their accurate treatment of satellite transitions. For closed-shell reference states, we obtain accuracies of MAEIP-ADC(4) = 0.81 eV and MAEEA-ADC(4) = 0.27 eV, while in case of open-shell reference states, mean absolute errors of MAEIP-ADC(4) = 0.15 eV and MAEEA-ADC(4) = 0.27 eV are found.
Collapse
Affiliation(s)
- Jonas Leitner
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Morgunov A, Tran HK, Meitei OR, Chien YC, Van Voorhis T. MP2-Based Composite Extrapolation Schemes Can Predict Core-Ionization Energies for First-Row Elements with Coupled-Cluster Level Accuracy. J Phys Chem A 2024; 128:6989-6998. [PMID: 39121455 DOI: 10.1021/acs.jpca.4c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) measures core-electron binding energies (CEBEs) to reveal element-specific insights into the chemical environment and bonding. Accurate theoretical CEBE prediction aids XPS interpretation but requires proper modeling of orbital relaxation and electron correlation upon core-ionization. This work systematically investigates basis set selection for extrapolation to the complete basis set limit of CEBEs from ΔMP2 and ΔCC energies across 94 K-edges in diverse organic molecules. We demonstrate that an alternative composite scheme using ΔMP2 in a large basis corrected by ΔCC-ΔMP2 difference in a small basis can quantitatively recover optimally extrapolated ΔCC CEBEs within 0.02 eV. Unlike ΔCC, MP2 calculations do not suffer from convergence issues and are computationally cheaper, and thus, the composite ΔMP2/ΔCC scheme balances accuracy and cost, overcoming limitations of solely using either method. We conclude by providing a comprehensive analysis of the choice of small and large basis sets for the composite schemes and provide practical recommendations for highly accurate (within 0.10-0.15 eV MAE) ab initio prediction of XPS data.
Collapse
Affiliation(s)
- Anton Morgunov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oinam Romesh Meitei
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yu-Che Chien
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Song Q, Liu B, Wu J, Zou W, Wang Y, Suo B, Lei Y. GUGA-based MRCI approach with core-valence separation approximation (CVS) for the calculation of the core-excited states of molecules. J Chem Phys 2024; 160:094114. [PMID: 38445728 DOI: 10.1063/5.0189443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.
Collapse
Affiliation(s)
- Qi Song
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Baoyuan Liu
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junfeng Wu
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yubin Wang
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bingbing Suo
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yibo Lei
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|
6
|
Chatterjee K, Koczor-Benda Z, Feng X, Krylov AI, Jagau TC. Analytic Evaluation of Nonadiabatic Couplings within the Complex Absorbing Potential Equation-of-Motion Coupled-Cluster Method. J Chem Theory Comput 2023; 19:5821-5834. [PMID: 37647100 DOI: 10.1021/acs.jctc.3c00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We present the theory for the evaluation of nonadiabatic couplings (NACs) involving resonance states within the complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC) framework implemented within the singles and doubles approximation. Resonance states are embedded in the continuum and undergo rapid decay through autodetachment. In addition, nuclear motion can facilitate transitions between different resonances and between resonances and bound states. These nonadiabatic transitions affect the chemical fate of resonances and have distinct spectroscopic signatures. The NAC vector is a central quantity needed to model such effects. In the CAP-EOM-CC framework, resonance states are treated on the same footing as bound states. Using the example of fumaronitrile, which supports a bound radical anion and several anionic resonances, we analyze the NAC between bound states and pseudocontinuum states, between bound states and resonances, and between two resonances. We find that the NAC between a bound state and a resonance is nearly independent of the CAP strength and thus straightforward to evaluate, whereas the NAC between two resonance states or between a bound state and a pseudocontinuum state is more difficult to evaluate.
