1
|
Taguchi AT, Wraight CA, Dikanov SA. Influence of Polar Mutations on the Electronic and Structural Properties of QA-· in Bacterial Reaction Centers. J Phys Chem B 2022; 126:6210-6220. [PMID: 35960270 DOI: 10.1021/acs.jpcb.2c04371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction centers from Rhodobacter sphaeroides with residue M265 mutated from isoleucine to threonine, serine, and asparagine (M265IT, M265IS, and M265IN, respectively) in the QA-· state are studied by high-resolution electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance spectroscopy methods to investigate the structural characteristics of these mutants influencing the redox properties of the QA site. All three mutants decrease the redox midpoint potential (Em) of QA by ∼0.1 V, yet the mechanism for this drop in Em is unclear. In this work, we examine (i) the hydrogen bonding interactions between QA-· and residues histidine M219 and alanine M260, (ii) the electron spin density distribution of the semiquinone, and (iii) the orientations of the ubiquinone methoxy substituents. 13C measurements show no significant contribution of methoxy dihedral angles to the observed decrease in Em for the QA mutants. Instead, 14N three-pulse ESEEM data suggest that electrostatic or hydrogen bond formation between the mutated M265 side chain and His-M219 Nδ may be involved in the observed lowering of the QA midpoint potential. For mutant M265IN, analysis of the proton hyperfine couplings reveals a weakened hydrogen bond network, resulting in an altered QA-· spin density distribution. The magnetic resonance study presented here is most consistent with an electrostatic or structural perturbation of the His-M219 Nδ hydrogen bond in these mutants as a mechanism for the ∼0.1 V decrease in QA Em.
Collapse
Affiliation(s)
- Alexander T Taguchi
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,RubrYc Therapeutics, 733 Industrial Road, San Carlos, California 94403, United States
| | - Colin A Wraight
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Yi SM, Taguchi AT, Samoilova RI, O'Malley PJ, Gennis RB, Dikanov SA. Plasticity in the High Affinity Menaquinone Binding Site of the Cytochrome aa3-600 Menaquinol Oxidase from Bacillus subtilis. Biochemistry 2015. [PMID: 26196462 DOI: 10.1021/acs.biochem.5b00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome aa3-600 is a terminal oxidase in the electron transport pathway that contributes to the electrochemical membrane potential by actively pumping protons. A notable feature of this enzyme complex is that it uses menaquinol as its electron donor instead of cytochrome c when it reduces dioxygen to water. The enzyme stabilizes a menasemiquinone radical (SQ) at a high affinity site that is important for catalysis. One of the residues that interacts with the semiquinone is Arg70. We have made the R70H mutant and have characterized the menasemiquinone radical by advanced X- and Q-band EPR. The bound SQ of the R70H mutant exhibits a strong isotropic hyperfine coupling (a(14)N ≈ 2.0 MHz) with a hydrogen bonded nitrogen. This nitrogen originates from a histidine side chain, based on its quadrupole coupling constant, e(2)qQ/h = 1.44 MHz, typical for protonated imidazole nitrogens. In the wild-type cyt aa3-600, the SQ is instead hydrogen bonded with Nε from the Arg70 side chain. Analysis of the (1)H 2D electron spin echo envelope modulation (ESEEM) spectra shows that the mutation also changes the number and strength of the hydrogen bonds between the SQ and the surrounding protein. Despite the alterations in the immediate environment of the SQ, the R70H mutant remains catalytically active. These findings are in contrast to the equivalent mutation in the close homologue, cytochrome bo3 ubiquinol oxidase from Escherichia coli, where the R71H mutation eliminates function.
Collapse
Affiliation(s)
- Sophia M Yi
- §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- †Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,‡Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rimma I Samoilova
- ⊥V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Patrick J O'Malley
- ∥School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Robert B Gennis
- §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,†Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- ‡Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Taguchi AT, O'Malley PJ, Wraight CA, Dikanov SA. Hyperfine and nuclear quadrupole tensors of nitrogen donors in the Q(A) site of bacterial reaction centers: correlation of the histidine N(δ) tensors with hydrogen bond strength. J Phys Chem B 2014; 118:9225-37. [PMID: 25026433 PMCID: PMC4126732 DOI: 10.1021/jp5051029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
X-
and Q-band pulsed EPR spectroscopy was applied to study the
interaction of the QA site semiquinone (SQA)
with nitrogens from the local protein environment in natural abundance 14N and in 15N uniformly labeled photosynthetic
reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were
estimated through simultaneous simulation of the Q-band 15N Davies ENDOR, X- and Q-band 14,15N HYSCORE, and X-band 14N three-pulse ESEEM spectra, with support from DFT calculations.
