1
|
Hoffmann L, Beerwerth J, Moch K, Böhmer R. Phenol, the simplest aromatic monohydroxy alcohol, displays a faint Debye-like process when mixed with a nonassociating liquid. Phys Chem Chem Phys 2023; 25:24042-24059. [PMID: 37654228 DOI: 10.1039/d3cp02774k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solvated in propylene carbonate, viscous phenol is studied using dielectric spectroscopy and shear rheology. In addition, several oxygen-17 and deuteron nuclear magnetic resonance (NMR) techniques are applied to specifically isotope labeled equimolar mixtures. Quantum chemical calculations are used to check the electrical field gradient at phenol's oxygen site. The chosen combination of NMR methods facilitates the selective examination of potentially hydrogen-bond related contributions as well as those dominated by the structural relaxation. Taken together the present results for phenol in equimolar mixtures with the van der Waals liquid propylene carbonate provide evidence for the existence of a very weak Debye-like process that originates from ringlike supramolecular associates.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
2
|
Richert R. One experiment makes a direct comparison of structural recovery with equilibrium relaxation. J Chem Phys 2022; 157:224501. [PMID: 36546803 DOI: 10.1063/5.0131342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
For a molecular glass-former, propylene glycol, we directly compare the equilibrium fluctuations, measured as "structural" relaxation in the regime of linear response, with structural recovery, i.e., field induced physical aging in the limit of a small perturbation. The two distinct correlation functions are derived from a single experiment. Because the relaxation time changes only 2% during structural recovery, no aging model is needed to analyze the results. Although being conceptually different processes, dielectric relaxation and recovery dynamics are observed to be identical for propylene glycol, whereas single-particle dynamics as seen by photon correlation spectroscopy are significantly faster. This confirms the notion that structural recovery and aging are governed by all modes observed by dielectric spectroscopy, i.e., including cross correlations, not only by single-particle dynamics. A comparison with analogous results for other materials suggests that the relation between relaxation and recovery time scales may be material specific rather than universal.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
3
|
D'Hondt C, Morineau D. Dynamics of type V menthol-thymol deep eutectic solvents: Do they reveal non-ideality? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Mansuri A, Münzner P, Feuerbach T, Vermeer AWP, Hoheisel W, Böhmer R, Thommes M, Gainaru C. The relaxation behavior of supercooled and glassy imidacloprid. J Chem Phys 2021; 155:174502. [PMID: 34742219 DOI: 10.1063/5.0067404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Employing dielectric spectroscopy, oscillatory shear rheology, and calorimetry, the present work explores the molecular dynamics of the widely used insecticide imidacloprid above and below its glass transition temperature. In its supercooled liquid regime, the applied techniques yield good agreement regarding the characteristic structural (alpha) relaxation times of this material. In addition, the generalized Gemant-DiMarzio-Bishop model provides a good conversion between the frequency-dependent dielectric and shear mechanical responses in its viscous state, allowing for an assessment of imidacloprid's molecular hydrodynamic radius. In order to characterize the molecular dynamics in its glassy regime, we employ several approaches. These include the application of frequency-temperature superposition (FTS) to its isostructural dielectric and rheological responses as well as use of dielectric and calorimetric physical aging and the Adam-Gibbs-Vogel model. While the latter approach and dielectric FTS provide relaxation times that are close to each other, the other methods predict notably longer times that are closer to those reflecting a complete recovery of ergodicity. This seemingly conflicting dissimilarity demonstrates that the molecular dynamics of glassy imidacloprid strongly depends on its thermal history, with high relevance for the use of this insecticide as an active ingredient in technological applications.
