1
|
Pravdivtsev A, Buckenmaier K, Kempf N, Stevanato G, Scheffler K, Engelmann J, Plaumann M, Koerber R, Hövener JB, Theis T. LIGHT-SABRE Hyperpolarizes 1- 13C-Pyruvate Continuously without Magnetic Field Cycling. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:6744-6753. [PMID: 37081994 PMCID: PMC10108362 DOI: 10.1021/acs.jpcc.3c01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Nuclear spin hyperpolarization enables real-time observation of metabolism and intermolecular interactions in vivo. 1-13C-pyruvate is the leading hyperpolarized tracer currently under evaluation in several clinical trials as a promising molecular imaging agent. Still, the quest for a simple, fast, and efficient hyperpolarization technique is ongoing. Here, we describe that continuous, weak irradiation in the audio-frequency range of the 13C spin at the 121 μT magnetic field (approximately twice Earth's field) enables spin order transfer from parahydrogen to 13C magnetization of 1-13C-pyruvate. These so-called LIGHT-SABRE pulses couple nuclear spin states of parahydrogen and pyruvate via the J-coupling network of reversibly exchanging Ir-complexes. Using ∼100% parahydrogen at ambient pressure, we polarized 51 mM 1-13C-pyruvate in the presence of 5.1 mM Ir-complex continuously and repeatedly to a polarization of 1.1% averaged over free and catalyst-bound pyruvate. The experiments were conducted at -8 °C, where almost exclusively bound pyruvate was observed, corresponding to an estimated 11% polarization on bound pyruvate. The obtained hyperpolarization levels closely match those obtained via SABRE-SHEATH under otherwise identical conditions. The creation of three different types of spin orders was observed: transverse 13C magnetization along the applied magnetic field, 13C z-magnetization along the main field B 0, and 13C-1H zz-spin order. With a superconducting quantum interference device (SQUID) for detection, we found that the generated spin orders result from 1H-13C J-coupling interactions, which are not visible even with our narrow linewidth below 0.3 Hz and at -8 °C.
Collapse
Affiliation(s)
- Andrey
N. Pravdivtsev
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical
Center Kiel, Kiel University, Am Botanischene Garten 14, 24118 Kiel, Germany
| | - Kai Buckenmaier
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Nicolas Kempf
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Gabriele Stevanato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- NMR
Signal Enhancement Group, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Klaus Scheffler
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
- Department
for Biomedical Magnetic Resonance, University
of Tübingen, 72076 Tübingen, Germany
| | - Joern Engelmann
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Markus Plaumann
- Otto-von-Guericke
University, Medical Faculty, Institute of
Biometry and Medical Informatics, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Rainer Koerber
- Department
‘Biosignals’, Physikalisch-Technische
Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Jan-Bernd Hövener
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical
Center Kiel, Kiel University, Am Botanischene Garten 14, 24118 Kiel, Germany
| | - Thomas Theis
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
- Departments
of Chemistry and Physics, North Carolina
State University, Raleigh, North Carolina 27695, United States
- Joint
UNC-NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
2
|
Zhukov I, Kiryutin A, Wang Z, Zachrdla M, Yurkovskaya A, Ivanov K, Ferrage F. Surprising absence of strong homonuclear coupling at low magnetic field explored by two-field nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:237-246. [PMID: 38111910 PMCID: PMC10726027 DOI: 10.5194/mr-1-237-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2023]
Abstract
Strong coupling of nuclear spins, which is achieved when their scalar coupling 2 π J is greater than or comparable to the difference Δ ω in their Larmor precession frequencies in an external magnetic field, gives rise to efficient coherent longitudinal polarization transfer. The strong coupling regime can be achieved when the external magnetic field is sufficiently low, as Δ ω is reduced proportional to the field strength. In the present work, however, we demonstrate that in heteronuclear spin systems these simple arguments may not hold, since heteronuclear spin-spin interactions alter the Δ ω value. The experimental method that we use is two-field nuclear magnetic resonance (NMR), exploiting sample shuttling between the high field, at which NMR spectra are acquired, and the low field, where strong couplings are expected and at which NMR pulses can be applied to affect the spin dynamics. By using this technique, we generate zero-quantum spin coherences by means of a nonadiabatic passage through a level anticrossing and study their evolution at the low field. Such zero-quantum coherences mediate the polarization transfer under strong coupling conditions. Experiments performed with a 13 C -labeled amino acid clearly show that the coherent polarization transfer at the low field is pronounced in the 13 C spin subsystem under proton decoupling. However, in the absence of proton decoupling, polarization transfer by coherent processes is dramatically reduced, demonstrating that heteronuclear spin-spin interactions suppress the strong coupling regime, even when the external field is low. A theoretical model is presented, which can model the reported experimental results.
