1
|
Tomut AC, Moraru IT, Nemes G. In-Depth Theoretical Investigations of Borazine's Aromaticity: Tailoring Electron Delocalization through Substituent Effects. Molecules 2024; 29:4902. [PMID: 39459269 PMCID: PMC11510063 DOI: 10.3390/molecules29204902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The current study investigates the influence of several R substituents (e.g., Me, SiH3, F, Cl, Br, OH, NH2, etc.) on the aromaticity of borazine, also known as the "inorganic benzene". By performing hybrid DFT methods, blended with several computational techniques, e.g., Natural Bond Orbital (NBO), Quantum Theory of Atoms in Molecules (QTAIM), Gauge-Including Magnetically Induced Current (GIMIC), Nucleus-Independent Chemical Shift (NICS), and following a simultaneous evaluation of four different aromaticity indices (para-delocalization index (PDI), multi-centre bond order (MCBO), ring current strength (RCS), and NICS parameters), it is emphasized that the aromatic character of B-substituted (B3R3N3H3) and N-substituted (B3H3N3R3) borazine derivatives can be tailored by modulating the electronic effects of R groups. It is also highlighted that the position of R substituents on the ring structure is crucial in tuning the aromaticity. Systematic comparisons of calculated aromaticity index values (i.e., via regression analyses and correlation matrices) ensure that the reported trends in aromaticity variation are accurately described, while the influence of different R groups on electron delocalization and related aromaticity phenomena is quantitatively assessed based on NBO analyses. The most relevant interactions impacting the aromatic character of investigated systems are (i) the electron conjugations occurring between the p lone pair electrons (LP) on the F, Cl, Br, O or N atoms, of R groups, and the π*(B=N) orbitals on the borazine ring (i.e., LP(R)→π*(B=N) donations), and (ii) the steric-exchange (Pauli) interactions between the same LP and the π(B=N) bonds (i.e., LP(R)↔π(B=N) repulsions), while inductive/field effects influence the aromaticity of the investigated trisubstituted borazine systems to a much lesser extent. This work highlights that although the aromatic character of borazine can be enhanced by grafting electron-donor substituents (F, OH, NH2, O-, NH-) on the N atoms, the stabilization due to aromaticity has only a moderate impact on these systems. By replacing the H substituents on the B atoms with similar R groups, the aromatic character of borazine is decreased due to strong exocyclic LP(R)→π*(B=N) donations affecting the delocalization of π-electrons on the borazine ring.
Collapse
Affiliation(s)
| | - Ionut-Tudor Moraru
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Gabriela Nemes
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Joshi G, Jemmis ED. The Quest for Stable Borozene Core in Main-Group Capped Inverse Sandwich Complexes, [(HE) 2B 6H 6] 2- (E=B, Al, Ga, In, and Tl). Chemistry 2024; 30:e202402410. [PMID: 39034295 DOI: 10.1002/chem.202402410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The ubiquitous chemistry of benzene led us to explore ways to stabilise analogous borozene, by capping them with appropriate groups. The mismatch in overlap of ring-cap fragment molecular orbitals in [(HB)2B6H6]2- is overcome by replacing the two BH caps with higher congeners of boron. We calculated the relative energies of all the polyhedral structural candidates for [(HE)2B6H6]2- (E=Al-Tl) and found hexagonal bipyramid (HBP) to be more stable with Al-H caps. A global minimum search also gives HBP as the most stable structure for [Al2B6H8]2-. The capped B6H6 ring in [(HAl)2B6H6]2- has aromaticity comparable to that of benzene.
Collapse
Affiliation(s)
- Gaurav Joshi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Jenek NA, Helbig A, Boyt SM, Kaur M, Sanderson HJ, Reeksting SB, Kociok-Köhn G, Helten H, Hintermair U. Understanding and tuning the electronic structure of pentalenides. Chem Sci 2024; 15:12765-12779. [PMID: 39148775 PMCID: PMC11323301 DOI: 10.1039/d3sc04622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Here we report the first example of systematic tuning of the electronic properties of dianionic pentalenides through a straightforward synthetic protocol which allows the controlled variation of substituents in the 1,3,4,6-positions to produce nine new compounds, representing the largest pentalenide study to date. Both electron-withdrawing as well as electron-donating aromatics have been incorporated to achieve different polarisations of the bicyclic 10π aromatic core as indicated by characteristic 1H and 13C NMR shifts and evaluated by DFT calculations including nucleus-independent chemical shift (NICS) scans, anisotropy of the induced current density (ACID) calculations, and natural bond orbital (NBO) charge distribution analysis. The introduction of methyl substituents to the pentalenide core required positional control in the dihydropentalene precursor to avoid exocyclic deprotonation during the metalation. Frontier orbital analyses showed arylated pentalenides to be slightly weaker donors but much better acceptor ligands than unsubstituted pentalenide. The coordination chemistry potential of our new ligands has been exemplified by the straightforward synthesis of a polarised anti-dirhodium(i) complex.
Collapse
Affiliation(s)
- Niko A Jenek
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Andreas Helbig
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Stuart M Boyt
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mandeep Kaur
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Hugh J Sanderson
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Shaun B Reeksting
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Gabriele Kociok-Köhn
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Holger Helten
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
4
|
Orozco-Ic M, Soriano-Agueda L, Sundholm D, Matito E, Merino G. Core-electron contributions to the magnetic response of molecules with heavy elements and their significance in aromaticity assessments. Chem Sci 2024; 15:12906-12921. [PMID: 39148783 PMCID: PMC11323299 DOI: 10.1039/d4sc02269f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
This study delves into the magnetic response of core electrons and their influence on the global magnetic response of planar and three-dimensional systems containing heavy elements, employing the removing valence electron (RVE) approximation. We also explore electronic aromaticity indices to understand the potential role of core electrons on electron delocalization in the absence of an external perturbation. The study reveals that core electrons significantly contribute to the overall magnetic response, especially to the magnetic shielding, affecting the interpretation of aromaticity. In contrast, the calculation of the electronic aromaticity indices suggests a negligible participation of the core electrons on electron delocalization. Despite their widespread use, the study emphasizes caution in labeling systems as strongly aromatic based solely on shielding function computations. It is noteworthy to emphasize the limitations associated with each aromaticity criterion; particularly in the context of magnetic shielding function calculations, the core-electron effect contamination is undeniable. Hence, the integration of various criteria becomes imperative for attaining a comprehensive understanding of magnetic responses within complex systems.
Collapse
Affiliation(s)
- Mesías Orozco-Ic
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
| | | | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki P.O. Box 55, A. I. Virtasen aukio 1 FIN-00014 Helsinki Finland
| | - Eduard Matito
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex 97310 Mérida Yuc. Mexico
| |
Collapse
|
5
|
Kakiuchi Y, Docherty SR, Berkson ZJ, Yakimov AV, Wörle M, Copéret C, Aghazada S. Origin of Reactivity Trends of an Elusive Metathesis Intermediate from NMR Chemical Shift Analysis of Surrogate Analogues. J Am Chem Soc 2024; 146:20168-20182. [PMID: 38980045 DOI: 10.1021/jacs.4c05193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Olefin metathesis has become an efficient tool in synthetic organic chemistry to build carbon-carbon bonds, thanks to the development of Grubbs- and Schrock-type catalysts. Olefin coordination, a key and often rate-determining elementary step for d0 Schrock-type catalysts, has been rarely explored due to the lack of accessible relevant molecular analogues. Herein, we present a fully characterized surrogate of this key olefin-coordination intermediate, namely, a cationic d0 tungsten oxo-methylidene complex bearing two N-heterocyclic carbene ligands─[WO(CH2)Cl(IMes)2](OTf) (1) (IMes = 1,3-dimesitylimidazole-2-ylidene, OTf-triflate counteranion), resulting in a trigonal bipyramidal (TBP) geometry, along with its neutral octahedral analogue [WO(CH2)Cl2(IMes)2] (2)─and an isostructural oxo-methylidyne derivative [WO(CH)Cl(IMes)2] (3). The analysis of their solid-state 13C and 183W MAS NMR signatures, along with computed 17O NMR parameters, helps to correlate their electronic structures with NMR patterns and evidences the importance of the competition among the three equatorial ligands in the TBP complexes. Anchored on experimentally obtained NMR parameters for 1, computational analysis of a series of olefin coordination intermediates highlights the interplay between σ- and π-donating ligands in modulating their stability and further paralleling their reactivity. NMR spectroscopy descriptors reveal the origin for the advantage of the dissymmetry in σ-donating abilities of ancillary ligands in Schrock-type catalysts: weak σ-donors avoid the orbital-competition with the oxo ligand upon formation of a TBP olefin-coordination intermediate, while stronger σ-donors compromise M≡O triple bonding and thus render olefin coordination step energy demanding.