The hyperfine coupling constants were found to be a(14N) = 2.3 MHz, T = 0.3 MHz for His-M219
Nδ and a(14N) = 2.6 MHz, T = 0.3 MHz for Ala-M260 Np. Despite that His-M219
Nδ is established as the stronger of the two H-bond
donors, Ala-M260 Np is found to have the larger value of a(14N). The nuclear quadrupole coupling constants
were estimated as e2Qq/4h = 0.38 MHz, η = 0.97 and e2Qq/4h = 0.74 MHz, η = 0.59 for His-M219 Nδ and Ala-M260 Np, respectively. An analysis of the available
data on nuclear quadrupole tensors for imidazole nitrogens found in
semiquinone-binding proteins and copper complexes reveals these systems
share similar electron occupancies of the protonated nitrogen orbitals.
By applying the Townes–Dailey model, developed previously for
copper complexes, to the semiquinones, we find the asymmetry parameter
η to be a sensitive probe of the histidine Nδ–semiquinone hydrogen bond strength. This is supported by
a strong correlation observed between η and the isotropic coupling
constant a(14N) and is consistent with
previous computational works and our own semiquinone-histidine model
calculations. The empirical relationship presented here for a(14N) and η will provide an important
structural characterization tool in future studies of semiquinone-binding
proteins.
Collapse
Affiliation(s)
- Alexander T Taguchi
- Center for Biophysics and Computational Biology, §Department of Biochemistry, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
4
|
Taguchi AT, O'Malley PJ, Wraight CA, Dikanov SA. Nuclear hyperfine and quadrupole tensor characterization of the nitrogen hydrogen bond donors to the semiquinone of the QB site in bacterial reaction centers: a combined X- and S-band (14,15)N ESEEM and DFT study. J Phys Chem B 2014; 118:1501-9. [PMID: 24437652 PMCID: PMC3983398 DOI: 10.1021/jp411023k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
secondary quinone anion radical QB– (SQB) in reaction centers of Rhodobacter
sphaeroides interacts with Nδ of
His-L190 and Np (peptide nitrogen) of Gly-L225 involved
in hydrogen bonds to the QB carbonyls. In this work, S-band
(∼3.6 GHz) ESEEM was used with the aim of obtaining a complete
characterization of the nuclear quadrupole interaction (nqi) tensors
for both nitrogens by approaching the cancelation condition between
the isotropic hyperfine coupling and 14N Zeeman frequency
at lower microwave frequencies than traditional X-band (9.5 GHz).
By performing measurements at S-band, we found a dominating contribution
of Nδ in the form of a zero-field nqi triplet at
0.55, 0.92, and 1.47 MHz, defining the quadrupole coupling constant K = e2qQ/4h = 0.4 MHz and associated asymmetry parameter η =
0.69. Estimates of the hyperfine interaction (hfi) tensors for Nδ and Np were obtained from simulations of
1D and 2D 14,15N X-band and three-pulse 14N
S-band spectra with all nuclear tensors defined in the SQB g-tensor coordinate system. From simulations, we conclude that the
contribution of Np to the S-band spectrum is suppressed
by its strong nqi and weak isotropic hfi comparable to the level of
hyperfine anisotropy, despite the near-cancelation condition for Np at S-band. The excellent agreement between our EPR simulations
and DFT calculations of the nitrogen hfi and nqi tensors to SQB is promising for the future application of powder ESEEM to
full tensor characterizations.
Collapse
Affiliation(s)
- Alexander T Taguchi
- Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
5
|
Müh F, Zouni A. The nonheme iron in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:295-314. [PMID: 24077892 DOI: 10.1007/s11120-013-9926-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a (bi)carbonate originating from CO2, the substrate of the dark reactions of oxygenic photosynthesis. Based on recent advances in the crystallography of PSII, we review the structure of the NHI in PSII and discuss ideas concerning its function and the role of bicarbonate along with a comparison to the reaction center of purple bacteria and other enzymes containing a mononuclear NHI site.