Collapse
Affiliation(s)
- A Mansuri
- INVITE GmbH, 51368 Leverkusen, Germany
| | - P Münzner
- Department of Physics, TU Dortmund University, 44221 Dortmund, Germany
| | - T Feuerbach
- Chair of Solids Process Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | | | | | - R Böhmer
- Department of Physics, TU Dortmund University, 44221 Dortmund, Germany
| | - M Thommes
- Chair of Solids Process Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - C Gainaru
- Department of Physics, TU Dortmund University, 44221 Dortmund, Germany
| |
Collapse
|
5
|
Richert R, Gabriel JP, Thoms E. Structural Relaxation and Recovery: A Dielectric Approach. J Phys Chem Lett 2021; 12:8465-8469. [PMID: 34449235 DOI: 10.1021/acs.jpclett.1c02539] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We compare structural relaxation and structural recovery dynamics for molecular glass-formers, both measured by dielectric techniques in the regime of linear responses. It is emphasized that structural recovery restores ergodicity, whereas structural relaxation or α-processes characterize fluctuations of the system in equilibrium (and thus do not involve a change of structure within experimental resolution). Evidence is provided that structural recovery is linked to rate exchange and thus is distinct from structural relaxation dynamics, even in the limit of small perturbations. As a consequence, structural recovery is somewhat slower and more exponential than the equilibrium dynamics as derived, for instance, from low field dielectric relaxation experiments. This contrasts the standard assumption inherent in models of physical aging, which assume the identity of both responses if measured in the limit of a small perturbation. Typical experiments associated with physical aging and scanning calorimetry involve nonlinear responses and are thus even more complex.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jan P Gabriel
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Erik Thoms
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Heczko D, Jurkiewicz K, Tarnacka M, Grelska J, Wrzalik R, Kamiński K, Paluch M, Kamińska E. The impact of chemical structure on the formation of the medium-range order and dynamical properties of selected antifungal APIs. Phys Chem Chem Phys 2020; 22:28202-28212. [PMID: 33295350 DOI: 10.1039/d0cp02332a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we have analyzed structural, thermal, and dynamical properties of four azole antifungals: itraconazole (ITZ), posaconazole (POS), terconazole (TER) and ketoconazole (KET), differing mainly in the length of the rod-like backbone and slightly in side groups. Our investigations clearly demonstrated that the changes in the chemical structure result in a different ability to form the medium-range order (MRO) and variation in thermal and dynamical properties of these pharmaceuticals. Direct comparison of the diffractograms collected for glassy and crystalline materials indicated that the MRO observed in the former phases is related to maintaining the local molecular arrangement of the crystal structure. Moreover, it was shown that once the MRO-related diffraction peaks appear, additional mobility (δ- or α' relaxation), slower than the structural (α)-process, is also detected in dielectric spectra. This new mode is connected to the motions within supramolecular nanoaggregates. Detailed analysis of dielectric and calorimetric data also revealed that the variation in the internal structure and MRO of the examined pharmaceuticals have an impact on the glass transition temperature (Tg) shape of the α-process, isobaric fragility, molecular dynamics in the glassy state and number of dynamically correlated molecules. These findings could be helpful in an understanding the influence of different types of intermolecular MRO on the properties of substances having a similar chemical backbone.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Prepeak in the structure factor of alcohols is known for a half century and was attributed to one of two mechanisms (i) self-assembly in aggregates and (ii) existence of spatial heterogeneity. Although both explnations are often argued the molecular origin is yet unclear. In this work, molecular dynamics simulation of neat alcohols and their mixtures in the presence of an apolar liquid in bulk and in confined phases is performed to unveil and to clarify the origin of the prepeak at the molecular scale. Unambiguously, we show that the existence of the prepeak is the result of the self-assembly in clusters leading to long-range correlations rather than the spatial heterogeneity. We also establish that the confinement of neat liquids at the nanoscale does not erase the clustering and the prepeak but strongly reduce the spatial heterogeneity. Regarding the binary alcohol/toluene mixtures, we highlight the possibility to erase the clustering and the spatial heterogeneity from nanoconfinement inducing the formation of a core-shell structure. By tuning the interfacial chemistry and pore size, we shed light on the possibility to control the spatial heterogeneity, the self-assembly, and the microphase separation.