Collapse
Affiliation(s)
- Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sadig Aghazada
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
6
|
Beer H, Siewert JE, Schröder M, Fischer M, Corzilius B, Hering-Junghans C. Phosphaarsenes - Combining Phospha- and Arsa-Wittig-Reagents. Chempluschem 2024; 89:e202400120. [PMID: 38488262 DOI: 10.1002/cplu.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Dipnictenes of the type RPn=PnR (Pn=P, As, Sb, Bi) can be viewed as dimers of the corresponding pnictinidenes R-Pn. Phosphanylidene- and arsanylidenephosphoranes (R-Pn(PMe3); Pn=P, As) have been shown to be versatile synthetic surrogates for the delivery of pnictinidene fragments. We now report that thermal treatment of 1 : 1 mixtures of R-P(PMe3) and R'-As(PMe3) gives access to arsaphosphenes of the type RP=AsR'. Three examples are presented and the properties and reactivity of Mes*P=AsDipTer (1) (Mes*=2,4,6-tBu3-C6H2; DipTer=2,6-(2,6-iPr2C6H3)2-C6H3) were studied in detail. Solid state 31P NMR spectroscopy revealed a large 31P NMR chemical shift anisotropy with a span of ca. 920 ppm for 1 while computational methods were employed to investigate this pronounced magnetic deshielding of the P atom in 1. In the presence of the carbene IMe4 (IMe4=:C(MeNCMe)2) 1 is shown to be split into the corresponding NHC adducts Mes*P(IMe4) and DipTerAs(IMe4), which is additionally shown for diarsenes.
Collapse
Affiliation(s)
- Henrik Beer
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Jan-Erik Siewert
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Mirjam Schröder
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Institut für Chemie und Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Malte Fischer
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077, Göttingen, Germany
| | - Björn Corzilius
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Institut für Chemie und Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | | |
Collapse
|
7
|
Li J, Li K, Wu L, Wang H. Synthesis and Characterization of an All-Germanium Analogue of Cyclobutane-1,3-diyl. J Am Chem Soc 2024; 146:14386-14390. [PMID: 38747544 DOI: 10.1021/jacs.3c13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A tetragermacyclobutane-1,3-diyl was prepared and structurally characterized via the reduction of chlorogermylene-coordinated germylgermylene with potassium graphite, which represents the first all-germanium analogue of cyclobutane-1,3-diyl. Single-crystal X-ray analysis of the tetragermacyclobutane-1,3-diyl disclosed that it adopts a planar-cis structure, which is different from those reported all-silicon cyclobutane-1,3-diyls. DFT calculations revealed that both the bulky substituents on the germanium atoms and the tethering of the amido groups are important for the planar cis-configuration of 5.
Collapse
Affiliation(s)
- Jiazhong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Kai Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interfaces Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Linlin Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interfaces Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Li S, Schröder M, Prudlik A, Shi X, Spannenberg A, Rabeah J, Francke R, Corzilius B, Reiß F, Beweries T. A General Concept for the Electronic and Steric Modification of 1-Metallacyclobuta-2,3-dienes: A Case Study of Group 4 Metallocene Complexes. Chemistry 2024; 30:e202400708. [PMID: 38529695 DOI: 10.1002/chem.202400708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The synthesis of group 4 metal 1-metallacyclobuta-2,3-dienes as organometallic analogues of elusive 1,2-cyclobutadiene has so far been limited to SiMe3 substituted examples. We present the synthesis of two Ph substituted dilithiated ligand precursors for the preparation of four new 1-metallacyclobuta-2,3-dienes [rac-(ebthi)M] (M=Ti, Zr; ebthi=1,2-ethylene-1,10-bis(η5-tetrahydroindenyl)). The organolithium compounds [Li2(RC3Ph)] (1 b: R=Ph, 1 c: R=SiMe3) as well as the metallacycles of the general formula [rac-(ebthi)M(R1C3R2)] (2 b: M=Ti, R1=R2=Ph, 2 c: M=Ti, R1=Ph, R2=SiMe3; 3 b: M=Zr, R1=R2=Ph; 3 c: M=Zr, R1=Ph, R2=SiMe3) were fully characterised. Single crystal X-ray diffraction and quantum chemical bond analysis of the Ti and Zr complexes reveal ligand influence on the biradicaloid character of the titanocene complexes. X-band EPR spectroscopy of structurally similar Ti complexes [rac-(ebthi)Ti(Me3SiC3SiMe3)] (2 a), 2 b, and 2 c was carried out to evaluate the accessibility of an EPR active triplet state. Cyclic voltammetry shows that introduction of Ph groups renders the complexes easier to reduce. 13C CPMAS NMR analysis provides insights into the cause of the low field shift of the resonances of metal-bonded carbon atoms and provides evidence of the absence of the β-C-Ti interaction.
Collapse
Affiliation(s)
- Sihan Li
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Mirjam Schröder
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Institute of Chemistry, 18059, Rostock, Germany
- University of Rostock, Department LL&M, 18059, Rostock, Germany
| | - Adrian Prudlik
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Institute of Chemistry, 18059, Rostock, Germany
| | - Xinzhe Shi
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Anke Spannenberg
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Björn Corzilius
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Institute of Chemistry, 18059, Rostock, Germany
- University of Rostock, Department LL&M, 18059, Rostock, Germany
| | - Fabian Reiß
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Torsten Beweries
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- University of Rostock, Department LL&M, 18059, Rostock, Germany
| |
Collapse
|
9
|
Kakiuchi Y, Karmakar PS, Roudin J, Tonks IA, Copéret C. Bonding and Reactivity of d 0 Transition Metal Imido Complexes Encoded in Their 15N NMR Signatures. J Am Chem Soc 2024; 146:9860-9870. [PMID: 38534051 PMCID: PMC11059434 DOI: 10.1021/jacs.3c14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Terminal imido complexes containing metal-nitrogen multiple bonds have been widely used in organometallic chemistry and homogeneous catalysis. The role of terminal imido ligands spans from reactive sites to spectator motifs, largely depending on the nature of the metal center and its specific coordination sphere. Aiming at identifying reactivity descriptors for M-N multiple bonds, we herein explore solid-state 15N NMR spectroscopy (ssNMR) on early transition metal terminal imido complexes augmented by computational studies and show that the asymmetry parameter, κ (skew, 1 ≥ κ ≥ -1), readily available from experiments or calculations, is diagnostic for the reactivity of M-N multiple bonds in imido complexes. While inert imido ligands exhibit skew values (κ) close to 1, highly reactive imido moieties display significantly lower skew values (κ ≪ 1) as found in metallocene or bis-imido complexes. Natural chemical shielding analysis shows that skew values away from 1 are associated with an asymmetric development of π-orbitals around the M-N multiple bond of the imido moiety, with a larger double-bond character for reactive imido. Notably, this descriptor does not directly relate to the M-N-C bond angle, illustrating the shortcoming of evaluating bonding and hybridization from geometrical parameters alone. Overall, this descriptor enables to obtain direct experimental evidence for the π-loading effect seen in bis(imido) and related complexes, thus explaining their bonding/reactivity.
Collapse
Affiliation(s)
- Yuya Kakiuchi
- Department of Chemistiy and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Partha Sarathi Karmakar
- Department of Chemistry, University of Minnesota–Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Jérémy Roudin
- Department of Chemistiy and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota–Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Christophe Copéret
- Department of Chemistiy and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
10
|
Ludwig G, Ranđelović I, Dimić D, Komazec T, Maksimović-Ivanić D, Mijatović S, Rüffer T, Kaluđerović GN. (Pentamethylcyclopentadienyl)chloridoiridium(III) Complex Bearing Bidentate Ph 2PCH 2CH 2SPh-κ P,κ S Ligand. Biomolecules 2024; 14:420. [PMID: 38672437 PMCID: PMC11048224 DOI: 10.3390/biom14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The (pentamethylcyclopentadienyl)chloridoiridium(III) complex bearing a κP,κS-bonded Ph2PCH2CH2SPh ligand ([Ir(η5-C5Me5)Cl(Ph2P(CH2)2SPh-κP,κS)]PF6, (1)] was synthesized and characterized. Multinuclear (1H, 13C and 31P) NMR spectroscopy was employed for the determination of the structure. Moreover, SC-XRD confirmed the proposed structure belongs to the "piano stool" type. The Hirshfeld surface analysis outlined the most important intermolecular interactions in the structure. The crystallographic structure was optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,P,S,Cl)/LanL2DZ(Ir) level of theory. The applicability of this level was verified through a comparison of experimental and theoretical bond lengths and angles, and 1H and 13C NMR chemical shifts. The Natural Bond Orbital theory was used to identify and quantify the intramolecular stabilization interactions, especially those between donor atoms and Ir(III) ions. Complex 1 was tested on antitumor activity against five human tumor cell lines: MCF-7 breast adenocarcinoma, SW480 colon adenocarcinoma, 518A2 melanoma, 8505C human thyroid carcinoma and A253 submandibular carcinoma. Complex 1 showed superior antitumor activity against cisplatin-resistant MCF-7, SW480 and 8505C cell lines. The mechanism of tumoricidal action on 8505C cells indicates the involvement of caspase-induced apoptosis, accompanied by a considerable reduction in ROS/RNS and proliferation potential of treated cells.