Collapse
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | - Xintian Feng
- Q-Chem, Inc., 6601 Owens Drive, Suite 240, Pleasanton, California 94588, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas-C Jagau
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Huang M, Evangelista FA. A study of core-excited states of organic molecules computed with the generalized active space driven similarity renormalization group. J Chem Phys 2023; 158:124112. [PMID: 37003756 DOI: 10.1063/5.0137096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
This work examines the accuracy and precision of x-ray absorption spectra computed with a multireference approach that combines generalized active space (GAS) references with the driven similarity renormalization group (DSRG). We employ the x-ray absorption benchmark of organic molecule (XABOOM) set, consisting of 116 transitions from mostly organic molecules [Fransson et al., J. Chem. Theory Comput. 17, 1618 (2021)]. Several approximations to a full-valence active space are examined and benchmarked. Absolute excitation energies and intensities computed with the GAS-DSRG truncated to second-order in perturbation theory are found to systematically underestimate experimental and reference theoretical values. Third-order perturbative corrections significantly improve the accuracy of GAS-DSRG absolute excitation energies, bringing the mean absolute deviation from experimental values down to 0.32 eV. The ozone molecule and glyoxylic acid are particularly challenging for second-order perturbation theory and are examined in detail to assess the importance of active space truncation and intruder states.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Jana S, Herbert JM. Slater transition methods for core-level electron binding energies. J Chem Phys 2023; 158:094111. [PMID: 36889976 DOI: 10.1063/5.0134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a "full core hole" (or "ΔSCF") approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater's transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3-0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn-Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
9
|
Nanda KD, Gulania S, Krylov AI. Theory, implementation, and disappointing results for two-photon absorption cross sections within the doubly electron-attached equation-of-motion coupled-cluster framework. J Chem Phys 2023; 158:054102. [PMID: 36754800 DOI: 10.1063/5.0135052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The equation-of-motion coupled-cluster singles and doubles method with double electron attachment (EOM-DEA-CCSD) is capable of computing reliable energies, wave functions, and first-order properties of excited states in diradicals and polyenes that have a significant doubly excited character with respect to the ground state, without the need for including the computationally expensive triple excitations. Here, we extend the capabilities of the EOM-DEA-CCSD method to the calculations of a multiphoton property, two-photon absorption (2PA) cross sections. Closed-form expressions for the 2PA cross sections are derived within the expectation-value approach using response wave functions. We analyze the performance of this new implementation by comparing the EOM-DEA-CCSD energies and 2PA cross sections with those computed using the CC3 quadratic response theory approach. As benchmark systems, we consider transitions to the states with doubly excited character in twisted ethene and in polyenes, for which EOM-EE-CCSD (EOM-CCSD for excitation energies) performs poorly. The EOM-DEA-CCSD 2PA cross sections are comparable with the CC3 results for twisted ethene; however, the discrepancies between the two methods are large for hexatriene. The observed trends are explained by configurational analysis of the 2PA channels.
Collapse
Affiliation(s)
- Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
10
|
Arias-Martinez JE, Cunha LA, Oosterbaan KJ, Lee J, Head-Gordon M. Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach. Phys Chem Chem Phys 2022; 24:20728-20741. [PMID: 36004629 DOI: 10.1039/d2cp01998a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations.
Collapse
Affiliation(s)
- Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Katherine J Oosterbaan
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York 10027, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Zheng X, Zhang C, Jin Z, Southworth SH, Cheng L. Benchmark relativistic delta-coupled-cluster calculations of K-edge core-ionization energies of third-row elements. Phys Chem Chem Phys 2022; 24:13587-13596. [PMID: 35616685 DOI: 10.1039/d2cp00993e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A benchmark computational study of K-edge core-ionization energies of third-row elements using relativistic delta-coupled-cluster (ΔCC) methods and a revised core-valence separation (CVS) scheme is reported. High-level relativistic (HLR) corrections beyond the spin-free exact two-component theory in its one-electron variant (SFX2C-1e), including the contributions from two-electron picture-change effects, spin-orbit coupling, the Breit term, and quantum electrodynamics effects, have been taken into account and demonstrated to play an important role. Relativistic ΔCC calculations are shown to provide accurate results for core-ionization energies of third-row elements. The SFX2C-1e-CVS-ΔCC results augmented with HLR corrections show a maximum deviation of less than 0.5 eV with respect to experimental values.
Collapse
Affiliation(s)
- Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Zheqi Jin
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Dreuw A, Fransson T. Using core-hole reference states for calculating X-ray photoelectron and emission spectra. Phys Chem Chem Phys 2022; 24:11259-11267. [PMID: 35481477 DOI: 10.1039/d2cp00584k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the calculation of core-ionization energies (IEs), X-ray photoelectron spectra (XPS), and X-ray emission spectra (XES), a commonly applied approach is to use non-Aufbau reference states with a core-hole as either final (IE and XPS) or initial (XES) state. However, such reference states can introduce numerical instabilities in post-HF methods, relating to the denominator of the energy corrections involved. This may become arbitrarily close to zero if a negative virtual orbital is present, e.g. a core-hole, leading to near-singularities. The resulting instabilities lead to severe convergence issues of the calculation schemes and, in addition, can strongly affect both energies and intensities, with oscillator strengths seen to reach values up to 4 × 107. For the K-edge we propose freezing the highest-energy virtual orbitals which contribute to any denominator below a threshold of 0.1 Hartree. Stable and reliable spectra are then produced, with minimal influence due to freezing energetically high-lying virtual orbitals (typically removing <5% of the total number of MOs). The developed protocol is here tested for Møller-Plesset perturbation theory and for the algebraic diagrammatic construction scheme for the polarization propagator, and it is also relevant for coupled cluster theory and other related methods.