Collapse
Affiliation(s)
- Aziz Ghoufi
- Institut de Physique de Rennes, IPR, CNRS-Université de Rennes 1, UMR CNRS 6251, 35042 Rennes, France
| |
Collapse
|
8
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 841] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
9
|
Thomann CA, Münzner P, Moch K, Jacquemin J, Goodrich P, Sokolov AP, Böhmer R, Gainaru C. Tuning the dynamics of imidazolium-based ionic liquids via hydrogen bonding. I. The viscous regime. J Chem Phys 2020; 153:194501. [DOI: 10.1063/5.0026144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- C. A. Thomann
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - P. Münzner
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - K. Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J. Jacquemin
- Faculté des Sciences et Techniques, Université de Tours, 37200 Tours, France
- QUILL Center, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - P. Goodrich
- QUILL Center, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - A. P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, USA and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - R. Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
10
|
Talik A, Tarnacka M, Geppert-Rybczyńska M, Hachuła B, Bernat R, Chrzanowska A, Kaminski K, Paluch M. Are hydrogen supramolecular structures being suppressed upon nanoscale confinement? The case of monohydroxy alcohols. J Colloid Interface Sci 2020; 576:217-229. [PMID: 32417683 DOI: 10.1016/j.jcis.2020.04.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/27/2022]
Abstract
In this paper, the molecular dynamics, H-bonding pattern and wettability of the primary and secondary monohydroxyalcohols, 2-ethyl-1-hexanol (2E1H), 2-ethyl-1-butanol (2E1B) and 5-methyl-3-heptanol (5M3H) infiltrated into native and functionalized silica and alumina pores having pore diameters, d = 4 nm and d = 10 nm, have been studied with the use of Broadband Dielectric (BDS) and Fourier Transform InfraRed (FTIR) spectroscopies, as well as contact angle measurements. We found significant differences in the behavior of alcohols forming chain- (2E1H, 2E1B) or micelle-like (5M3H) supramolecular structures despite of their similarities in the wettability and interfacial energy. It turned out that nanoassociates as well as H-bonds are more or less affected by the confinement dependently on the chemical structure and alcohol order. Moreover, a peculiar behavior of the self-assemblies at the interface was noted in the latter material (5M3H). Finally, it was found that irrespectively to the sample, type of pores, functionalization, the temperature evolution of Debye relaxation times, τD, of the confined systems deviates from the bulk behavior always at similar τD due to vitrification of the interfacial layer. This finding is a clear indication that unexpectedly dynamics (mobility) of the supramolecular structures close to the hydrophilic and hydrophobic surfaces is similar in each system.
Collapse
Affiliation(s)
- Agnieszka Talik
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Magdalena Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | | | - Barbara Hachuła
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Roksana Bernat
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Agnieszka Chrzanowska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
11
|
Arrese-Igor S, Alegría A, Arbe A, Colmenero J. Insights into the non-exponential behavior of the dielectric Debye-like relaxation in monoalcohols. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Bierwirth SP, Honorio G, Gainaru C, Böhmer R. Linear and nonlinear shear studies reveal supramolecular responses in supercooled monohydroxy alcohols with faint dielectric signatures. J Chem Phys 2019; 150:104501. [DOI: 10.1063/1.5086529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- S. Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Gabriel Honorio
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
13
|
Bierwirth SP, Gainaru C, Böhmer R. Coexistence of two structural relaxation processes in monohydroxy alcohol-alkyl halogen mixtures: Dielectric and rheological studies. J Chem Phys 2018; 149:044509. [PMID: 30068194 DOI: 10.1063/1.5037037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evidence for the existence of two glass transitions is found in binary mixtures of monohydroxy alcohols with an aprotic alkyl halide by means of dielectric spectroscopy and, markedly, also shear rheology. In the mechanical data, an enormous separation of two components becomes obvious for suitable compositions. The observation of bimodal motional heterogeneity is possible despite the fact that the glass transition temperatures of these substances differ by only 40 K. Obviously, the hydrogen-bond driven formation of supramolecular structures in one of the mixture components facilitates the emergence of dynamic contrast which for other binary liquids was so far only observed in the presence of much larger glass transition temperature differences.