Collapse
Affiliation(s)
- Gerd Ludwig
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle, Germany;
| | - Ivan Ranđelović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
- Department of Experimental Pharmacology, The National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Teodora Komazec
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia or (I.R.); (T.K.); (D.M.-I.); (S.M.)
| | - Tobias Rüffer
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, D-09111 Chemnitz, Germany;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Strasse 2, D-06217 Merseburg, Germany
| |
Collapse
|
11
|
Luder DJ, Terefenko N, Sun Q, Eckert H, Mück-Lichtenfeld C, Kehr G, Erker G, Wiegand T. Polar covalent apex-base bonding in borapyramidanes probed by solid-state NMR and DFT calculations. Chemistry 2024; 30:e202303701. [PMID: 38078510 DOI: 10.1002/chem.202303701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 01/04/2024]
Abstract
Pyramidane molecules have attracted chemists for many decades due to their regular shape, high symmetry and their correspondence in the macroscopic world. Recently, experimental access to a number of examples has been reported, in particular the rarely reported square pyramidal bora[4]pyramidanes. To describe the bonding situation of the nonclassical structure of pyramidanes, we present solid-state Nuclear Magnetic Resonance (NMR) as a versatile tool for deciphering such bonding properties for three now accessible bora[4]pyramidane and dibora[5]pyramidane molecules. 11 B solid-state NMR spectra indicate that the apical boron nuclei in these compounds are strongly shielded (around -50 ppm vs. BF3 -Et2 O complex) and possess quadrupolar coupling constants of less than 0.9 MHz pointing to a rather high local symmetry. 13 C-11 B spin-spin coupling constants have been explored as a measure of the bond covalency in the borapyramidanes. While the carbon-boron bond to the -B(C6 F5 )2 substituents of the base serves as an example for a classical covalent 2-center-2-electron (2c-2e) sp2 -carbon-sp2 -boron σ-bond with 1 J(13 C-11 B) coupling constants in the order of 75 Hz, those of the boron(apical)-carbon(basal) bonds in the pyramid are too small to measure. These results suggest that these bonds have a strongly ionic character, which is also supported by quantum-chemical calculations.
Collapse
Affiliation(s)
- Dominique J Luder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Nicole Terefenko
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Qiu Sun
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Hellmut Eckert
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
- Institut für Physikalische Chemie, University of Münster, Corrensstr. 30, 48149, Münster, Germany
| | | | - Gerald Kehr
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Gerhard Erker
- Organische Chemie, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim, Germany
| |
Collapse
|
12
|
Telfah A, Al-Akhras MA, AlShheamat H, Mousa MS, Jum'h I, Albawab AQ, Tolstik E, Dierks J, Hergenröder R. Dissociation Kinetics and Antimicrobial Activity of Ofloxacin Antibiotic in Artificial Tears Via 1H-NMR, Raman, and UV-Vis Spectroscopic Analysis. J Ocul Pharmacol Ther 2024; 40:78-88. [PMID: 38252789 DOI: 10.1089/jop.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Introduction: The hydrogen-bonded networks play a significant role in influencing several physicochemical properties of ofloxacin in artificial tears (ATs), including density, pH, viscosity, and self-diffusion coefficients. The activities of the ofloxacin antibiotic with Ats mixtures are not solely determined by their concentration but are also influenced by the strength of the hydrogen bonding network which highlight the importance of considering factors such as excessive tear production and dry eye conditions when formulating appropriate dosages of ofloxacin antibiotics for eye drops. Objectives: Investigating the physicochemical properties of ofloxacin-ATs mixtures, which serve as a model for understanding the impact of hydrogen bonding on the antimicrobial activity of ofloxacin antibiotic eye drops. Determine the antimicrobial activities of the ofloxacin-Ats mixture with different concentration of ofloxacin. Methods: The ofloxacin-ATs mixtures were analyzed using 1H-NMR, Raman, and UV-Vis spectroscopies, with variation of ofloxacin concentration to study its dissociation kinetics in ATs, mimicking its behavior in human eye tears. The investigation includes comprehensive analysis of 1H-NMR spectral data, self-diffusion coefficients, Raman spectroscopy, UV-Vis spectroscopy, liquid viscosity, and acidity, providing a comprehensive assessment of the physicochemical properties. Results: Analysis of NMR chemical shifts, linewidths, and self-diffusion coefficient curves reveals distinct patterns, with peaks or minima observed around 0.6 ofloxacin mole fraction dissociated in ATs, indicating a strong correlation with the hydrogen bonding network. Additionally, the pH data exhibits a similar trend to viscosity, suggesting an influence of the hydrogen bonding network on protonic ion concentrations. Antibacterial activity of the ofloxacin-ATs mixtures is evaluated through growth rate analysis against Salmonella typhimurium, considering varying concentrations with mole fractions of 0.1, 0.4, 0.6, 0.8, and 0.9. Conclusions: The antibiotic-ATs mixture with a mole fraction of 0.6 ofloxacin exhibited lower activity compared to mixtures with mole fractions of 0.1 and 0.4, despite its lower concentration. The activities of the mixtures are not solely dependent on concentration but are also influenced by the strength of the hydrogen bonding network. These findings emphasize the importance of considering tear over-secretion and dry eye problems when designing appropriate doses of ofloxacin antibiotics for eye drop formulations.
Collapse
Affiliation(s)
- Ahmad Telfah
- Nanotechnology Center, The University of Jordan, Amman, Jordan
- Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - M-Ali Al-Akhras
- Department of Physical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Haya AlShheamat
- Department of Physical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Marwan S Mousa
- Surface Physics and Materials Technology Lab, Department of Physics, Mutah University, Al-Karak, Jordan
| | - Inshad Jum'h
- School of Basic Science and Humanities, German Jordanian University (GJU), Amman, Jordan
| | | | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Johann Dierks
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| |
Collapse
|
13
|
Sabisch S, Kakiuchi Y, Docherty SR, Yakimov AV, Copéret C. Geometry and Local Environment of Surface Sites in Vanadium-Based Ziegler-Natta Catalysts from 51V Solid-State NMR Spectroscopy. J Am Chem Soc 2023; 145:25595-25603. [PMID: 37962437 DOI: 10.1021/jacs.3c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Since its emergence over 50 years ago, the structure of surface sites in Ziegler-Natta catalysts, which are responsible for a major fraction of the world's supply of polyethylene (PE) and polypropylene (PP), has remained elusive. This is in part due to the complexity of these systems that involve multiple synthetic steps and components, namely, the MgCl2 support, a transition-metal chloride, and several organic modifiers, known as donors, that are used prior and in some instances during the activation step with alkyl aluminum. Due to the favorable nuclear magnetic resonance (NMR) properties of V and its use in Ziegler-Natta catalysts, we utilize 51V solid-state NMR spectroscopy to investigate the structure of VOCl3 on MgCl2(thf)1.5. The resulting catalyst shows ethylene polymerization activity similar to that of its Ti analogues. Using carefully benchmarked density functional theory (DFT) calculations, the experimental 51V NMR signature was analyzed to elucidate the structure of the surface sites. Using this approach, we demonstrate that the 51V NMR signature contains information about the coordination environment, i.e., the type of ancillary ligand, and the morphology of the MgCl2 support. Analysis of the NMR signature shows that the adsorption of VOCl3 on MgCl2(thf)1.5 generates a well-defined hexacoordinated V-oxo species containing one alkoxy and four chloride ligands, whose local geometry results from the interaction with an amorphous MgCl2 surface. This study illustrates how NMR spectroscopy, which is highly sensitive to the local environment of the investigated nuclei, here V, enables us to identify the exact coordination sphere and to address the effect of the support morphology on surface site structures.
