1
|
Rossi C, Gans B, Giuliani A, Jacovella U. Vacuum Ultraviolet Fingerprints as a New Way of Disentangling Tropylium/Benzylium Isomers. J Phys Chem Lett 2023; 14:8444-8447. [PMID: 37713678 DOI: 10.1021/acs.jpclett.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The two inseparable companions, tropylium (Tr+) and benzylium (Bz+), were interrogated by vacuum ultraviolet (VUV) radiation from 4.5 to 7.0 eV in an ion trap. These new fingerprints provide a new means of distinguishing these two intertwined C7H7+ isomers. In particular, the singular spectral signature of Tr+ in the VUV consists of a single strong electronic transition at ≈6 eV. To illustrate this diagnostic tool, we shed light on the structure of the C7H7+ intermediate that is ubiquitous when using commercial atmospheric pressure photoionization (APPI) sources. We have identified its structure as the 7-membered ring Tr+, which contradicts some previous beliefs.
Collapse
Affiliation(s)
- Corentin Rossi
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Bérenger Gans
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Alexandre Giuliani
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
- INRAE, UAR1008, Transform Department, Rue de la Géraudiére, BP 71627, 44316 Nantes, France
| | - Ugo Jacovella
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
2
|
Shusterman JM, Gutsev GL, López Peña HA, Ramachandran BR, Tibbetts KM. Coulomb Explosion Dynamics of Multiply Charged para-Nitrotoluene Cations. J Phys Chem A 2022; 126:6617-6627. [PMID: 36126364 DOI: 10.1021/acs.jpca.2c04395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work explores Coulomb explosion (CE) dissociation pathways in multiply charged cations of para-nitrotoluene (PNT), a model compound for nitroaromatic energetic molecules. Experiments using strong-field ionization and mass spectrometry indicate that metastable cations PNT2+ and PNT3+ undergo CE to produce NO2+ and NO+. The experimentally measured kinetic energy release from CE upon formation of NO2+ and NO+ agrees qualitatively with the kinetic energy release predicted by computations of the reaction pathways in PNT2+ and PNT3+ using density functional theory (DFT). Both DFT computations and mass spectrometry identified additional products from CE of highly charged PNTq+ cations with q > 3. The dynamical timescales required for direct CE of PNT2+ and PNT3+ to produce NO2+ were estimated to be 200 and 90 fs, respectively, using ultrafast disruptive probing measurements.
Collapse
Affiliation(s)
- Jacob M Shusterman
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Gennady L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Hugo A López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - B Ramu Ramachandran
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
3
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
4
|
Jacovella U, Scholz MS, Bieske EJ. Electronic Spectrum of the Tropylium Cation in the Gas Phase. J Phys Chem Lett 2020; 11:8867-8872. [PMID: 32990444 DOI: 10.1021/acs.jpclett.0c02430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structure and properties of the tropylium cation (C7H7+) have enthralled chemists since the prediction by Hückel in 1931 of the remarkable stability for cyclic, aromatic molecules containing six π-electrons. However, probing and understanding the excited electronic states of the isolated tropylium cation have proved challenging, as the accessible electronic transitions are weak, and there are difficulties in creating appreciable populations of the tropylium cation in the gas phase. Here, we present the first gas-phase S1 ←S0 electronic spectrum of the tropylium cation, recorded by resonance-enhanced photodissociation of weakly bound tropylium-Ar complexes. We demonstrate that the intensity of the symmetry-forbidden S1 ←S0 transition arises from Herzberg-Teller vibronic coupling between the S1 and S2 electronic states mediated by vibrational modes of e2' and e3' symmetry. The main geometry change upon excitation involves elongation of the C-C bonds. Multiconfigurational ab initio calculations predict that the S1 excited state is affected by the dynamical Jahn-Teller effect, which should lead to the appearance of additional weak bands that may be apparent in higher-resolution electronic spectra.