Collapse
Affiliation(s)
- Ivan V. Zhukov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey S. Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ziqing Wang
- Laboratoire des Biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Milan Zachrdla
- Laboratoire des Biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fabien Ferrage
- Laboratoire des Biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Pravdivtsev AN, Hövener JB. Simulating Non-linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE). Chemistry 2019; 25:7659-7668. [PMID: 30689237 DOI: 10.1002/chem.201806133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Indexed: 01/30/2023]
Abstract
The hyperpolarization of nuclear spins by using parahydrogen (pH2 ) is a fascinating technique that allows spin polarization and thus the magnetic resonance signal to be increased by several orders of magnitude. Entirely new applications have become available. Signal amplification by reversible exchange (SABRE) is a relatively new method that is based on the reversible exchange of a substrate, catalyst and parahydrogen. SABRE is particularly interesting for in vivo medical and industrial applications, such as fast and low-cost trace analysis or continuous signal enhancement. Ever since its discovery, many attempts have been made to model and understand SABRE, with various degrees of simplifications. In this work, we reduced the simplifications further, taking into account non-linear chemical and physical (CAP) dynamics of several multi-spin systems. A master equation was derived and realized using the MOIN open-source software. The effects of different parameters (exchange rates, concentrations, spin-spin couplings) on relaxation and the polarization level have been evaluated and the results provide interesting insights into the mechanism of SABRE.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
4
|
Zhukov IV, Kiryutin AS, Yurkovskaya AV, Grishin YA, Vieth HM, Ivanov KL. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer. Phys Chem Chem Phys 2018; 20:12396-12405. [PMID: 29623979 DOI: 10.1039/c7cp08529j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.
Collapse
Affiliation(s)
- Ivan V Zhukov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
5
|
Shchepin RV, Jaigirdar L, Chekmenev EY. Spin-Lattice Relaxation of Hyperpolarized Metronidazole in Signal Amplification by Reversible Exchange in Micro-Tesla Fields. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:4984-4996. [PMID: 29955244 PMCID: PMC6017983 DOI: 10.1021/acs.jpcc.8b00283] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Simultaneous reversible chemical exchange of parahydrogen and to-be-hyperpolarized substrate on metal centers enables spontaneous transfer of spin order from parahydrogen singlet to nuclear spins of the substrate. When performed at sub-micro-Tesla magnetic field, this technique of NMR Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH). SABRE-SHEATH has been shown to hyperpolarize nitrogen-15 sites of a wide range of biologically interesting molecules to a high polarization level (P > 20%) in one minute. Here, we report on a systematic study of 1H, 13C and 15N spin-lattice relaxation (T1) of metronidazole-13C2-15N2 in SABRE-SHEATH hyperpolarization process. In micro-Tesla range, we find that all 1H, 13C and 15N spins studied share approximately the same T1 values (ca. 4 s at the conditions studied) due to mixing of their Zeeman levels, which is consistent with the model of relayed SABRE-SHEATH effect. These T1 values are significantly lower than those at higher magnetic (i.e. the Earth's magnetic field and above), which exceed 3 minutes in some cases. Moreover, these relatively short T1 values observed below 1 micro-Tesla limit the polarization build-up process of SABRE-SHEATH- thereby, limiting maximum attainable 15N polarization. The relatively short nature of T1 values observed below 1 micro-Tesla is primarily caused by intermolecular interactions with quadrupolar iridium centers or dihydride protons of the employed polarization transfer catalyst, whereas intramolecular spin-spin interactions with 14N quadrupolar centers have significantly smaller contribution. The presented experimental results and their analysis will be beneficial for more rational design of SABRE-SHEATH (i) polarization transfer catalyst, and (ii) hyperpolarized molecular probes in the context of biomedical imaging and other applications.
Collapse
Affiliation(s)
- Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Vanderbilt University, School of Engineering, Nashville, Tennessee 37232 United States
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee 37232-2310, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
6
|
Kiryutin AS, Pravdivtsev AN, Ivanov KL, Grishin YA, Vieth HM, Yurkovskaya AV. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:79-91. [PMID: 26773525 DOI: 10.1016/j.jmr.2015.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100μT up to 7T) within less than 0.3s; progress in NMR probe design provides NMR linewidths of about 10(-3)ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Yuri A Grishin
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Institutskaya 3, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. High resolution NMR study of T₁ magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide. J Chem Phys 2015; 141:155101. [PMID: 25338911 DOI: 10.1063/1.4897336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I-III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T1-relaxation times at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.