Collapse
Affiliation(s)
- S Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
14
|
Büning T, Lueg J, Bolle J, Sternemann C, Gainaru C, Tolan M, Böhmer R. Connecting structurally and dynamically detected signatures of supramolecular Debye liquids. J Chem Phys 2018; 147:234501. [PMID: 29272922 DOI: 10.1063/1.4986866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The monohydroxy alcohol 2-ethyl-1-hexanol mixed with the halogen-substituted alkyl halides 2-ethyl-1-hexyl chloride and 2-ethyl-1-hexyl bromide was studied using synchrotron-based x-ray scattering. In the diffraction patterns, an oxygen-related prepeak appears. The concentration dependence of its intensity, shape, and position indicates that the formation of the hydrogen-bonded associates of monohydroxy alcohols is largely hindered by the halogen alkane admixture. Using dielectric spectroscopy and high-resolution rheology on the same liquid mixtures, it is shown that these structural features are correlated with the relaxation mechanisms giving rise to supramolecular low-frequency dynamics.
Collapse
Affiliation(s)
- T Büning
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Lueg
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - M Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
15
|
Rams-Baron M, Jędrzejowska A, Dulski M, Wolnica K, Geirhos K, Lunkenheimer P, Paluch M. Unusual dielectric response of 4-methyl-1,3-dioxolane derivatives. Phys Chem Chem Phys 2018; 20:28211-28222. [DOI: 10.1039/c8cp05913f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, we applied broadband dielectric spectroscopy (BDS) to investigate the molecular dynamics of three 4-methyl-1,3-dioxolane derivatives (MD) whose chemical structures differ in the length of non-polar alkyl side chains.
Collapse
Affiliation(s)
- Marzena Rams-Baron
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Agnieszka Jędrzejowska
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- Institute of Material Science
- 41-500 Chorzow
| | - Kamila Wolnica
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Korbinian Geirhos
- Experimental Physics V
- Center for Electronic Correlations and Magnetism
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Peter Lunkenheimer
- Experimental Physics V
- Center for Electronic Correlations and Magnetism
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Marian Paluch
- Institute of Physics
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| |
Collapse
|
16
|
Bierwirth SP, Münzner P, Knapp TA, Gainaru C, Böhmer R. Communication: Nonadditive dielectric susceptibility spectra of associating liquids. J Chem Phys 2017; 146:101101. [DOI: 10.1063/1.4978228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- S. P. Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - P. Münzner
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - T. A. Knapp
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R. Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
17
|
Hansen JS, Kisliuk A, Sokolov AP, Gainaru C. Identification of Structural Relaxation in the Dielectric Response of Water. PHYSICAL REVIEW LETTERS 2016; 116:237601. [PMID: 27341258 DOI: 10.1103/physrevlett.116.237601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 06/06/2023]
Abstract
One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.