Collapse
Affiliation(s)
- Ugo Jacovella
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Michael S Scholz
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Roithová J, Jašík J, Del Pozo Mellado JJ, Gerlich D. Electronic spectra of ions of astrochemical interest: from fast overview spectra to high resolution. Faraday Discuss 2019; 217:98-113. [PMID: 31016298 PMCID: PMC8639220 DOI: 10.1039/c8fd00196k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022]
Abstract
The combination of cryogenic ion traps with suitable light sources and standard tools of mass spectrometry has led to many innovative applications in previous years. This paper presents the combination of our versatile instrument with a supercontinuum laser for the rapid identification of ions that might be of special interest, e.g. as candidates for diffuse interstellar bands carriers. Using a linear wire quadrupole ion trap at 3 K, routine He-tagging, long irradiation times, and the brilliance and wide spectral range of a crystal fiber laser, mass selected ions have been exposed to spectral fluencies larger than 10 mJ (nm cm2)-1. These conditions result in an unsurpassed sensitivity, allowing us to find out within a few minutes and with nm accuracy, where photo absorption occurs with cross sections above 10-18 cm2. In this contribution, we present a variety of ions, probed between 420 and 720 nm. They have been generated by electron- or electrospray ionization of (polycyclic) aromatic hydrocarbons. For selected candidates, we recorded spectra with higher resolution and in the IR range. The anthracene dication has been selected to present a detailed analysis of our new results.
Collapse
Affiliation(s)
- Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jesus J Del Pozo Mellado
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| | - Dieter Gerlich
- Department of Physics, University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
6
|
Jacovella U, da Silva G, Bieske EJ. Unveiling New Isomers and Rearrangement Routes on the C 7H 8+ Potential Energy Surface. J Phys Chem A 2019; 123:823-830. [PMID: 30608153 DOI: 10.1021/acs.jpca.8b10642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unimolecular reactions of C7H8+ radical cations are among those most studied by mass spectrometry, especially the rearrangement of toluene and cycloheptatriene molecular ions, which are directly connected to the formation of benzylium and tropylium cations. This study reveals important new isomers and isomerization pathways on the C7H8+ potential energy surface, through the application of gas-phase electronic photodissociation spectroscopy in conjunction with ab initio calculations. Presented are the first gas-phase vibrationally resolved electronic spectra of the o-isotoluene, norcaradiene, bicyclo[3.2.0]hepta-2,6-diene radical cations, and ring-opened products from cyclic C7H8+ species. The isomerization route from the norbornadiene radical cation to the toluene radical cation, which competes with isomerization to the bicyclo[2.2.1]hepta-2-ene-5-yl-7-ylium radical cation, is identified. Further, this work expands understanding of the C7H8+ potential energy surface by connecting spiro[2.4]hepta-4,6-diene and acyclic 1,2,4,6-heptatetraene radical cations, and confirms the important role of the o-isotoluene radical cation in the interconversion pathways of C7H8+ species.
Collapse
Affiliation(s)
- Ugo Jacovella
- School of Chemistry , The University of Melbourne , Victoria 3010 , Australia
| | - Gabriel da Silva
- Department of Chemical Engineering , The University of Melbourne , Victoria 3010 , Australia
| | - Evan J Bieske
- School of Chemistry , The University of Melbourne , Victoria 3010 , Australia
| |
Collapse
|
7
|
Jacovella U, Muller G, Catani KJ, Bartlett NI, Bieske EJ. Electronic Spectra of the Triacetylene Cation (HC6H+) and Protonated Triacetylene (HC6H2+) Tagged with Ar. Aust J Chem 2019. [DOI: 10.1071/ch18508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyacetylene cations (HC2nH+) play important roles in combustion processes and in the chemistry of planetary atmospheres and interstellar clouds. Here we report the electronic spectrum for the triacetylene cation (HC6H+) recorded over the 300–610nm range by photodissociating mass-selected ions tagged with argon atoms in a tandem mass spectrometer. The spectrum shows three band systems that are assigned to (origin transition 16665cm−1), (origin transition 23916cm−1), and (origin transition 29920cm−1). Although the band system is well known, the and band systems are observed for the first time in the gas phase. In addition, the electronic spectrum of the protonated triacteylene cation tagged with an argon atom (HC6-Ar) is reported, providing the first gas-phase spectrum for this species.
Collapse
|
8
|
Jusko P, Simon A, Banhatti S, Brünken S, Joblin C. Direct Evidence of the Benzylium and Tropylium Cations as the Two Long-Lived Isomers of C 7 H 7. Chemphyschem 2018; 19:3182-3185. [PMID: 30238585 PMCID: PMC6420061 DOI: 10.1002/cphc.201800744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 11/12/2022]
Abstract
Disentangling the isomeric structure of C7 H7 + is a longstanding experimental issue. We report here the full mid-infrared vibrational spectrum of C7 H7 + tagged with Ne obtained with infrared-predissociation spectroscopy at 10 K. Saturation depletion measurements were used to assign the contribution of benzylium and tropylium isomers and demonstrate that no other isomer is involved. Recorded spectral features compare well with density functional theory calculations. This opens perspectives for a better understanding and control of the formation paths leading to either tropylium or benzylium ions.