Collapse
Affiliation(s)
- Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| | - Thomas Fransson
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, Stockholm 10691, Sweden.
| |
Collapse
|
13
|
Yao Y, Golze D, Rinke P, Blum V, Kanai Y. All-Electron BSE@ GW Method for K-Edge Core Electron Excitation Energies. J Chem Theory Comput 2022; 18:1569-1583. [PMID: 35138865 DOI: 10.1021/acs.jctc.1c01180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present an accurate computational approach to calculate absolute K-edge core electron excitation energies as measured by X-ray absorption spectroscopy. Our approach employs an all-electron Bethe-Salpeter equation (BSE) formalism based on GW quasiparticle energies (BSE@GW) using numeric atom-centered orbitals (NAOs). The BSE@GW method has become an increasingly popular method for the computation of neutral valence excitation energies of molecules. However, it was so far not applied to molecular K-edge excitation energies. We discuss the influence of different numerical approximations on the BSE@GW calculation and employ in our final setup (i) exact numeric algorithms for the frequency integration of the GW self-energy, (ii) G0W0 and BSE starting points with ∼50% of exact exchange, (iii) the Tamm-Dancoff approximation and (iv) relativistic corrections. We study the basis set dependence and convergence with common Gaussian-type orbital and NAO basis sets. We identify the importance of additional spatially confined basis functions as well as of diffuse augmenting basis functions. The accuracy of our BSE@GW method is assessed for a benchmark set of small organic molecules, previously used for benchmarking the equation-of-motion coupled cluster method [Peng et al., J. Chem. Theory Comput., 2015, 11, 4146], as well as the medium-sized dibenzothiophene (DBT) molecule. Our BSE@GW results for absolute excitation energies are in excellent agreement with the experiment, with a mean average error of only 0.63 eV for the benchmark set and with errors <1 eV for the DBT molecule.
Collapse
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dorothea Golze
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Patrick Rinke
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | | | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Liebenthal M, Vu NH, DePrince E. Equation-of-motion cavity quantum electrodynamics coupled-cluster theory for electron attachment. J Chem Phys 2022; 156:054105. [DOI: 10.1063/5.0078795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Nam Hoang Vu
- Chemistry & Biochemistry, Florida State University, United States of America
| | - Eugene DePrince
- Chemistry and Biochemistry, Florida State University, United States of America
| |
Collapse
|
15
|
de Moura CEV, Sokolov AY. Simulating X-ray photoelectron spectra with strong electron correlation using multireference algebraic diagrammatic construction theory. Phys Chem Chem Phys 2022; 24:4769-4784. [DOI: 10.1039/d1cp05476g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new theoretical approach for the simulations of X-ray photoelectron spectra of strongly correlated molecular systems that combines multireference algebraic diagrammatic construction theory (MR-ADC) with a core–valence separation (CVS) technique.
Collapse
Affiliation(s)
- Carlos E. V. de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
16
|
Carter-Fenk K, Head-Gordon M. On the choice of reference orbitals for linear-response calculations of solution-phase K-edge X-ray absorption spectra. Phys Chem Chem Phys 2022; 24:26170-26179. [DOI: 10.1039/d2cp04077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
X-ray absorption spectra of liquids calculated with linear-response theories like TDDFT and CIS are dramatically improved with core-ion reference orbitals.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Huang M, Li C, Evangelista FA. Theoretical Calculation of Core-Excited States along Dissociative Pathways beyond Second-Order Perturbation Theory. J Chem Theory Comput 2021; 18:219-233. [PMID: 34964628 DOI: 10.1021/acs.jctc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We extend the multireference driven similarity renormalization (MR-DSRG) method to compute core-excited states by combining it with a GASSCF treatment of orbital relaxation and static electron correlation effects. We consider MR-DSRG treatments of dynamical correlation truncated at the level of perturbation theory (DSRG-MRPT2/3) and iterative linearized approximations with one- and two-body operators [MR-LDSRG(2)] in combination with a spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects. This approach is calibrated and tested on a series of 16 core-excited states of five closed- and open-shell diatomic molecules containing first-row elements (C, N, and O). All GASSCF-MR-DSRG theories show excellent agreement with experimental adiabatic transitions energies, with mean absolute errors ranging between 0.17 and 0.35 eV, even for the challenging partially doubly excited states of the N2+ molecule. The vibrational structure of all these transitions, obtained from using a full potential energy scan, shows a mean absolute error as low as 25 meV for DSRG-MRPT2 and 12/13 meV for DSRG-MRPT3 and MR-LDSRG(2). We generally find that a treatment of dynamical correlation that goes beyond the second-order level in perturbation theory improves the accuracy of the potential energy surface, especially in the bond-dissociation region.