Collapse
Affiliation(s)
- Sebastian Sabisch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Wu Y, Liu Z, Lu T, Orozco-Ic M, Xu J, Yan X, Wang J, Wang X. Exploring the Aromaticity Differences of Isoelectronic Species of Cyclo[18]carbon (C 18), B 6C 6N 6, and B 9N 9: The Role of Carbon Atoms as Connecting Bridges. Inorg Chem 2023. [PMID: 37988331 DOI: 10.1021/acs.inorgchem.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The cyclo[18]carbon (C18) has piqued widespread interest in recent years for its geometrical aesthetic and unique electronic structure. Inspired by it, theoretical investigations of its isoelectronic B9N9 have been published occasionally; however, few studies considered their other companion B6C6N6. In this work, we study the geometric structure, charge distribution, bonding characteristic, aromaticity, and electron delocalization of B6C6N6 and B9N9 for the first time and compare the relevant results with those of C18. Based on the comprehensive analysis of aromaticity indicators such as AV1245, nucleus-independent chemical shifts, anisotropy of the induced current density, magnetically induced current density, iso-chemical shielding surface, and induced magnetic field (Bind), we found that B6C6N6 has definitely a double aromatic character similar to C18 and the aromaticities of the two are very close, while B9N9 is a nonaromatic species. In response to this novel finding, we delved into its nature from an electron delocalization perspective through a localized orbital locator, electron localization function, Fermi hole, and atomic remote delocalization index analyses. The C atom between B and N as an interconnecting bridge strengthens the electron delocalization of the conjugate path, which is the essence of the significant enhancement of the molecular aromaticity from B9N9 to B6C6N6. This work elucidates that within the framework of the isoelectronicity of C18, different methods of atomic doping can achieve molecules with completely different properties.
Collapse
Affiliation(s)
- Yang Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zeyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100022, China
| | - Mesías Orozco-Ic
- Donostia International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
| | - Jingbo Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiufen Yan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jiaojiao Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xia Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
15
|
Seidenath S, Seeber P, Kupfer S, Grӓfe S, Weigand W, Mlostoń G, Matczak P. Theoretical insights into the spectroscopic properties of ferrocenyl hetaryl ketones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122635. [PMID: 36996518 DOI: 10.1016/j.saa.2023.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Quantum chemical calculations have been carried out to elucidate the electronic structure as well as to draw structure-property relationships for a series of ferrocenyl hetaryl ketones by means of simulated NMR, IR and UV-vis spectra. In this series, the list of hetaryl groups included furan-2-yl, thiophen-2-yl, selenophen-2-yl, 1H-pyrrol-2-yl and N-methylpyrrol-2-yl. Density functional theory was employed to determine the ground-state properties of the five ketones while their excited-state properties were modeled using a broad range of theoretical methods, namely from time-dependent density functional theory to multiconfigurational and multireference ab initio approaches. The patterns in the 13C and 17O chemical shifts of the carbonyl group were explained by the geometrical twist of hetaryl rings and by the electronic parameters corresponding to π-bonds conjugation and group hardness. Furthermore, the corresponding 13C and 17O shielding constants were analyzed in terms of both their dia/paramagnetic and Lewis/non-Lewis contributions within the framework of natural chemical shielding theory. The pattern in the vibrational frequency of the carbonyl bond was connected with changes in its bond length and bond order. It was established that the electronic absorption spectra of the studied ketones are largely characterized by low-intensity d → π* transitions in the visible region and the dominant high-intensity π → π* transition in the UV region. Finally, the theoretical methods best suited for modeling the excited-state properties of such ketones were designated.
Collapse
Affiliation(s)
- Sebastian Seidenath
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Phillip Seeber
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Grӓfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
| | - Piotr Matczak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90236 Lodz, Poland.
| |
Collapse
|
16
|
Vasić J, Dimić D, Antonijević M, Avdović EH, Milenković D, Nakarada Đ, Dimitrić Marković J, Molnar M, Lončarić M, Bešlo D, Marković Z. The Electronic Effects of 3-Methoxycarbonylcoumarin Substituents on Spectral, Antioxidant, and Protein Binding Properties. Int J Mol Sci 2023; 24:11820. [PMID: 37511579 PMCID: PMC10380446 DOI: 10.3390/ijms241411820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Coumarin derivatives are a class of compounds with pronounced biological activities that depend primarily on the present substituents. Four 3-methoxycarbonylcoumarin derivatives with substituents of different electron-donating/electron-withdrawing abilities (Br, NO2, OH, and OMe) were investigated structurally by NMR, IR, and UV-VIS spectroscopies and density functional theory methods. The appropriate level of theory (B3LYP-D3BJ/6-311++G(d,p) was selected after comparing similar compounds' experimental and theoretical structural parameters. The natural bond orbital and quantum theory of atoms in molecules were employed to investigate the intramolecular interactions governing stability. The electronic effects of substituents mostly affected the aromatic ring that the substituents are directly attached to. The antioxidant properties were investigated by electron paramagnetic resonance spectroscopy towards HO•, and the percentages of reduction were between 13% (6-Br) and 23% (6-OMe). The protein binding properties towards transport proteins were assessed by spectrofluorimetry, molecular docking, and molecular dynamics (MD). The experimentally determined binding energies were well reproduced by molecular docking, showing that the spontaneity of ibuprofen binding was comparable to the investigated compounds. The flexibility of HSA in MD simulations depended on the substituents. These results proved the importance of electronic effects for the protein binding affinities and antioxidant properties of coumarin derivatives.
Collapse
Affiliation(s)
- Jelena Vasić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marko Antonijević
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Edina H Avdović
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dejan Milenković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | | | - Maja Molnar
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Melita Lončarić
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Drago Bešlo
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimir Prelog 1, 31000 Osijek, Croatia
| | - Zoran Marković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| |
Collapse
|
17
|
Lingas R, Charistos ND, Muñoz-Castro A. Charge delocalization and aromaticity of doubly reduced double-walled carbon nanohoops. Phys Chem Chem Phys 2023. [PMID: 37448229 DOI: 10.1039/d3cp01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Cycloparaphenylenes (CPPs) exhibit selective host capabilities, featuring the ability to incorporate smaller CPPs to form double-walled host-guest complexes. Moreover, CPPs can also be stabilized by global aromaticity under twofold oxidation or reduction, involving electronic conjugation along with the overall structural backbone. Herein we explore the structural modifications, bonding, electron delocalization and magnetic properties of doubly reduced double-walled CPP complexes with DFT methods, in the isolated and aggregate [n + 5]CPP⊃[n]CPP2- (n = 5-8) species. Our results show that the hosts undergo structural, bonding and delocalization deformations towards quinoidal configurations and exhibit global long-ranged shielding cones similar to global aromatic free dianionic CPPs, accounting for charge delocalization on the outer nanohoops, whereas the guests preserve local aromatic benzenoid configurations, resulting in global and local aromatic circuits within the host-guest aggregate. This observation suggests that in multi-layered related species electronic delocalization will be retained at the outer structural surface. The aromaticity of the hosts is manifested in the strong upfield shifts of the guests 1H-NMR signals. Hence, CPP complexes can be extended to doubly reduced species stabilized by global host aromaticity expanding our understanding of doubled-walled nanotubes at the nanoscale regime.
Collapse
Affiliation(s)
- Rafael Lingas
- Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece.
| | - Nickolas D Charistos
- Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
18
|
Bouhoute Y, Grekov D, Merle N, Szeto KC, Larabi C, Del Rosal I, Maron L, Delevoye L, Gauvin RM, Taoufik M. On the use of 17O NMR for understanding molecular and silica-grafted tungsten oxo siloxide complexes. Dalton Trans 2023. [PMID: 37376921 DOI: 10.1039/d3dt01593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
17O-labelled tungsten siloxide complexes [WOCl2(OSitBu3)2] (1-Cl) and [WOMe2(OSitBu3)2] (1-Me) were prepared and characterized by 17O MAS NMR, with input from theoretical calculations of NMR parameters. Guidelines linking 17O NMR parameters and the coordination sphere of molecular and silica-grafted tungsten oxo species are proposed. The grafting of 1-Me on SiO2-700 afforded material 2, with surface species [(SiO)WOMe2(OSitBu3)] as shown by elemental analysis, IR and 1H and 13C MAS NMR. The DFT calculations of the grafting mechanism are in line with the observed reactivity. They indicate the occurrence of several isomeric species of close energy for the grafted W centers, precluding efficient 17O MAS NMR studies. The lack of catalytic activity in olefin metathesis and ring-opening olefin metathesis polymerization indicates that initiation by α-H elimination is not operative in 2, contrary to related tungsten surface species, which illustrates the crucial influence of the nature of the metal coordination sphere.