Collapse
Affiliation(s)
- Pavol Jusko
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Av. du Colonel Roche, 31028 Toulouse Cedex 4, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Shreyak Banhatti
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
| | - Sandra Brünken
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Av. du Colonel Roche, 31028 Toulouse Cedex 4, France
| |
Collapse
|
9
|
Wagner JP, McDonald DC, Duncan MA. Mid-Infrared Spectroscopy of C 7H 7+ Isomers in the Gas Phase: Benzylium and Tropylium. J Phys Chem Lett 2018; 9:4591-4595. [PMID: 30059230 DOI: 10.1021/acs.jpclett.8b02121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Both prominent C7H7+ isomers, the benzylium and the tropylium cations, were generated in an electrical discharge/supersonic expansion from toluene and cycloheptatriene precursors. Their infrared spectra were measured in the region of 1000-3500 cm-1 using photodissociation of the respective argon- and nitrogen-tagged complexes with a broadly tunable OPO/OPA laser system. Spectral signatures of both isomers were observed independent of the precursor, albeit in different relative intensities. The spectra were assigned based on scaled harmonic B3LYP-D3/cc-pVTZ frequency computations and comparisons to previous experimental studies. Consistent with its high symmetry, only two bands were observed for the (nitrogen-tagged) tropylium ion at 3036 and 1477 cm-1, corresponding to C-H stretching and C-C-H deformation/C═C stretching vibrations, respectively. Furthermore, the C-H stretching region of the benzylium ion is reported for the first time.
Collapse
Affiliation(s)
- J Philipp Wagner
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| | - David C McDonald
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| | - Michael A Duncan
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| |
Collapse
|
10
|
Catani KJ, Muller G, Jusko P, Theulé P, Bieske EJ, Jouvet C. Electronic spectrum of the protonated diacetylene cation (H2C4H+). J Chem Phys 2017; 147:084302. [DOI: 10.1063/1.4990572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Giel Muller
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Pavol Jusko
- Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
- CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moléculaires (PIIM) UMR 7345, 13397 Marseille Cedex, France
| | - Patrice Theulé
- CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moléculaires (PIIM) UMR 7345, 13397 Marseille Cedex, France
| | - Evan J. Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Christophe Jouvet
- CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moléculaires (PIIM) UMR 7345, 13397 Marseille Cedex, France
| |
Collapse
|
11
|
O'Connor GD, Chan B, Sanelli JA, Cergol KM, Dryza V, Payne RJ, Bieske EJ, Radom L, Schmidt TW. Hydrogen-adduction to open-shell graphene fragments: spectroscopy, thermochemistry and astrochemistry. Chem Sci 2017; 8:1186-1194. [PMID: 28451259 PMCID: PMC5369534 DOI: 10.1039/c6sc03787a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/24/2016] [Indexed: 11/25/2022] Open
Abstract
We apply a combination of state-of-the-art experimental and quantum-chemical methods to elucidate the electronic and chemical energetics of hydrogen adduction to a model open-shell graphene fragment. The lowest-energy adduct, 1H-phenalene, is determined to have a bond dissociation energy of 258.1 kJ mol-1, while other isomers exhibit reduced or in some cases negative bond dissociation energies, the metastable species being bound by the emergence of a conical intersection along the high-symmetry dissociation coordinate. The gas-phase excitation spectrum of 1H-phenalene and its radical cation are recorded using laser spectroscopy coupled to mass-spectrometry. Several electronically excited states of both species are observed, allowing the determination of the excited-state bond dissociation energy. The ionization energy of 1H-phenalene is determined to be 7.449(17) eV, consistent with high-level W1X-2 calculations.