Collapse
|
6
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
7
|
Astashkin AV, Elmore BO, Chen L, Fan W, Guillemette JG, Feng C. Pulsed ENDOR determination of the arginine location in the ferrous-NO form of neuronal NOS. J Phys Chem A 2012; 116:6731-9. [PMID: 22667467 DOI: 10.1021/jp302319c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian nitric oxide synthases (NOSs) are enzymes responsible for oxidation of L-arginine (L-Arg) to nitric oxide (NO). Mechanisms of reactions at the catalytic heme site are not well understood, and it is of current interest to study structures of the heme species that activates O(2) and transforms the substrate. The NOS ferrous-NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis. In this work, pulsed electron-nuclear double resonance (ENDOR) was used to probe the position of the l-Arg substrate at the NO(•)-coordinated ferrous heme center(s) in the oxygenase domain of rat neuronal NOS (nNOS). The analysis of (2)H and (15)N ENDOR spectra of samples containing d(7)- or guanidino-(15)N(2) labeled L-Arg has resulted in distance estimates for the nearby guanidino nitrogen and the nearby proton (deuteron) at C(δ). The L-Arg position was found to be noticeably different from that in the X-ray crystal structure of nNOS ferrous-NO complex [Li et al. J. Biol. Inorg. Chem.2006, 11, 753-768], with the nearby guanidino nitrogen being ~0.5 Å closer to, and the nearby H(δ) about 1 Å further from, the NO ligand than in the X-ray structure. The difference might be related to the structural constraints imposed on the protein by the crystal. Importantly, in spite of its closer position, the guanidino nitrogen does not form a hydrogen bond with the NO ligand, as evidenced by the absence of significant isotropic hfi constant for N(g1). This is consistent with the previous reports that it is not the L-Arg substrate itself that would most likely serve as a direct proton donor to the diatomic ligands (NO and O(2)) bound to the heme.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
8
|
Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:44-65. [PMID: 21679684 DOI: 10.1016/j.bbabio.2011.05.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
The photosystem II core complex is the water:plastoquinone oxidoreductase of oxygenic photosynthesis situated in the thylakoid membrane of cyanobacteria, algae and plants. It catalyzes the light-induced transfer of electrons from water to plastoquinone accompanied by the net transport of protons from the cytoplasm (stroma) to the lumen, the production of molecular oxygen and the release of plastoquinol into the membrane phase. In this review, we outline our present knowledge about the "acceptor side" of the photosystem II core complex covering the reaction center with focus on the primary (Q(A)) and secondary (Q(B)) quinones situated around the non-heme iron with bound (bi)carbonate and a comparison with the reaction center of purple bacteria. Related topics addressed are quinone diffusion channels for plastoquinone/plastoquinol exchange, the newly discovered third quinone Q(C), the relevance of lipids, the interactions of quinones with the still enigmatic cytochrome b559 and the role of Q(A) in photoinhibition and photoprotection mechanisms. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Frank Müh
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
9
|
Chatterjee R, Milikisiyants S, Coates CS, Lakshmi KV. High-Resolution Two-Dimensional 1H and 14N Hyperfine Sublevel Correlation Spectroscopy of the Primary Quinone of Photosystem II. Biochemistry 2010; 50:491-501. [DOI: 10.1021/bi101883y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher S. Coates
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
10
|
Goussias C, Deligiannakis Y, Sanakis Y, Ioannidis N, Petrouleas V. Probing subtle coordination changes in the iron-quinone complex of photosystem II during charge separation, by the use of NO. Biochemistry 2002; 41:15212-23. [PMID: 12484759 DOI: 10.1021/bi026223e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The terminal electron acceptor of Photosystem II, PSII, is a linear complex consisting of a primary quinone, a non-heme iron(II), and a secondary quinone, Q(A)Fe(2+)Q(B). The complex is a sensitive site of PSII, where electron transfer is modulated by environmental factors and notably by bicarbonate. Earlier studies showed that NO and other small molecules (CN(-), F(-), carboxylate anions) bind reversibly on the non-heme iron in competition with bicarbonate. In the present study, we report on an unusual new mode of transient binding of NO, which is favored in the light-reduced state (Q(A)(-)Fe(2+)Q(B)) of the complex. The related observations are summarized as follows: (i) Incubation with NO at -30 degrees C, following light-induced charge separation, results in the evolution of a new EPR signal at g = 2.016. The signal correlates with the reduced state Q(A)(-)Fe(2+) of the iron-quinone complex. (ii) Cyanide, at low concentrations, converts the signal to a more rhombic form with g values at 2.027 (peak) and 1.976 (valley), while at high concentrations it inhibits formation of the signals. (iii) Electron spin-echo envelope modulation (ESEEM) experiments show the existence of two protein (14)N nuclei coupled to electron spin. These two nitrogens have been detected consistently in the environment of the semiquinone Q(A)(-) in a number of PSII preparations. (iv) NO does not directly contribute to the signals, as indicated by the absence of a detectable isotopic effect ((15)NO vs (14)NO) in cw EPR. (v) A third signal with g values (2.05, 2.03, 2.01) identical to those of an Fe(NO)(2)(imidazole) synthetic complex develops slowly in the dark, or faster following illumination. (vi) In comparison with the untreated Q(A)(-)Fe(2+) complex, the present signals not only are confined to a narrow spectral region but also saturate at low microwave power. At 11 K the g = 2.016 signal saturates with a P(1/2) of 110 microW and the g = 2.027/1.976 signal with a P(1/2) of 10 microW. (vii) The spectral shape and spin concentration of these signals is successfully reproduced, assuming a weak magnetic interaction (J values in the range 0.025-0.05 cm(-)(1)) between an iron-NO complex with total spin of (1)/(2) and the spin, (1)/(2), of the semiquinone, Q(A)(-). The different modes of binding of NO to the non-heme iron are examined in the context of a molecular model. An important aspect of the model is a trans influence of Q(A) reduction on the bicarbonate ligation to the iron, transmitted via H-bonding of Q(A) with an imidazole ligand to the iron.