Collapse
Affiliation(s)
- Jesper S Hansen
- DNRF Centre "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Alexander Kisliuk
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Alexei P Sokolov
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Catalin Gainaru
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
- Faculty of Physics, Technical University of Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
18
|
Hecksher T. Communication: Linking the dielectric Debye process in mono-alcohols to density fluctuations. J Chem Phys 2016; 144:161103. [DOI: 10.1063/1.4947470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tina Hecksher
- Glass & Time, IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
19
|
Gainaru C, Bauer S, Vynokur E, Wittkamp H, Hiller W, Richert R, Böhmer R. Dynamics in Supercooled Secondary Amide Mixtures: Dielectric and Hydrogen Bond Specific Spectroscopies. J Phys Chem B 2015; 119:15769-79. [DOI: 10.1021/acs.jpcb.5b10034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Gainaru
- Fakultät
Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - S. Bauer
- Fakultät
Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - E. Vynokur
- Fakultät
Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - H. Wittkamp
- Fakultät
Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - W. Hiller
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - R. Richert
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - R. Böhmer
- Fakultät
Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
20
|
Adrjanowicz K, Jakobsen B, Hecksher T, Kaminski K, Dulski M, Paluch M, Niss K. Communication: Slow supramolecular mode in amine and thiol derivatives of 2-ethyl-1-hexanol revealed by combined dielectric and shear-mechanical studies. J Chem Phys 2015; 143:181102. [DOI: 10.1063/1.4935510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- K. Adrjanowicz
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan, Poland
| | - B. Jakobsen
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - T. Hecksher
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - K. Kaminski
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Dulski
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - K. Niss
- Department of Sciences, DNRF Centre “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
21
|
Cosby T, Holt A, Griffin PJ, Wang Y, Sangoro J. Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure. J Phys Chem Lett 2015; 6:3961-3965. [PMID: 26722899 DOI: 10.1021/acs.jpclett.5b01887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The impact of supramolecular hydrogen bonded networks on dynamics and charge transport in 2-ethyl-4-methylimidazole (2E4MIm), a model proton-conducting system, is investigated by broadband dielectric spectroscopy, depolarized dynamic light scattering, viscometry, and calorimetry. It is observed that the slow, Debye-like relaxation reflecting the supramolecular structure in neat 2E4MIm is eliminated upon the addition of minute amounts of levulinic acid. This is attributed to the dissociation of imidazole molecules and the breaking down of hydrogen-bonded chains, which leads to a 10-fold enhancement of ionic conductivity.
Collapse
Affiliation(s)
| | | | - Philip J Griffin
- Department of Materials Science and Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Yangyang Wang
- Center for Nanophase Materials Science, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | |
Collapse
|
22
|
Arrese-Igor S, Alegría A, Colmenero J. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents. J Chem Phys 2015; 142:214504. [PMID: 26049505 DOI: 10.1063/1.4921655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.
Collapse
Affiliation(s)
- S Arrese-Igor
- Centro de de Física de Materiales (MPC), Centro Mixto CSIC-UPV/EHU, Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
| | - A Alegría
- Centro de de Física de Materiales (MPC), Centro Mixto CSIC-UPV/EHU, Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
| | - J Colmenero
- Centro de de Física de Materiales (MPC), Centro Mixto CSIC-UPV/EHU, Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
23
|
Singh LP, Raihane A, Alba-Simionesco C, Richert R. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study. J Chem Phys 2015; 142:014501. [DOI: 10.1063/1.4904908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Lokendra P. Singh
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Ahmed Raihane
- Laboratoire Léon Brillouin, CNRS /CEA -UMR 12, DSM/IRAMIS/LLB CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Christiane Alba-Simionesco
- Laboratoire Léon Brillouin, CNRS /CEA -UMR 12, DSM/IRAMIS/LLB CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Ranko Richert
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
24
|
Richert R. Supercooled Liquids and Glasses by Dielectric Relaxation Spectroscopy. ADVANCES IN CHEMICAL PHYSICS 2014. [DOI: 10.1002/9781118949702.ch4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Hennous L, Hamid ARA, Lefort R, Morineau D, Malfreyt P, Ghoufi A. Crossover in structure and dynamics of a primary alcohol induced by hydrogen-bonds dilution. J Chem Phys 2014; 141:204503. [DOI: 10.1063/1.4902012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
26
|
|
27
|
Singh LP, Alba-Simionesco C, Richert R. Dynamics of glass-forming liquids. XVII. Dielectric relaxation and intermolecular association in a series of isomeric octyl alcohols. J Chem Phys 2014; 139:144503. [PMID: 24116631 DOI: 10.1063/1.4823998] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is well established that many mono-hydroxy alcohols show an extra relaxation process of the Debye type in addition to the signatures of primary and secondary structural relaxations, which is observed only in dielectric spectroscopy and related techniques. In order to gain further insight into the nature of this Debye peak, we study the linear and nonlinear dielectric behavior of a series of isomeric octyl alcohols and of mixtures of n-propanol with one of the octanols. These samples display systematic variations of the Debye peak intensity and concomitant changes in the Kirkwood correlation factor gK from 0.1 to 4, indicative of different equilibrium constants, K(c∕r), that characterize the populations of non-polar ring and polar open chain structures. For cases where K(c∕r) is not too far from unity, we find that a high electric field shifts K(c∕r) towards more chains, and that the accompanying change in the end-to-end vector of hydrogen-bond connected structures occurs on the Debye time scale. The results suggest that gK is correlated with the spectral separation of the Debye and primary structural peaks, as both features depend on steric hindrance of chain flexibility or bond rotation barriers and on average chain lengths. Based on the complex dynamics of supercooled mono-hydroxy alcohols with three relaxation peaks that cover many orders of magnitude in frequency, it is argued that a frequency dependent gK may be required for assessing the average orientational correlations within hydrogen-bonded structures correctly.