Collapse
Affiliation(s)
- Y Bouhoute
- Laboratoire de Chimie, Catalyse, Polymères et Procédés, UMR 5265 CNRS/ESCPE-Lyon/UCBL, ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France.
| | - D Grekov
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
| | - N Merle
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
| | - K C Szeto
- Laboratoire de Chimie, Catalyse, Polymères et Procédés, UMR 5265 CNRS/ESCPE-Lyon/UCBL, ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France.
| | - C Larabi
- Laboratoire de Chimie, Catalyse, Polymères et Procédés, UMR 5265 CNRS/ESCPE-Lyon/UCBL, ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France.
| | - I Del Rosal
- Laboratoire de Physico-Chimie des Nano-Objets, CNRS UMR 5215, Université de Toulouse, INSA, UPS, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - L Maron
- Laboratoire de Physico-Chimie des Nano-Objets, CNRS UMR 5215, Université de Toulouse, INSA, UPS, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - L Delevoye
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
| | - R M Gauvin
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - M Taoufik
- Laboratoire de Chimie, Catalyse, Polymères et Procédés, UMR 5265 CNRS/ESCPE-Lyon/UCBL, ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France.
| |
Collapse
|
19
|
Lingas R, Charistos ND, Muñoz-Castro A. Local and global aromaticity under rotation: analysis of two- and three-dimensional representative carbon nanostructures. Phys Chem Chem Phys 2023; 25:14285-14293. [PMID: 37183443 DOI: 10.1039/d3cp00569k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoscaled 2D and 3D carbon structures with closed curved π-surfaces are of relevance in the development of desirable building units for materials science. Such species are able to sustain local and global aromatic circuits involving isolated regions or the overall structural backbone, respectively. Here we account for local and global aromaticity under rotation of representative two- and three-dimensional species involving para-connected and fused edge-sharing phenyl rings ([8]CPP, [10]CPP, CNB), and C60 fullerene at different charge states. Our results denote that nanoscaled 2D global aromatics mimic the behaviour of the most prototypical aromatic 6π-circuit, given by benzene, where the shielding cone properties vary along the rotation motion. In contrast, 3D spherical aromatics remain almost invariant under rotation, given the distinctive characteristics of such species, differing from 2D global aromatics. Dissection of orbital contributions reveals that π-orbitals are determinants for shifting from non-aromatic to spherical aromatic species. Under rotation, the variation of the anisotropic effect inherent to such nanoscaled structures is accounted for, which is relevant to rationalize variation in NMR signal shifts upon the formation of host-guest aggregates.
Collapse
Affiliation(s)
- Rafael Lingas
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece.
| | - Nickolas D Charistos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
20
|
Muhammad US, Erkan S, Kaya S. Analysis of Boronic Acids Containing Amino Ferrocene by DFT Approach and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
21
|
Jeeva P, Sudha S, Rakić A, Dimić D, Ramarajan D, Barathi D. Structural, spectroscopic, quantum chemical, and molecular docking study towards cartilage protein of (3E,3′E)-3,3′-(1,4-phenylenebis(azanediyl))bis(cyclohex-2-en-1-one). J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Fernández-Alarcón A, Autschbach J. Relativistic Density Functional NMR Tensors Analyzed with Spin-free Localized Molecular Orbitals. Chemphyschem 2023; 24:e202200667. [PMID: 36169984 DOI: 10.1002/cphc.202200667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Indexed: 01/07/2023]
Abstract
The implementation of fast relativistic methods based on density functional theory, in conjunction with localized molecular orbital (LMO) based analysis, allows straightforward interpretations of NMR parameters in terms of contributions from core shells, lone pairs, and bonds, for compounds containing elements from across the periodic table. We present a conceptual review of a frequently used LMO analysis of NMR parameters calculated in the presence of spin-orbit interactions and other relativistic effects. An accompanying example focuses on the 15 N shielding in a heavy metal complex.
Collapse
Affiliation(s)
- Alberto Fernández-Alarcón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| |
Collapse
|
23
|
Eichhorn T, Kolbe F, Mišić S, Dimić D, Morgan I, Saoud M, Milenković D, Marković Z, Rüffer T, Dimitrić Marković J, Kaluđerović GN. Synthesis, Crystallographic Structure, Theoretical Analysis, Molecular Docking Studies, and Biological Activity Evaluation of Binuclear Ru(II)-1-Naphthylhydrazine Complex. Int J Mol Sci 2022; 24:ijms24010689. [PMID: 36614131 PMCID: PMC9821167 DOI: 10.3390/ijms24010689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Ruthenium(II)-arene complexes have gained significant research interest due to their possible application in cancer therapy. In this contribution two new complexes are described, namely [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-1-N,N'-naphthyl)]X (X = Cl, 1; PF6, 2), which were fully characterized by IR, NMR, and elemental microanalysis. Furthermore, the structure of 2 in the solid state was determined by a single crystal X-ray crystallographic study, confirming the composition of the crystals as 2·2MeOH. The Hirshfeld surface analysis was employed for the investigation of interactions that govern the crystal structure of 2·2MeOH. The structural data for 2 out of 2·2MeOH was used for the theoretical analysis of the cationic part [{RuCl(η6-p-cymene)}2(μ-Cl)(μ-1-N,N'-naphthyl)]+ (2a) which is common to both 1 and 2. The density functional theory, at B3LYP/6-31+G(d,p) basis set for H, C, N, and Cl atoms and LanL2DZ for Ru ions, was used for the optimization of the 2a structure. The natural bond orbital and quantum theory of atoms in molecules analyses were employed to quantify the intramolecular interactions. The reproduction of experimental IR and NMR spectra proved the applicability of the chosen level of theory. The binding of 1 to bovine serum albumin was examined by spectrofluorimetry and molecular docking, with complementary results obtained. Compound 1 acted as a radical scavenger towards DPPH• and HO• radicals, along with high activity towards cancer prostate and colon cell lines.
Collapse
Affiliation(s)
- Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany
| | - Franz Kolbe
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany
| | - Stefan Mišić
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Tobias Rüffer
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, D-09111 Chemnitz, Germany
| | - Jasmina Dimitrić Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Correspondence: (J.D.M.); (G.N.K.)
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany
- Correspondence: (J.D.M.); (G.N.K.)
| |
Collapse
|
24
|
Zapata Escobar AD, Maldonado AF, Aucar GA. The LRESC-Loc Model to Analyze Magnetic Shieldings with Localized Molecular Orbitals. J Phys Chem A 2022; 126:9519-9534. [PMID: 36512732 DOI: 10.1021/acs.jpca.2c05604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The leading electronic mechanisms of relativistic effects in the NMR magnetic shieldings of heavy-atom (HA) containing molecules are well described by the linear response with elimination of small components model (LRESC). We show here first results from a new version of the LRESC model written in terms of localized molecular orbitals (LMOs) which is coined as LRESC-Loc. Those LMOs resemble "chemist's orbitals", representing lone-pairs, atomic cores, and bonds. The whole set of relativistic effects are expressed in terms of non-ligand-dependent and ligand-dependent contributions. We show the electronic origin of trends and behavior of different mechanisms in molecular systems which contain heavy elements that belong to any of the IB to VIIA groups of the periodic table. The SO mechanism has a well-defined dependence with the LPs (LPσ and LPπ) when the HAs have them, but the non-SO mechanisms mostly depend on other LMOs. In addition we propose here that the SO mechanism can be used to characterize interactions involving LPs and the non-SO mechanisms to characterize covalent and close-shell interactions. All our main results are in accord with previous findings, though we are now able to analyze them in a different manner.
Collapse
Affiliation(s)
- Andy D Zapata Escobar
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina, Corrientes, W3404AAS, Argentina.,Institute for Modeling and Innovative Technology, IMIT (CONICET-UNNE), Corrientes, W3404AAS, Argentina
| | - Alejandro F Maldonado
- Institute for Modeling and Innovative Technology, IMIT (CONICET-UNNE), Corrientes, W3404AAS, Argentina
| | - Gustavo A Aucar
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina, Corrientes, W3404AAS, Argentina.,Institute for Modeling and Innovative Technology, IMIT (CONICET-UNNE), Corrientes, W3404AAS, Argentina
| |
Collapse
|
25
|
Synthesis, spectroscopic characterization, biological activities, X-ray diffraction and molecular docking studies of 2-methyl-3-(thiazol-2-ylcarbamoyl)phenylacetate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Körner L, Ho LP, Puchta R, Stanger A, Tamm M. Dimorpholinoacetylene and Its Use for the Synthesis of Tetraaminocyclobutadiene Species. Chemistry 2022; 28:e202202737. [PMID: 36148808 PMCID: PMC9828195 DOI: 10.1002/chem.202202737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/12/2023]
Abstract
The new diaminoacetylene (DAA) dimorpholinoacetylene (3) was prepared from 1,1-dimorpholinoethene (1) by bromination to form the dibromoketene aminal 2, which upon lithiation afforded 3 through a Fritsch-Buttenberg-Wiechell rearrangement. Heating 3 at elevated temperatures resulted in a complete conversion into the dimer 1,1,2,4-tetramorpholino-1-buten-3-yne (4), which was used for the synthesis of four-membered cyclic bent allene (CBA) transition-metal complexes of the type [(CBA)MLn ] (5-7; MLn =AuCl, RhCl(COD), RhCl(CO)2 ; CBA=1,3,4,4-tetramorpholino-1,2-cyclobutadiene; COD=1,5-cyclooctadiene). The reaction of 3 with tetraethylammonium bromide gave 1,2,3,4-tetramorpholinocyclobutenylium bromide (8), which reacted with bromine to form 1,2,3,4-tetra(morpholino)cyclobutenediylium bis(tribromide) (9). Compound 9 represents the first fully characterized compound containing a tetraaminocyclobutadiene dication and displays a nearly planar C4 N4 core as shown by X-ray diffraction analysis. Detailed quantum chemical calculations were performed to assess the aromaticity of tetraaminocyclubutadiene dications by employing the Nucleus Independent Chemical Shift (NICS) method and current density analysis.