Collapse
Affiliation(s)
- Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
Ranga S, Dutta AK. A Core-Valence Separated Similarity Transformed EOM-CCSD Method for Core-Excitation Spectra. J Chem Theory Comput 2021; 17:7428-7446. [PMID: 34814683 DOI: 10.1021/acs.jctc.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the theory and implementation of a core-valence separated similarity transformed EOM-CCSD (STEOM-CCSD) method for K-edge core excitation spectra. The method can select an appropriate active space using CIS natural orbitals and near "black box" to use. The second similarity transformed Hamiltonian is diagonalized in the space of single excitation. Therefore, the final diagonalization step is free from the convergence problem arising due to the coupling of the core-excited states with the continuum of doubly excited states. Convergence trouble can appear for the preceding core-ionized state calculation in STEOM-CCSD. A core-valence separation (CVS) scheme compatible with the natural orbital based active space selection (CVS-STEOM-CCSD-NO) is implemented to overcome the problem. The CVS-STEOM-CCSD-NO has a similar accuracy to that of the standard CVS-EOM-CCSD method but comes with a lower computational cost. The modification required in the CVS scheme to make use of the CIS natural orbital is highlighted. The suitability of the CVS-STEOM-CCSD-NO method for chemical application is demonstrated by simulating the K-edge spectra of glycine and thymine.
Collapse
Affiliation(s)
- Santosh Ranga
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Affiliation(s)
- Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Park YC, Perera A, Bartlett RJ. Equation of motion coupled-cluster study of core excitation spectra II: Beyond the dipole approximation. J Chem Phys 2021; 155:094103. [PMID: 34496593 DOI: 10.1063/5.0059276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the time-independent (TI) and time-dependent (TD) equation of motion coupled-cluster (EOM-CC) oscillator strengths not limited to those obtained by the dipole approximation. For the conventional TI-EOM-CC, we implement all the terms in the multipole expansion through second order that contributes to the oscillator strength. These include contributions such as magnetic dipole, electric quadrupole, electric octupole, and magnetic quadrupole. In TD-EOM-CC, we only include the quadrupole moment contributions. This augments our previous work [Y. C. Park, A. Perera, and R. J. Bartlett, J. Chem. Phys. 151, 164117 (2019)]. The inclusion of the quadrupole contributions (and all the other contributions through second order in the case of TI-EOM-CCSD) enables us to obtain the intensities for the pre-edge transitions in the metal K-edge spectra, which are dipole inactive. The TI-EOM-CCSD and TD-EOM-CCSD spectra of Ti4+ atoms are used to showcase the implementation of the second-order oscillator strengths. The origin of 1s → e and 1s → t2 in core spectra from iron tetrachloride and titanium tetrachloride is discussed and compared with the experiment.
Collapse
Affiliation(s)
- Young Choon Park
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
21
|
Shen J, Piecuch P. Double electron-attachment equation-of-motion coupled-cluster methods with up to 4-particle–2-hole excitations: improved implementation and application to singlet–triplet gaps in ortho-, meta-, and para-benzyne isomers. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1966534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Lechner MH, Izsák R, Nooijen M, Neese F. A perturbative approach to multireference equation-of-motion coupled cluster. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1939185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marvin H. Lechner
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, USA
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Gulania S, Kjønstad EF, Stanton JF, Koch H, Krylov AI. Equation-of-motion coupled-cluster method with double electron-attaching operators: Theory, implementation, and benchmarks. J Chem Phys 2021; 154:114115. [PMID: 33752380 DOI: 10.1063/5.0041822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a production-level implementation of the equation-of-motion (EOM) coupled-cluster (CC) method with double electron-attaching (DEA) EOM operators of 2p and 3p1h types, EOM-DEA-CCSD. This ansatz, suitable for treating electronic structure patterns that can be described as two-electrons-in-many orbitals, represents a useful addition to the EOM-CC family of methods. We analyze the performance of EOM-DEA-CCSD for energy differences and molecular properties. By considering reduced quantities, such as state and transition one-particle density matrices, we compare EOM-DEA-CCSD wave functions with wave functions computed by other EOM-CCSD methods. The benchmarks illustrate that EOM-DEA-CCSD is capable of treating diradicals, bond-breaking, and some types of conical intersections.
Collapse
Affiliation(s)
- Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Eirik F Kjønstad
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - John F Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavaleri 7, 56126 Pisa, Italy
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
24
|
Bauman NP, Liu H, Bylaska EJ, Krishnamoorthy S, Low GH, Granade CE, Wiebe N, Baker NA, Peng B, Roetteler M, Troyer M, Kowalski K. Toward Quantum Computing for High-Energy Excited States in Molecular Systems: Quantum Phase Estimations of Core-Level States. J Chem Theory Comput 2021; 17:201-210. [PMID: 33332965 DOI: 10.1021/acs.jctc.0c00909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper explores the utility of the quantum phase estimation (QPE) algorithm in calculating high-energy excited states characterized by the promotion of electrons occupying core-level shells. These states have been intensively studied over the last few decades, especially in supporting the experimental effort at light sources. Results obtained with QPE are compared with various high-accuracy many-body techniques developed to describe core-level states. The feasibility of the quantum phase estimator in identifying classes of challenging shake-up states characterized by the presence of higher-order excitation effects is discussed. We also demonstrate the utility of the QPE algorithm in targeting excitations from specific centers in a molecule. Lastly, we discuss how the lowest-order Trotter formula can be applied to reducing the complexity of the ansatz without affecting the error.