Collapse
Affiliation(s)
- Lokendra P Singh
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | |
Collapse
|
28
|
Sauer D, Schuster B, Rosenstihl M, Schneider S, Talluto V, Walther T, Blochowicz T, Stühn B, Vogel M. Dynamics of water-alcohol mixtures: Insights from nuclear magnetic resonance, broadband dielectric spectroscopy, and triplet solvation dynamics. J Chem Phys 2014; 140:114503. [DOI: 10.1063/1.4868003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Gao Y, Tu W, Chen Z, Tian Y, Liu R, Wang LM. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols. J Chem Phys 2013; 139:164504. [DOI: 10.1063/1.4825398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Gao Y, Bi D, Li X, Liu R, Tian Y, Wang LM. Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol. J Chem Phys 2013; 139:024503. [DOI: 10.1063/1.4812743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
31
|
Pawlus S, Klotz S, Paluch M. Effect of compression on the relationship between viscosity and dielectric relaxation time in hydrogen-bonded primary alcohols. PHYSICAL REVIEW LETTERS 2013; 110:173004. [PMID: 23679720 DOI: 10.1103/physrevlett.110.173004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 06/02/2023]
Abstract
High pressure viscosity and dielectric measurements were carried out on two monohydroxy alcohols, 2-ethyl-1-hexanol and 5-methyl-2-hexanol, at room temperature. Analysis of the dielectric relaxation times versus viscosity revealed the breakdown of the Einstein-Debye relation above some characteristic pressure. The failure of the Einstein-Debye relation is a manifestation of pressure induced changes of supramolecular hydrogen bonded structures which occur in these liquids.
Collapse
Affiliation(s)
- S Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | |
Collapse
|
32
|
Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A, Böhmer R. Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols. J Chem Phys 2013; 138:094505. [DOI: 10.1063/1.4793469] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
33
|
Richert R, Lunkenheimer P, Kastner S, Loidl A. On the Derivation of Equilibrium Relaxation Times from Aging Experiments. J Phys Chem B 2013; 117:12689-94. [DOI: 10.1021/jp311149n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ranko Richert
- Department
of Chemistry and
Biochemistry, Arizona State University,
Tempe, Arizona 85287-1604, United States
| | - Peter Lunkenheimer
- Experimental Physics V, Center
for Electronic Correlations and Magnetism, University of Augsburg, D-86135 Augsburg, Germany
| | - Stefan Kastner
- Experimental Physics V, Center
for Electronic Correlations and Magnetism, University of Augsburg, D-86135 Augsburg, Germany
| | - Alois Loidl
- Experimental Physics V, Center
for Electronic Correlations and Magnetism, University of Augsburg, D-86135 Augsburg, Germany
| |
Collapse
|
34
|
Kossack W, Adrjanowicz K, Tarnacka M, Kiprop Kipnusu W, Dulski M, Mapesa EU, Kaminski K, Pawlus S, Paluch M, Kremer F. Glassy dynamics and physical aging in fucose saccharides as studied by infrared- and broadband dielectric spectroscopy. Phys Chem Chem Phys 2013; 15:20641-50. [DOI: 10.1039/c3cp52551a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|