Collapse
Affiliation(s)
| | | | - Hans-Martin Vieth
- Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14, 14195 Berlin, Germany
| | - Konstantin L Ivanov
- International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Pravdivtsev AN, Yurkovskaya AV, Ivanov KL, Vieth HM. Importance of polarization transfer in reaction products for interpreting and analyzing CIDNP at low magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 254:35-47. [PMID: 25797825 DOI: 10.1016/j.jmr.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 05/14/2023]
Abstract
The magnetic field dependence of Chemically Induced Dynamic Nuclear Polarization (CIDNP) was studied for the amino acids N-acetyl histidine, N-acetyl tryptophan and N-acetyl tyrosine. It is demonstrated that at low field CIDNP is strongly affected by polarization redistribution in the diamagnetic molecules. Such a polarization transfer is of coherent nature and is due to spin coherences formed together with non-equilibrium population of the spin states. These coherences clearly manifest themselves in an oscillatory time dependence of polarization. Polarization transfer effects are most pronounced at nuclear spin Level Anti-Crossings (LACs), which also result in sharp features in the CIDNP field dependence. Thus, polarization transfer is an important factor, which has to be taken into account in order to interpret low-field CIDNP data on both qualitative and quantitative level. Possible applications of polarization transfer phenomena are also discussed in the paper. In particular, the role of LACs in spin order transfer is highlighted: LACs provide a new tool for precise manipulation of spin hyperpolarization and NMR enhancement of selected target spins.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Hans-Martin Vieth
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
9
|
Ivanov KL, Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Kaptein R. The role of level anti-crossings in nuclear spin hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 81:1-36. [PMID: 25142733 DOI: 10.1016/j.pnmrs.2014.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 05/22/2023]
Abstract
Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3-4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice, either protons or insensitive nuclei such as (13)C and (15)N. This situation arises primarily in Chemically Induced Dynamic Nuclear Polarization (CIDNP), Para-Hydrogen Induced Polarization (PHIP), and the related Signal Amplification By Reversible Exchange (SABRE). Here we review the recent literature on polarization transfer mechanisms, in particular focusing on the role of Level Anti-Crossings (LACs) therein. So-called "spontaneous" polarization transfer may occur both at low and high magnetic fields. In addition, transfer of spin polarization can be accomplished by using especially designed pulse sequences. It is now clear that at low field spontaneous polarization transfer is primarily due to coherent spin-state mixing under strong coupling conditions. However, thus far the important role of LACs in this process has not received much attention. At high magnetic field, polarization may be transferred by cross-relaxation effects. Another promising high-field technique is to generate the strong coupling condition by spin locking using strong radio-frequency fields. Here, an analysis of polarization transfer in terms of LACs in the rotating frame is very useful to predict which spin orders are transferred depending on the strength and frequency of the B1 field. Finally, we will examine the role of strong coupling and LACs in magnetic-field dependent nuclear spin relaxation and the related topic of long-lived spin-states.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, Berlin 14195, Germany
| | - Robert Kaptein
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
10
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. Coherent transfer of nuclear spin polarization in field-cycling NMR experiments. J Chem Phys 2013; 139:244201. [DOI: 10.1063/1.4848699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Kiryutin AS, Yurkovskaya AV, Kaptein R, Vieth HM, Ivanov KL. Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields. J Phys Chem Lett 2013; 4:2514-2519. [PMID: 26704425 DOI: 10.1021/jz401210m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is, coherent spin mixing or cross-relaxation, is not well established. Polarization transfer kinetics for individual protons of styrene was, for the first time, measured and modeled theoretically. Pronounced oscillations were observed indicating a coherent transfer mechanism. Spin coherences were excited by passing through an avoided level crossing of the nuclear spin energy levels. Transfer at avoided level crossings is selective with respect to spin order. Our work provides evidence that the coherent PHIP transfer mechanism is dominant at low magnetic fields.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Robert Kaptein
- Novosibirsk State University , Novosibirsk 630090, Russia
- Utrecht University , NL-3584 CH Utrecht, The Netherlands
| | | | - Konstantin L Ivanov
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Pravdivtsev AN, Yurkovskaya AV, Kaptein R, Miesel K, Vieth HM, Ivanov KL. Exploiting level anti-crossings for efficient and selective transfer of hyperpolarization in coupled nuclear spin systems. Phys Chem Chem Phys 2013; 15:14660-9. [DOI: 10.1039/c3cp52026a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Kiryutin AS, Ivanov KL, Yurkovskaya AV, Kaptein R, Vieth HM. Transfer of Parahydrogen Induced Polarization in Scalar Coupled Systems at Variable Magnetic Field. ACTA ACUST UNITED AC 2012. [DOI: 10.1524/zpch.2012.0307] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Para-Hydrogen Induced Polarization (PHIP) experiments were performed in coupled multispin systems at variable magnetic fields. We studied the magnetic field dependence of PHIP in styrene, which is the product of hydrogenation of phenylacetylene. At low magnetic fields where the spins are coupled strongly by scalar interaction efficient polarization transfer among the interacting protons takes place. The experimentally observed spectra are in good agreement with the simulation, which takes into account eight coupled spins. We also demonstrate effects of nuclear spin level anti-crossings on the PHIP pattern. It is shown that rapid passage through the level anti-crossing enables highly efficient polarization transfer between specific spin orders. In addition, we studied PHIP transfer to
13
C and
19
F hetero-nuclei. It is shown that hetero-nuclei can be efficiently polarized in a wide field range; in particular, for polarizing them it is not necessary to go to ultra-low fields, which provide their strong coupling to protons. The resulting polarization is of the multiplet type and gives strong enhancements of the individual NMR lines. In general, variation of the magnetic field gives the opportunity for manipulating PHIP patterns and transferring polarization to target spins of choice.
Collapse
Affiliation(s)
- Alexey S. Kiryutin
- Freie Universität Berlin, Institut für Experimentalphysik, Berlin, Deutschland
| | | | | | - Robert Kaptein
- Novosibirsk State University, Novosibirsk 630090, Russische Föderation
| | | |
Collapse
|