Collapse
Affiliation(s)
- Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hongbin Liu
- Microsoft Quantum, Redmond, Washington 98052, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sriram Krishnamoorthy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Guang Hao Low
- Microsoft Quantum, Redmond, Washington 98052, United States
| | | | - Nathan Wiebe
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nathan A Baker
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | | | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
25
|
Guo M, Wang Z, Wang F. Equation-of-motion coupled-cluster theory for double electron attachment with spin-orbit coupling. J Chem Phys 2020; 153:214118. [PMID: 33291924 DOI: 10.1063/5.0032716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report implementation of the equation-of-motion coupled-cluster (EOM-CC) method for double electron-attachment (DEA) with spin-orbit coupling (SOC) at the CC singles and doubles (CCSD) level using a closed-shell reference in this work. The DEA operator employed in this work contains two-particle and three-particle one-hole excitations, and SOC is included in post-Hartree-Fock treatment. Time-reversal symmetry and spatial symmetry are exploited to reduce computational cost. The EOM-DEA-CCSD method with SOC allows us to investigate SOC effects of systems with two-unpaired electrons. According to our results on atoms, double ionization potentials (DIPs), excitation energies (EEs), and SO splittings of low-lying states are calculated reliably using the EOM-DEA-CCSD method with SOC. Its accuracy is usually higher than that of EOM-CCSD for EEs or DIPs if the same target can be reached from single excitations by choosing a proper closed-shell reference. However, performance of the EOM-DEA-CCSD method with SOC on molecules is not as good as that for atoms. Bond lengths for the ground and the several lowest excited states of GaH, InH, and TlH are underestimated pronouncedly, although reasonable EEs are obtained, and splittings of the 3Σ- state from the π2 configuration are calculated to be too small with EOM-DEA-CCSD.
Collapse
Affiliation(s)
- Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhifan Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
26
|
Guo M, Wang Z, Wang F. Treating spin-orbit coupling at different levels in equation-of-motion coupled-cluster calculations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1785029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Zhifan Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
27
|
Maier TM, Ikabata Y, Nakai H. Relativistic local hybrid functionals and their impact on 1s core orbital energies. J Chem Phys 2020; 152:214103. [DOI: 10.1063/5.0010400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Toni M. Maier
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
28
|
Sarangi R, Vidal ML, Coriani S, Krylov AI. On the basis set selection for calculations of core-level states: different strategies to balance cost and accuracy. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1769872] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ronit Sarangi
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Matthews DA. EOM-CC methods with approximate triple excitations applied to core excitation and ionisation energies. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1771448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Perera A, Bartlett RJ, Sanders BA, Lotrich VF, Byrd JN. Advanced concepts in electronic structure (ACES) software programs. J Chem Phys 2020; 152:184105. [DOI: 10.1063/5.0002581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ajith Perera
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32605, USA
| | - Rodney J. Bartlett
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32605, USA
| | - Beverly A. Sanders
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32605, USA
| | | | | |
Collapse
|
31
|
Abstract
We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems.
Collapse
Affiliation(s)
- Federica Frati
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| | | | - Frank M. F. de Groot
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| |
Collapse
|
32
|
Ehlert C, Klamroth T. PSIXAS: A Psi4 plugin for efficient simulations of X-ray absorption spectra based on the transition-potential and Δ-Kohn-Sham method. J Comput Chem 2020; 41:1781-1789. [PMID: 32394459 DOI: 10.1002/jcc.26219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/25/2023]
Abstract
Near edge X-ray absorption fine structure (NEXAFS) spectra and their pump-probe extension (PP-NEXAFS) offer insights into valence- and core-excited states. We present PSIXAS, a recent implementation for simulating NEXAFS and PP-NEXAFS spectra by means of the transition-potential and the Δ-Kohn-Sham method. The approach is implemented in form of a software plugin for the Psi4 code, which provides access to a wide selection of basis sets as well as density functionals. We briefly outline the theoretical foundation and the key aspects of the plugin. Then, we use the plugin to simulate PP-NEXAFS spectra of thymine, a system already investigated by others and us. It is found that larger, extended basis sets are needed to obtain more accurate absolute resonance positions. We further demonstrate that, in contrast to ordinary NEXAFS simulations, where the choice of the density functional plays a minor role for the shape of the spectrum, for PP-NEXAFS simulations the choice of the density functional is important. Especially hybrid functionals (which could not be used straightforwardly before to simulate PP-NEXAFS spectra) and their amount of "Hartree-Fock like" exact exchange affects relative resonance positions in the spectrum.