Collapse
Affiliation(s)
- Lukas Körner
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Luong Phong Ho
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Ralph Puchta
- Department Chemie und PharmazieFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| | - Amnon Stanger
- Schulich Department of Chemistry, TechnionHaifa32000Israel
| | - Matthias Tamm
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
27
|
Stanger A. Singlet Fission and Aromaticity. J Phys Chem A 2022; 126:8049-8057. [DOI: 10.1021/acs.jpca.2c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amnon Stanger
- Schulich Department of Chemistry, Technion, Haifa 3200003, Israel
| |
Collapse
|
28
|
Gutierrez VS, Arnault A, Ferreira V, Artigas A, Hagebaum-Reignier D, Carissan Y, Coquerel Y, Hiebel MA, Suzenet F. Synthesis, Photophysical Properties, and Aromaticity of Pyrazine-Fused Tetrazapentalenes. J Org Chem 2022; 87:13653-13662. [PMID: 36197438 DOI: 10.1021/acs.joc.2c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrazine-fused 1,2,6,6a-tetrazapentalenes (PyTeAP) are zwitterionic tricyclic compounds exhibiting an original pattern with four consecutive nitrogen atoms. They were obtained by a challenging cyclization through the formation of a N-N bond under thermolytic conditions. Ten derivatives were synthesized, and the original scaffold of PyTeAP was confirmed by single-crystal X-ray diffraction analysis of one derivative. Examination of their photophysical properties in solution revealed blue fluorescence with λem = 416-426 nm. Theoretical investigations of the aromaticity in these compounds through magnetic criteria evidenced the presence of a dominant 14-electron circuit at the periphery.
Collapse
Affiliation(s)
| | - Axel Arnault
- Université d'Orléans, CNRS, ICOA, UMR 7311,Orléans, France
| | | | - Albert Artigas
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Franck Suzenet
- Université d'Orléans, CNRS, ICOA, UMR 7311,Orléans, France
| |
Collapse
|
29
|
Çakmak Ş, Aycan T, Öztürk F, Veyisoğlu A. Design, synthesis and spectroscopic and structural characterization of novel N-(2-hydroxy-5-methylphenyl)-2,3-dimethoxybenzamide: DFT, Hirshfeld surface analysis, antimicrobial activity, molecular docking and toxicology. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:493-506. [DOI: 10.1107/s2053229622008257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022]
Abstract
The novel compound N-(2-hydroxy-5-methylphenyl)-2,3-dimethoxybenzamide, C16H17NO4, I, was prepared by a two-step reaction and then characterized by elemental analysis and X-ray diffraction (XRD) methods. Moreover, its spectroscopic properties were investigated by FT–IR and 1H and 13C NMR. Compound I crystallized in the monoclinic space group P21/c and the molecular geometry is not planar, being divided into three planar regions. Supramolecular structures are formed by connecting units via hydrogen bonds. The ground-state molecular structure of I was optimized by the DFT-B3LYP/6-31G(d,p) method and the theoretical structure was compared with that obtained by X-ray diffraction. Intermolecular interactions in the crystal network were studied by two-dimensional (2D) and three-dimensional (3D) Hirshfeld analyses. The calculated electronic transition results were examined and the molecular electrostatic potentials (MEPs) were also determined. The in vitro antimicrobial activities of I against three Gram-positive bacteria, three Gram-negative bacteria and two fungi were determined. The compound was compared with several control drugs and showed better activity than the amoxicillin standard against Gram-positive bacteria B. subtilis, S. aureus and E. faecalis, and Gram-negative bacteria E. coli, K. pneumoniae and P. aeruginosa. The density functional theory (DFT)-optimized structure of the small molecule was used to perform molecular docking studies with proteins from experimentally studied bacterial and fungal organisms using AutoDock to determine the most preferred binding mode of the ligand within the protein cavity. A druglikeness assay and ADME (absorption, distribution, metabolism and excretion) and toxicology studies were carried out and predict a good drug-like character.
Collapse
|
30
|
Timofeeva V, Baeza JML, Nougué R, Syroeshkin M, Segundo Rojas Guerrero R, Saffon-Merceron N, Altınbaş Özpınar G, Rathjen S, Müller T, Baceiredo A, Kato T. Reductive Elimination at Pb(II) Center of an (Amino)plumbylene-Substituted Phosphaketene: New Pathway for Phosphinidene Synthesis. Chemistry 2022; 28:e202201615. [PMID: 35638144 PMCID: PMC9401577 DOI: 10.1002/chem.202201615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/27/2022]
Abstract
A stable (amino)plumbylene‐substituted phosphaketene 3 was synthesized by the successive reactions of PbCl2 with two anionic reagents (lithium amidophosphine and NaPCO). Of particular interest, the thermal evolution of 3, at 80 °C, leads to the transient formation of corresponding amino‐ and phosphanylidene‐phosphaketenes (6 and 7), via a reductive elimination at the PbII center forming new N−P and P−P bonds. Further evolution of 6 gives a new cyclic (amino)phosphanylidene phosphorane 4, which shows a unique reactivity as a phosphinidene. This result provides a new synthetic route to phosphinidenes, extending and facilitating further their access.
Collapse
Affiliation(s)
- Vladislava Timofeeva
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - José Miguel Léon Baeza
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Raphael Nougué
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Mikhail Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - Rene Segundo Rojas Guerrero
- Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Gül Altınbaş Özpınar
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Saskia Rathjen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
31
|
He Z, Liu L, de Zwart FJ, Xue X, Ehlers AW, Yan K, Demeshko S, van der Vlugt JI, de Bruin B, Krogman J. Reactivity of a Unique Si(I)-Si(I)-Based η 2-Bis(silylene) Iron Complex. Inorg Chem 2022; 61:11725-11733. [PMID: 35857413 PMCID: PMC9377512 DOI: 10.1021/acs.inorgchem.2c01369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this paper, we report the synthesis of a unique silicon(I)-based
metalla-disilirane and report on its reactivity toward TMS-azide and
benzophenone. Metal complexes containing disilylenes ((bis)silylenes
with a Si–Si bond) are known, but direct ligation of the Si(I)
centers to transition metals always generated dinuclear species. To
overcome this problem, we targeted the formation of a mononuclear
iron(0)–silicon(I)-based disilylene complex via templated synthesis,
starting with ligation of two Si(II) centers to iron(II), followed
by a two-step reduction. The DFT structure of the resulting η2-disilylene-iron complex reveals metal-to-silicon π-back
donation and a delocalized three-center–two-electron (3c–2e)
aromatic system. The Si(I)–Si(I) bond displays unusual but
well-defined reactivity. With TMS-azide, both the initial azide adduct
and the follow-up four-membered nitrene complex could be isolated.
Reaction with benzophenone led to selective 1,4-addition into the
Si–Si bond. This work reveals that selective reactions of Si(I)–Si(I)
bonds are made possible by metal ligation. The first selective ligation of a silicon(I)-based
disilylene
to a mononuclear metal center is achieved via templated synthesis.
Computational analysis of the ensuing η2-disilylene-iron(0)
complex supports a delocalized three-center−two-electron (3c−2e)
aromatic system. The Si(I)−Si(I) bond displays well-defined
reactivity toward trimethylsilyl azide and benzophenone. This work
reveals that selective reactions of Si(I)−Si(I) bonds are made
possible by metal ligation.