Collapse
Affiliation(s)
- Charilaos Goussias
- Institute of Materials Science, NCSR Demokritos, 15310 Aghia Paraskevi Attikis, Athens, Greece
| | | | | | | | | |
Collapse
|
11
|
Dorlet P, Rutherford AW, Un S. Orientation of the tyrosyl D, pheophytin anion, and semiquinone Q(A)(*)(-) radicals in photosystem II determined by high-field electron paramagnetic resonance. Biochemistry 2000; 39:7826-34. [PMID: 10869189 DOI: 10.1021/bi000175l] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The radical forms of two cofactors and an amino acid in the photosystem II (PS II) reaction center were studied by using high-field EPR both in frozen solution and in oriented multilayers. Their orientation with respect to the membrane was determined by using one-dimensionally oriented samples. The ring plane of the stable tyrosyl radical, Y(D)(*), makes an angle of 64 degrees +/- 5 degrees with the membrane plane, and the C-O direction is tilted by 72 degrees +/- 5 degrees in the plane of the radical compared to the membrane plane. The semiquinone, Q(A)(*)(-), generated by chemical reduction in samples lacking the non-heme iron, has its ring plane at an angle of 72 degrees +/- 5 degrees to the membrane plane, and the O-O axis is tilted by 21 degrees +/- 5 degrees in the plane of the quinone compared to the membrane plane. This orientation is similar to that of Q(A)(*)(-) in purple bacteria reaction centers except for the tilt angle which is slightly bigger. The pheophytin anion was generated by photoaccumulation under reducing conditions. Its ring plane is almost perpendicular to the membrane with an angle of 70 degrees +/- 5 degrees with respect to the membrane plane. This is very similar to the orientation of the pheophytin in purple bacteria reaction centers. The position of the g tensor with respect to the molecule is tentatively assigned for the anion radical on the basis of this comparison. In this work, the treatment of orientation data from EPR spectroscopy applied to one-dimensionally oriented multilayers is examined in detail, and improvements over previous approaches are given.
Collapse
Affiliation(s)
- P Dorlet
- Section de Bioénergétique, Département de Biologie Cellulaire et Moléculaire, CNRS URA 2096, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
12
|
Deligiannakis Y, Louloudi M, Hadjiliadis N. Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord Chem Rev 2000. [DOI: 10.1016/s0010-8545(99)00218-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Deligiannakis Y, Rutherford AW. Effect of pH on the semiquinone radical Q(A)- in CN-treated photosystem II: study by hyperfine sublevel correlation spectroscopy. J Inorg Biochem 2000; 79:339-45. [PMID: 10830886 DOI: 10.1016/s0162-0134(99)00173-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The semiquinone radical Q(A)- has been studied by electron spin echo envelope modulation (ESEEM) spectroscopy in Photosystem II membranes treated with CN- at various pH values. Two protein 14N nuclei (N(I) and N(II)) were found to be magnetically coupled with the Q(A)- spin. N(I) is assigned to an amide nitrogen from the protein backbone while N(II) is assigned to the amino nitrogen, N(epsilon), of an imidazole. Above pH 8.5 only the N(I) coupling is present while both N(I) and N(II) couplings are present at lower pH values. These results are interpreted in terms of a model based on the structure of the bacterial reaction center and involving two determining factors. First, the non-heme iron, when present, is ligated to the imidazole that H-bonds to one of the Q(A)- carbonyls. This physical attachment of the imidazole to the iron limits the strength of the H-bond to Q(A)-. Second, a pH-dependent group on the protein controls the strength of the H-bonds to Q(A)-. The pKa of this group is around pH 7.5 in CN(-)-treated PSII.