Collapse
Affiliation(s)
- Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
33
|
Zheng X, Liu J, Doumy G, Young L, Cheng L. Hetero-site Double Core Ionization Energies with Sub-electronvolt Accuracy from Delta-Coupled-Cluster Calculations. J Phys Chem A 2020; 124:4413-4426. [DOI: 10.1021/acs.jpca.0c00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
34
|
Zhao H, Wang Z, Guo M, Wang F. Splittings of d 8 configurations of late-transition metals with EOM-DIP-CCSD and FSCCSD methods. J Chem Phys 2020; 152:134105. [PMID: 32268764 DOI: 10.1063/1.5145077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multireference methods are usually required for transition metal systems due to the partially filled d electrons. In this work, the single-reference equation-of-motion coupled-cluster method at the singles and doubles level for double ionization potentials (EOM-DIP-CCSD) is employed to calculate energies of states from the d8 configuration of late-transition metal atoms starting from a closed-shell reference. Its results are compared with those from the multireference Fock-space coupled-cluster method at the CCSD level (FSCCSD) for DIP from the same closed-shell reference. Both scalar-relativistic effects and spin-orbit coupling are considered in these calculations. Compared with all-electron FSCCSD results with four-component Dirac-Coulomb Hamiltonian, FSCCSD with relativistic effective core potentials can provide reasonable results, except for atoms with unstable reference. Excitation energies for states in the (n - 1)d8ns2 configuration are overestimated pronouncedly with these two methods, and this overestimation is more severe than those in the (n - 1)d9ns1 configuration. Error of EOM-CCSD on these excitation energies is generally larger than that of FSCCSD. On the other hand, relative energies of most of the states in the d8 configuration with respect to the lowest state in the same configuration are predicted reliably with EOM-DIP-CCSD, except for the 3P0 state of Hg2+ and states in Ir+. FSCCSD can provide reasonable relative energies for the several lowest states, while its error tends to be larger for higher states.
Collapse
Affiliation(s)
- Hewang Zhao
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Zhifan Wang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
| | - Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
35
|
Pathak H, Sasmal S, Talukdar K, Nayak MK, Vaval N, Pal S. Relativistic double-ionization equation-of-motion coupled-cluster method: Application to low-lying doubly ionized states. J Chem Phys 2020; 152:104302. [PMID: 32171231 DOI: 10.1063/1.5140988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This article deals with the extension of the relativistic double-ionization equation-of-motion coupled-cluster (DI-EOMCC) method [H. Pathak et al. Phys. Rev. A 90, 010501(R) (2014)] for the molecular systems. The Dirac-Coulomb Hamiltonian with four-component spinors is considered to take care of the relativistic effects. The implemented method is employed to compute a few low-lying doubly ionized states of noble gas atoms (Ar, Kr, Xe, and Rn) and Cl2, Br2, HBr, and HI. Additionally, we presented results with two intermediate schemes in the four-component relativistic DI-EOMCC framework to understand the role of electron correlation. The computed double ionization spectra for the atomic systems are compared with the values from the non-relativistic DI-EOMCC method with spin-orbit coupling [Z. Wang et al. J. Chem. Phys. 142, 144109 (2015)] and the values from the National Institute of Science and Technology (NIST) database. Our atomic results are found to be in good agreement with the NIST values. Furthermore, the obtained results for the molecular systems agree well with the available experimental values.
Collapse
Affiliation(s)
- Himadri Pathak
- Electronic Structure Theory Group, Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sudip Sasmal
- Electronic Structure Theory Group, Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Kaushik Talukdar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Nayana Vaval
- Electronic Structure Theory Group, Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sourav Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
36
|
Oosterbaan KJ, White AF, Hait D, Head-Gordon M. Generalized single excitation configuration interaction: an investigation into the impact of the inclusion of non-orthogonality on the calculation of core-excited states. Phys Chem Chem Phys 2020; 22:8182-8192. [DOI: 10.1039/c9cp06592j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, we investigate different non-orthogonal generalizations of the configuration interaction with single substitutions (CIS) method and their impact on the calculation of core-excited states.
Collapse
Affiliation(s)
| | - Alec F. White
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - Diptarka Hait
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Martin Head-Gordon
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
37
|
Gulania S, Jagau TC, Sanov A, Krylov AI. The quest to uncover the nature of benzonitrile anion. Phys Chem Chem Phys 2020; 22:5002-5010. [DOI: 10.1039/c9cp06484b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anionic states of benzonitrile are investigated by high-level electronic structure methods.