Collapse
Affiliation(s)
- Zhiyuan He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lingyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Felix J de Zwart
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Xiaolian Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andreas W Ehlers
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,Department of Chemistry, University of Johannesburg, Auckland Park, Johannesburg P.O. Box 254, ZA-2006, South Africa
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Serhiy Demeshko
- Department of Chemistry, Georg August University, Tammanstraße 4, 37077 Göttingen, Germany
| | - Jarl Ivar van der Vlugt
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,Institute of Chemistry, Carl von Ossietzky University, Carl-von-Ossietzky-Straße 9-11, 12629 Oldenburg, Germany
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeremy Krogman
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
32
|
Kaya S, Erkan S, Karakaş D. Computational design and characterization of platinum‐II complexes of some Schiff bases and investigation of their anticancer‐antibacterial properties. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Serpil Kaya
- Cumhuriyet University, Science Faculty, Chemistry Department Sivas Turkey
| | - Sultan Erkan
- Cumhuriyet University, Science Faculty, Chemistry Department Sivas Turkey
| | - Duran Karakaş
- Cumhuriyet University, Science Faculty, Chemistry Department Sivas Turkey
| |
Collapse
|
33
|
Rajamani P, Vijayakumar V, Nagaraaj P, Sundaraganesan N. Synthesis, Characterization, Spectroscopic, DFT and Molecular Docking Studies of 3-(3,4-Dihydroxyphenyl)-1-Phenyl-3-(Phenylamino)Propan-1-One. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1837190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- P. Rajamani
- Departmentof Physics, Annamalai University, Chidambaram, India
| | - V. Vijayakumar
- Department of Chemistry, Karan Arts and Science College, Tiruvannamalai, India
| | - P. Nagaraaj
- Department of Chemistry, CEG, Anna University, Chennai, India
| | | |
Collapse
|
34
|
Orozco-Ic M, Charistos ND, Muñoz-Castro A, Islas R, Sundholm D, Merino G. Core-electron contributions to the molecular magnetic response. Phys Chem Chem Phys 2022; 24:12158-12166. [PMID: 35543541 DOI: 10.1039/d1cp05713h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orbital contributions to the magnetic response depend on the method used to compute them. Here, we show that dissecting nuclear magnetic shielding tensors using natural localized molecular orbitals (NLMOs) leads to anomalous core contributions. The arbitrariness of the assignment might significantly affect the interpretation of the magnetic response of nonplanar molecules such as C60 or [14]helicene and the assessment of their aromatic character. We solve this problem by computing the core- and σ-components of the induced magnetic field (and NICS) and the magnetically induced current density by removing the valence electrons (RVE). We estimate the core contributions to the magnetic response by performing calculations on the corresponding highly charged molecules, such as C6H630+ for benzene, using gauge-including atomic orbitals and canonical molecular orbitals (CMOs). The orbital contributions to nuclear magnetic shielding tensors are usually estimated by employing a natural chemical shielding (NCS) analysis in NLMO or CMO bases. The RVE approach shows that the core contribution to the magnetic response is small and localized at the nuclei, contrary to what NCS calculations suggest. This may lead to a completely incorrect interpretation of the magnetic σ-orbital response of nonplanar structures, which may play a major role in the overall magnetic shielding of the system. The RVE approach is thus a simple and inexpensive way to determine the magnetic response of the core- and σ-electrons.
Collapse
Affiliation(s)
- Mesías Orozco-Ic
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.
| | - Nickolas D Charistos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - Rafael Islas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, 8370146, Santiago, Chile
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., Mexico.
| |
Collapse
|
35
|
Kavitha E, Ramarajan D, Rakić A, Dimić D, Sudha S, Nirmala PN. Structural, spectroscopic, quantum chemical, and molecular docking investigation of (E)-N'-(2,5-dimethoxybenzylidene)picolinohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Paenurk E, Gershoni-Poranne R. Simple and efficient visualization of aromaticity: bond currents calculated from NICS values. Phys Chem Chem Phys 2022; 24:8631-8644. [PMID: 35132428 DOI: 10.1039/d1cp05757j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aromaticity is a fundamental concept in chemistry, underpinning the properties and reactivity of many organic compounds and materials. The ability to easily and accurately discern aromatic behavior is key to leveraging it as a design element, yet most aromaticity metrics struggle to combine accurate quantitative evaluation, intuitive interpretability, and user-friendliness. We introduce a new method, NICS2BC, which uses simple and inexpensive NICS calculations to generate information-rich and easily-interpreted bond-current graphs. We test the quantitative and qualitative characterizations afforded by NICS2BC for a selection of molecules of varying structural and electronic complexity, to demonstrate its accuracy and ease of analysis. Moreover, we show that NICS2BC successfully identifies ring-current patterns in molecules known to be difficult cases to interpret with NICS and enables deeper understanding of local aromaticity trends, demonstrating that our method adds additional insight.
Collapse
Affiliation(s)
- Eno Paenurk
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Renana Gershoni-Poranne
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.,Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
37
|
Stanger A. The Aromatic Character of Diindeno[2,1- b:2',1'- h]biphenylene. Org Lett 2022; 24:1243-1246. [PMID: 35089721 DOI: 10.1021/acs.orglett.2c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tropicity of the title system was studied using NICS(1.7)π,zz-XY-scans and current density analysis, showing a global diatropic loop and local dia- and paratropic loops. This aromaticity picture is very different from the one proposed based on NICS(1) and HOMA ( Org. Lett. 2021, 23, 8794-8798). It is predicted that 1 should be suitable for singlet fission applications. It is concluded that local aromatic indices should not be used for the full analysis of multiring conjugated systems.
Collapse
Affiliation(s)
- Amnon Stanger
- Schulich Department of Chemistry, Technion, Haifa 3200003, Israel
| |
Collapse
|
38
|
Dimić DS, Kaluđerović GN, Avdović EH, Milenković DA, Živanović MN, Potočňák I, Samoľová E, Dimitrijević MS, Saso L, Marković ZS, Dimitrić Marković JM. Synthesis, Crystallographic, Quantum Chemical, Antitumor, and Molecular Docking/Dynamic Studies of 4-Hydroxycoumarin-Neurotransmitter Derivatives. Int J Mol Sci 2022; 23:1001. [PMID: 35055194 PMCID: PMC8780855 DOI: 10.3390/ijms23021001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.
Collapse
Affiliation(s)
- Dušan S. Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany;
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Dejan A. Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Marko N. Živanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | - Ivan Potočňák
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia;
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic;
| | - Milena S. Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Zoran S. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (E.H.A.); (D.A.M.); (M.N.Ž.); (Z.S.M.)
| | | |
Collapse
|
39
|
Structural, spectroscopic (IR, Raman, and NMR), quantum chemical, and molecular docking analysis of (E)-2-(2,5-dimethoxybenzylidene)hydrazinecarbothioamide and its dimers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Musso JV, Schowner R, Falivene L, Frey W, Cavallo L, Buchmeiser MR. Predicting Catalytic Activity from
13
C
CH
Alkylidene Chemical Shift in Cationic Tungsten Oxo Alkylidene N‐Heterocyclic Carbene Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Janis V. Musso
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Roman Schowner
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Laura Falivene
- Dipartimento di Chimica e Biologia University of Salerno Via Papa Paolo Giovanni II I-84084 Fisciano Italy
| | - Wolfgang Frey
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Luigi Cavallo
- KAUST Catalysis Center Physical Sciences and Engineering Division King Abdullah University of Science and Technology 23955-6900 Thuwal Saudi Arabia
| | - Michael R. Buchmeiser
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
- German Institutes of Textile and Fiber Research (DITF) Denkendorf Körschtalstr. 26 73770 Denkendorf Germany
| |
Collapse
|
41
|
Sundholm D, Dimitrova M, Berger RJF. Current density and molecular magnetic properties. Chem Commun (Camb) 2021; 57:12362-12378. [PMID: 34726205 DOI: 10.1039/d1cc03350f] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the molecular response to an external magnetic field perturbing quantum mechanical systems. We present state-of-the-art methods for calculating magnetically-induced current-density susceptibilities. We discuss the essence and properties of current-density susceptibilities and how molecular magnetic properties can be calculated from them. We also review the theory of spin-current densities, how relativity affects current densities and magnetic properties. An overview of the magnetic ring-current criterion for aromaticity is given, which has implications on theoretical and experimental research. The recently reported theory of antiaromaticity and how molecular symmetry affects the magnetic response are discussed and applied to closed-shell paramagnetic molecules. The topology of magnetically induced current densities and its consequences for molecular magnetic properties are also presented with twisted and toroidal molecules as examples.
Collapse
Affiliation(s)
- Dage Sundholm
- Department of Chemistry, Faculty of Science, FI-00014 University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Finland.
| | - Maria Dimitrova
- Department of Chemistry, Faculty of Science, FI-00014 University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Finland. .,Chemistry of Materials, Paris-Lodron University of Salzburg, Jakob-Haringerstr. 2A, A-5020 Salzburg, Austria
| | - Raphael J F Berger
- Chemistry of Materials, Paris-Lodron University of Salzburg, Jakob-Haringerstr. 2A, A-5020 Salzburg, Austria
| |
Collapse
|
42
|
Al-Otaibi JS, Sheena Mary Y, Mary YS, Resmi KS. Computational Evaluation of Molecular Structures and Spectroscopic Properties of Tryptamine Derivatives on Its Binding With Novel Corona Virus Proteins. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2006248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
43
|
Huynh W, Taylor JW, Harman WH, Conley MP. Solid-state 11B NMR studies of coinage metal complexes containing a phosphine substituted diboraanthracene ligand. Dalton Trans 2021; 50:14855-14863. [PMID: 34604875 DOI: 10.1039/d1dt02981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal interactions with Lewis acids (M → Z linkages) are fundamentally interesting and practically important. The most common Z-type ligands contain boron, which contains an NMR active 11B nucleus. We measured solid-state 11B{1H} NMR spectra of copper, silver, and gold complexes containing a phosphine substituted 9,10-diboraanthracene ligand (B2P2) that contain planar boron centers and weak M → BR3 linkages ([(B2P2)M][BArF4] (M = Cu (1), Ag (2), Au (3)) characterized by large quadrupolar coupling (CQ) values (4.4-4.7 MHz) and large span (Ω) values (93-139 ppm). However, the solid-state 11B{1H} NMR spectrum of K[Au(B2P2)]- (4), which contains tetrahedral borons, is narrow and characterized by small CQ and Ω values. DFT analysis of 1-4 shows that CQ and Ω are expected to be large for planar boron environments and small for tetrahedral boron, and that the presence of a M → BR3 linkage relates to the reduction in CQ and 11B NMR shielding properties. Thus solid-state 11B NMR spectroscopy contains valuable information about M → BR3 linkages in complexes containing the B2P2 ligand.