Collapse
Affiliation(s)
- Y Deligiannakis
- The Institute of Materials Science, NCSR Democritos, Athens, Greece
| | | |
Collapse
|
14
|
Jegerschöld C, MacMillan F, Lubitz W, Rutherford AW. Effects of copper and zinc ions on photosystem II studied by EPR spectroscopy. Biochemistry 1999; 38:12439-45. [PMID: 10493813 DOI: 10.1021/bi990236j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of Zn(2+) or Cu(2+) ions on Mn-depleted photosystem II (PS II) has been investigated using EPR spectroscopy. In Zn(2+)-treated and Cu(2+)-treated PS II, chemical reduction with sodium dithionite gives rise to a signal attributed to the plastosemiquinone, Q(A)(*)(-), the usual interaction with the non-heme iron being lost. The signal was identified by Q-band EPR spectroscopy which partially resolves the typical g-anisotropy of the semiquinone anion radical. Illumination at 200 K of the unreduced samples gives rise to a single organic free radical in Cu(2+)-treated PS II, and this is assigned to a monomeric chlorophyll cation radical, Chl a(*)(+), based on its (1)H-ENDOR spectrum. The Zn(2+)-treated PS II under the same conditions gives rise to two radical signals present in equal amounts and attributed to the Chl a(*)(+) and the Q(A)(*)(-) formed by light-induced charge separation. When the Cu(2+)-treated PS II is reduced by sodium ascorbate, at >/=77 K electron donation eliminates the donor-side radical leaving the Q(A)(*)(-) EPR signal. The data are explained as follows: (1) Cu(2+) and Zn(2+) have similar effects on PS II (although higher concentrations of Zn(2+) are required) causing the displacement of the non-heme Fe(2+). (2) In both cases chlorophyll is the electron donor at 200 K. It is proposed that the lack of a light-induced Q(A)(*)(-) signal in the unreduced Cu(2+)-treated sample is due to Cu(2+) acting as an electron acceptor from Q(A)(*)(-) at low temperature, forming the Cu(+) state and leaving the electron donor radical Chl a(*)(+) detectable by EPR. (3) The Cu(2+) in PS II is chemically reducible by ascorbate prior to illumination, and the metal can therefore no longer act as an electron acceptor; thus Q(A)(*)(-) is generated by illumination in such samples. (4) With dithionite, both the Cu(2+) and the quinone are reduced resulting in the presence of Q(A)(*)(-) in the dark. The suggested high redox potential of Cu(2+) when in the Fe(2+) site in PS II is in contrast to the situation in the bacterial reaction center where it has been shown in earlier work that the Cu(2+) is unreduced by dithionite. It cannot be ruled out however that Q(A)-Cu(2+) is formed and a magnetic interaction is responsible for the lack of the Q(A)(-) signal when no exogenous reductant is present. With this alternative possibility, the effects of reductants would be explained as the loss of Cu(2+) (due to formation of Cu(+)) leading to loss of the Cu(2+) from the Fe(2+) site due to the binding equilibrium. The quite different binding and redox behavior of the metal in the iron site in PS II compared to that of the bacterial reaction center is presumably a further reflection of the differences in the coordination of the iron in the two systems.
Collapse
Affiliation(s)
- C Jegerschöld
- Section de Bioénergétique, URA 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
15
|
Deligiannakis Y, Hanley J, Rutherford AW. 1D- and 2D-ESEEM Study of the Semiquinone Radical QA- of Photosystem II. J Am Chem Soc 1999. [DOI: 10.1021/ja984209c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiannis Deligiannakis
- Contribution from The Institute of Materials Science, NCSR “Democritos”, 15310 Aghia Paraskevi Attikis, Greece, and Section de Bioénergétique, URA CNRS 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - Jonathan Hanley
- Contribution from The Institute of Materials Science, NCSR “Democritos”, 15310 Aghia Paraskevi Attikis, Greece, and Section de Bioénergétique, URA CNRS 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - A. William Rutherford
- Contribution from The Institute of Materials Science, NCSR “Democritos”, 15310 Aghia Paraskevi Attikis, Greece, and Section de Bioénergétique, URA CNRS 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|