Collapse
Affiliation(s)
- Sahil Gulania
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | | | - Andrei Sanov
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
38
|
Lee J, Small DW, Head-Gordon M. Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states. J Chem Phys 2019; 151:214103. [DOI: 10.1063/1.5128795] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
39
|
Myhre RH, Coriani S, Koch H. X-ray and UV Spectra of Glycine within Coupled Cluster Linear Response Theory. J Phys Chem A 2019; 123:9701-9711. [PMID: 31549830 DOI: 10.1021/acs.jpca.9b06590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coupled cluster models CCSD and CC3 are used to investigate the (core) excited states and ionization energies of glycine in the gas phase. Excited states and ionization energies in the UV spectral range are calculated using a standard coupled cluster linear response, while core-level excited states and ionization potentials are calculated using the core-valence separation approximation. The temperature dependence from different conformers is also assessed.
Collapse
Affiliation(s)
- Rolf H Myhre
- Department of Chemistry , Norwegian University of Science and Technology, NTNU , 7491 Trondheim , Norway.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Oslo , 0315 Oslo , Norway
| | - Sonia Coriani
- DTU Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark.,Aarhus Institute of Advanced Studies , Aarhus University , DK-8000 Aarhus C , Denmark
| | - Henrik Koch
- Department of Chemistry , Norwegian University of Science and Technology, NTNU , 7491 Trondheim , Norway.,Scuola Normale Superiore , Piazza dei Cavalieri 7 , 56126 Pisa , Italy
| |
Collapse
|
40
|
Park YC, Perera A, Bartlett RJ. Equation of motion coupled-cluster for core excitation spectra: Two complementary approaches. J Chem Phys 2019; 151:164117. [PMID: 31675901 DOI: 10.1063/1.5117841] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper presents core excitation spectra from coupled-cluster (CC) theory obtained from both a time-independent and a new time-dependent formalism. The conventional time-independent CC formulation for excited states is the equation-of-motion (EOM-CC) method whose eigenvalues and eigenvectors describe the core excited states. An alternative computational procedure is offered by a time-dependent CC description. In that case, the dipole transition operator is expressed in the CC effective Hamiltonian form and propagated with respect to time. The absorption spectrum is obtained from the CC dipole autocorrelation function via a Fourier transformation. Comparisons are made among the time-dependent results obtained from second-order perturbation theory, to coupled cluster doubles and their linearized forms (CCD and LCCD), to CC singles and doubles (CCSD) and the linearized form (LCCSD). In the time-independent case, considerations of triples (EOM-CCSDT) and quadruples (EOM-CCSDTQ) are used to approach sub-electron volt accuracy. A particular target is the allyl radical, as an example of an open-shell molecule. As the results have to ultimately be the same, the two procedures offer a complementary approach toward analyzing experimental results.
Collapse
Affiliation(s)
- Young Choon Park
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
41
|
Seidu I, Neville SP, Kleinschmidt M, Heil A, Marian CM, Schuurman MS. The simulation of X-ray absorption spectra from ground and excited electronic states using core-valence separated DFT/MRCI. J Chem Phys 2019; 151:144104. [PMID: 31615239 DOI: 10.1063/1.5110418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an extension of the combined density functional theory (DFT) and multireference configuration interaction (MRCI) method (DFT/MRCI) [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)] for the calculation of core-excited states based on the core-valence separation (CVS) approximation. The resulting method, CVS-DFT/MRCI, is validated via the simulation of the K-edge X-ray absorption spectra of 40 organic chromophores, amino acids, and nucleobases, ranging in size from CO2 to tryptophan. Overall, the CVS-DFT/MRCI method is found to yield accurate X-ray absorption spectra (XAS), with consistent errors in peak positions of ∼2.5-3.5 eV. Additionally, we show that the CVS-DFT/MRCI method may be employed to simulate XAS from valence excited states and compare the simulated spectra to those computed using the established wave function-based approaches [ADC(2) and ADC(2)x]. In general, each of the methods yields excited state XAS spectra in qualitative and often quantitative agreement. In the instances where the methods differ, the CVS-DFT/MRCI simulations predict intensity for transitions for which the underlying electronic states are characterized by doubly excited configurations relative to the ground state configuration. Here, we aim to demonstrate that the CVS-DFT/MRCI approach occupies a specific niche among numerous other electronic structure methods in this area, offering the ability to treat initial states of arbitrary electronic character while maintaining a low computational cost and comparatively black box usage.