Collapse
Affiliation(s)
- Winn Huynh
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Jordan W Taylor
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - W Hill Harman
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
44
|
Analysis of Local and Global Aromaticity in Si3C5 and Si4C8 Clusters. Aromatic Species Containing Planar Tetracoordinate Carbon. CHEMISTRY 2021. [DOI: 10.3390/chemistry3040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The minimum energy structures of the Si3C5 and Si4C8 clusters are planar and contain planar tetracoordinate carbons (ptCs). These species have been classified, qualitatively, as global (π) and local (σ) aromatics according to the adaptive natural density partitioning (AdNDP) method, which is an orbital localization method. This work evaluates these species’ aromaticity, focusing on confirming and quantifying their global and local aromatic character. For this purpose, we use an orbital localization method based on the partitioning of the molecular space according to the topology of the electronic localization function (LOC-ELF). In addition, the magnetically induced current density is analyzed. The LOC-ELF-based analysis coincides with the AdNDP study (double aromaticity, global, and local). Moreover, the current density analysis detects global and local ring currents. The strength of the global and local current circuit is significant, involving 4n + 2 π- and σ-electrons, respectively. The latter implicates the Si-ptC-Si fragment, which would be related to the 3c-2e σ-bond detected by the orbital localization methods in this fragment.
Collapse
|
45
|
Transue WJ, Dai Y, Riu MLY, Wu G, Cummins CC. 31P NMR Chemical Shift Tensors: Windows into Ruthenium Phosphinidene Complex Electronic Structures. Inorg Chem 2021; 60:9254-9258. [PMID: 34152768 DOI: 10.1021/acs.inorgchem.1c01099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of octamethylcalix[4]pyrrole/ruthenium phosphinidene complexes (Na2[1=PR]) can be accessed by phosphinidene transfer from the corresponding RPA (A = C14H10, anthracene) compounds (R = tBu, iPr, OEt, NH2, NMe2, NEt2, NiPr2, NA, dimethylpiperidino). Isolation of the tert-butyl and dimethylamino derivatives allowed comparative studies of their 31P nuclear shielding tensors by magic-angle-spinning solid-state nuclear magnetic resonance spectroscopy. Density functional theory and natural chemical shielding analyses reveal the relationship between the 31P chemical shift tensor and the local ruthenium/phosphorus electronic structure. The general trend observed in the 31P isotropic chemical shifts for the ruthenium phosphinidene complexes was controlled by the degree of deshielding in the δ11 principal tensor component, which can be linked to the σRuP/πRuP* energy gap. A "δ22-δ33 crossover" effect for R = tBu was also observed, which was caused by different degrees of deshielding associated with polarizations of the σPR and σPR* natural bond orbitals.
Collapse
Affiliation(s)
- Wesley J Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yizhe Dai
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry and Department of Chemistry University of Wisconsin Madison Wisconsin 53706 USA
| |
Collapse
|
47
|
Mary YS, Mary YS, Resmi KS, Sarala S, Yadav R, Celik I. Modeling the structural and reactivity properties of hydrazono methyl-4H-chromen-4-one derivatives-wavefunction-dependent properties, molecular docking, and dynamics simulation studies. J Mol Model 2021; 27:186. [PMID: 34036470 DOI: 10.1007/s00894-021-04800-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
This study explains the vibration and interaction of three pharmaceutically active hydrazine derivatives, (E)-3-((2-(2,5-difluorophenyl)hydrazono)methyl)-4H-chromen-4-one (DFH), (E)-3-((2-(4-(trifluoromethyl)phenyl)hydrazono)methyl)-4H-chromen-4-one (TMH), and (E)-3-((2-(3,5-bis(trifluoromethyl)phenyl)hydrazono)methyl)-4H-chromen-4-one (BPH) using theoretical approach. The trend in chemical reactivity and stability of the studied compounds was observed to show increasing stability and decreasing reactivity and this was obtained from orbital energies. The effect of bromine and chlorine atoms, instead of fluorine atoms, is also noted. Surface analysis on the covalent bond was attained by ELF and LOL analysis. Biological activities were predicted using molecular docking studies. Docking results were analyzed with standard drugs, 5-fluorouracil/piperine. Antitumor activity of hydrazine derivatives was found to be higher than reference ones. Molecular dynamics (MD) simulation was performed for 100 ns to validate the stability behavior of hydrazine derivatives with the dual specificity threonine tyrosine kinase (TTK) protein. RMSD, RMSF, Rg, SASA, and intermolecular analysis of DFH, TMH, and BPH with threonine tyrosine kinase forms stable ligand-protein interactions. The molecular and predictive biological properties of three pharmaceutically active hydrazine derivatives which can be helpful to researchers in future experimental validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Y Sheena Mary
- Researcher, Thushara, Neethinagar-64, Kollam, Kerala, India.
| | - Y Shyma Mary
- Researcher, Thushara, Neethinagar-64, Kollam, Kerala, India
| | - K S Resmi
- Researcher, Thiruvalluvarpuram Main Street Number 5, Chennai, India
| | - S Sarala
- Department of Physics, Kanchi Shri Krishna College of Arts and Science, Kanchipuram, Tamilnadu, 631551, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, 249203, India
| | - Ismail Celik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
48
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH
3
OH Selectivity and Formation Rates on Cu‐Based CO
2
Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Daniel T. Bregante
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
49
|
Lingas R, Charistos ND, Muñoz-Castro A. Aromaticity of ortho and meta 8-Cycloparaphenylene and Their Dications: Induced Magnetic Field Analysis with Localized and Delocalized Orbitals in Strained Nanohoops. Chemphyschem 2021; 22:741-751. [PMID: 33620136 DOI: 10.1002/cphc.202100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Indexed: 11/06/2022]
Abstract
Dications of cycloparaphenyles ([n]CPPs) are known to exhibit in-plane global aromaticity, contained in a nanobelt structure. Recently synthesized ortho and meta isomers of [n]CPPs break the radial symmetry of π structure incorporating perpendicular oriented π orbitals. Herein we set to explore the aromaticity of neutral and dicationic ortho and meta isomers of [8]CPP by dissecting the induced magnetic field to contributions of the twofold radial/perpendicular π system using delocalized canonical molecular orbitals (CMO), and introducing the natural localized molecular orbitals (NLMO) analysis with DFT methods. The dications sustain a reduced global aromatic character of the radial π system under a perpendicular orientation of the external field which declines from ortho to meta isomer and reinforces local aromaticity of ortho ring while it destroys aromaticity of meta ring. Aromaticity variations are determined by symmetry governed rotational excitations of frontier π orbitals. The parallel orientation reveals a substantial reduction of local aromaticity verified with NICSπ analysis and electron delocalization indices.
Collapse
Affiliation(s)
- Rafael Lingas
- Department of Chemistry Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece
| | - Nickolas D Charistos
- Department of Chemistry Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux, 2801, Santiago, Chile
| |
Collapse
|
50
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH 3 OH Selectivity and Formation Rates on Cu-Based CO 2 Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021; 60:9650-9659. [PMID: 33559910 DOI: 10.1002/anie.202100672] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Indexed: 01/03/2023]
Abstract
CH3 OH formation rates in CO2 hydrogenation on Cu-based catalysts sensitively depend on the nature of the support and the presence of promoters. In this context, Cu nanoparticles supported on tailored supports (highly dispersed M on SiO2 ; M=Ti, Zr, Hf, Nb, Ta) were prepared via surface organometallic chemistry, and their catalytic performance was systematically investigated for CO2 hydrogenation to CH3 OH. The presence of Lewis acid sites enhances CH3 OH formation rate, likely originating from stabilization of formate and methoxy surface intermediates at the periphery of Cu nanoparticles, as evidenced by metrics of Lewis acid strength and detection of surface intermediates. The stabilization of surface intermediates depends on the strength of Lewis acid M sites, described by pyridine adsorption enthalpies and 13 C chemical shifts of -OCH3 coordinated to M; these chemical shifts are demonstrated here to be a molecular descriptor for Lewis acid strength and reactivity in CO2 hydrogenation.
Collapse
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|