Collapse
Affiliation(s)
- Issaka Seidu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Simon P Neville
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Martin Kleinschmidt
- Institute of Theoretical and Computational Chemistry, Heinrich Heine Universität Düsselddorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Adrian Heil
- Institute of Theoretical and Computational Chemistry, Heinrich Heine Universität Düsselddorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine Universität Düsselddorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
42
|
Yang L, Reimers JR, Kobayashi R, Hush NS. Competition between charge migration and charge transfer induced by nuclear motion following core ionization: Model systems and application to Li 2. J Chem Phys 2019; 151:124108. [PMID: 31575213 DOI: 10.1063/1.5117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attosecond and femtosecond spectroscopies present opportunities for the control of chemical reaction dynamics and products, as well as for quantum information processing; we address the somewhat unique situation of core-ionization spectroscopy which, for dimeric chromophores, leads to strong valence charge localization and hence tightly paired potential-energy surfaces of very similar shape. Application is made to the quantum dynamics of core-ionized Li2 +. This system is chosen as Li2 is the simplest stable molecule facilitating both core ionization and valence ionization. First, the quantum dynamics of some model surfaces are considered, with the surprising result that subtle differences in shape between core-ionization paired surfaces can lead to dramatic differences in the interplay between electronic charge migration and charge transfer induced by nuclear motion. Then, equation-of-motion coupled-cluster calculations are applied to determine potential-energy surfaces for 8 core-excited state pairs, calculations believed to be the first of their type for other than the lowest-energy core-ionized molecular pair. While known results for the lowest-energy pair suggest that Li2 + is unsuitable for studying charge migration, higher-energy pairs are predicted to yield results showing competition between charge migration and charge transfer. Central is a focus on the application of Hush's 1975 theory for core-ionized X-ray photoelectron spectroscopy to understand the shapes of the potential-energy surfaces and hence predict key features of charge migration.
Collapse
Affiliation(s)
- Likun Yang
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jeffrey R Reimers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rika Kobayashi
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Noel S Hush
- School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
43
|
Zheng X, Cheng L. Performance of Delta-Coupled-Cluster Methods for Calculations of Core-Ionization Energies of First-Row Elements. J Chem Theory Comput 2019; 15:4945-4955. [DOI: 10.1021/acs.jctc.9b00568] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
44
|
Bokarev SI, Kühn O. Theoretical X‐ray spectroscopy of transition metal compounds. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1433] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Oliver Kühn
- Institut für Physik Universität Rostock Rostock Germany
| |
Collapse
|
45
|
Tenorio BNC, Moitra T, Nascimento MAC, Rocha AB, Coriani S. Molecular inner-shell photoabsorption/photoionization cross sections at core-valence-separated coupled cluster level: Theory and examples. J Chem Phys 2019; 150:224104. [PMID: 31202254 DOI: 10.1063/1.5096777] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxygen, nitrogen, and carbon K-shell photoabsorption and photoionization cross sections have been calculated within core-valence-separated coupled cluster (CC) linear response theory for a number of molecular systems, namely, water, ammonia, ethylene, carbon dioxide, acetaldehyde, furan, and pyrrole. The cross sections below and above the K-edge core ionization thresholds were obtained, on the same footing, from L2 basis set calculations of the discrete electronic pseudospectrum yielded by an asymmetric-Lanczos-based formulation of CC linear response theory at the CC singles and doubles (CCSD) and CC singles and approximate doubles (CC2) levels. An analytic continuation procedure for both discrete and continuum cross sections as well as a Stieltjes imaging procedure for the photoionization cross section were applied and the results critically compared.
Collapse
Affiliation(s)
- Bruno Nunes Cabral Tenorio
- Instituto de Química, Universidade Federal do Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Torsha Moitra
- DTU Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Marco Antonio Chaer Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Alexandre Braga Rocha
- Instituto de Química, Universidade Federal do Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
46
|
Oosterbaan KJ, White AF, Head-Gordon M. Non-Orthogonal Configuration Interaction with Single Substitutions for Core-Excited States: An Extension to Doublet Radicals. J Chem Theory Comput 2019; 15:2966-2973. [DOI: 10.1021/acs.jctc.8b01259] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine J. Oosterbaan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Delcey MG, Sørensen LK, Vacher M, Couto RC, Lundberg M. Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions. J Comput Chem 2019; 40:1789-1799. [DOI: 10.1002/jcc.25832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Mickael G. Delcey
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Lasse Kragh Sørensen
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Morgane Vacher
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Rafael C. Couto
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Marcus Lundberg
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| |
Collapse
|
48
|
Michelitsch GS, Reuter K. Efficient simulation of near-edge x-ray absorption fine structure (NEXAFS) in density-functional theory: Comparison of core-level constraining approaches. J Chem Phys 2019; 150:074104. [DOI: 10.1063/1.5083618] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Georg S. Michelitsch
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
49
|
Peng R, Copan AV, Sokolov AY. Simulating X-ray Absorption Spectra with Linear-Response Density Cumulant Theory. J Phys Chem A 2019; 123:1840-1850. [DOI: 10.1021/acs.jpca.8b12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruojing Peng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andreas V. Copan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
50
|
Liu J, Matthews D, Coriani S, Cheng L. Benchmark Calculations of K-Edge Ionization Energies for First-Row Elements Using Scalar-Relativistic Core–Valence-Separated Equation-of-Motion Coupled-Cluster Methods. J Chem Theory Comput 2019; 15:1642-1651. [DOI: 10.1021/acs.jctc.8b01160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Devin Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|