Collapse
Affiliation(s)
- Gerard D O'Connor
- School of Chemistry , UNSW Sydney , NSW 2052 , Australia . ; Tel: +61 439 386 109
| | - Bun Chan
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
- Graduate School of Engineering , Nagasaki University , Bunkyo 1-14 , Nagasaki 852-8521 , Japan
| | - Julian A Sanelli
- School of Chemistry , The University of Melbourne , Victoria 3010 , Australia
| | - Katie M Cergol
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Viktoras Dryza
- School of Chemistry , The University of Melbourne , Victoria 3010 , Australia
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Evan J Bieske
- School of Chemistry , The University of Melbourne , Victoria 3010 , Australia
| | - Leo Radom
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Timothy W Schmidt
- School of Chemistry , UNSW Sydney , NSW 2052 , Australia . ; Tel: +61 439 386 109
| |
Collapse
|
12
|
Catani KJ, Muller G, da Silva G, Bieske EJ. Electronic spectrum and photodissociation chemistry of the linear methyl propargyl cation H2C4H3+. J Chem Phys 2017; 146:044307. [DOI: 10.1063/1.4974338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Giel Muller
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Evan J. Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
Mauney DT, Mosley JD, Madison LR, McCoy AB, Duncan MA. Infrared spectroscopy and theory of the formaldehyde cation and its hydroxymethylene isomer. J Chem Phys 2016; 145:174303. [DOI: 10.1063/1.4966214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. T. Mauney
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - J. D. Mosley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - L. R. Madison
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - A. B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - M. A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
14
|
O’Connor GD, Sanelli JA, Dryza V, Bieske EJ, Schmidt TW. Electronic spectrum of 9-methylanthracenium radical cation. J Chem Phys 2016; 144:154303. [DOI: 10.1063/1.4945109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Julian A. Sanelli
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Vik Dryza
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Evan J. Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
15
|
Catani KJ, Sanelli JA, Dryza V, Gilka N, Taylor PR, Bieske EJ. Electronic spectrum of the propargyl cation (H2C3H+) tagged with Ne and N2. J Chem Phys 2015; 143:184306. [DOI: 10.1063/1.4935169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Julian A. Sanelli
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Viktoras Dryza
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Natalie Gilka
- School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
| | - Peter R. Taylor
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Evan J. Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
16
|
Savee JD, Zádor J, Hemberger P, Sztáray B, Bodi A, Osborn DL. Threshold photoelectron spectrum of the benzyl radical. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1021398] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Chalyavi N, Catani K, Sanelli J, Dryza V, Bieske E. Gas-phase electronic spectrum of the indole radical cation. Mol Phys 2015. [DOI: 10.1080/00268976.2014.1001456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Féraud G, Dedonder-Lardeux C, Soorkia S, Jouvet C. Photo-fragmentation spectroscopy of benzylium and 1-phenylethyl cations. J Chem Phys 2014; 140:024302. [PMID: 24437872 DOI: 10.1063/1.4858409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electronic spectra of cold benzylium (C6H5-CH2 (+)) and 1-phenylethyl (C6H5-CH-CH3 (+)) cations have been recorded via photofragment spectroscopy. Benzylium and 1-phenylethyl cations produced from electrosprayed benzylamine and phenylethylamine solutions, respectively, were stored in a cryogenically cooled quadrupole ion trap and photodissociated by an OPO laser, scanned in parts of the UV and visible regions (600-225 nm). The electronic states and active vibrational modes of the benzylium and 1-phenylethyl cations as well as those of their tropylium or methyl tropylium isomers have been calculated with ab initio methods for comparison with the spectra observed. Sharp vibrational progressions are observed in the visible region while the absorption features are much broader in the UV. The visible spectrum of the benzylium cation is similar to that obtained in an argon tagging experiment [V. Dryza, N. Chalyavi, J. A. Sanelli, and E. J. Bieske, J. Chem. Phys. 137, 204304 (2012)], with an additional splitting assigned to Fermi resonances. The visible spectrum of the 1-phenylethyl cation also shows vibrational progressions. For both cations, the second electronic transition is observed in the UV, around 33,000 cm(-1) (4.1 eV) and shows a broadened vibrational progression. In both cases the S2 optimized geometry is non-planar. The third electronic transition observed around 40,000 cm(-1) (5.0 eV) is even broader with no apparent vibrational structures, which is indicative of either a fast non-radiative process or a very large change in geometry between the excited and the ground states. The oscillator strengths calculated for tropylium and methyl tropylium are weak. Therefore, these isomeric structures are most likely not responsible for these absorption features. Finally, the fragmentation pattern changes in the second and third electronic states: C2H2 loss becomes predominant at higher excitation energies, for both cations.
Collapse
Affiliation(s)
- Géraldine Féraud
- Physique des Interactions Ioniques et Moleculaires, UMR CNRS 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| | - Claude Dedonder-Lardeux
- Physique des Interactions Ioniques et Moleculaires, UMR CNRS 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR 8214, Université Paris Sud 11, 91405 Orsay Cedex, France
| | - Christophe Jouvet
- Physique des Interactions Ioniques et Moleculaires, UMR CNRS 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France
| |
Collapse
|
19
|
Friha H, Féraud G, Troy T, Falvo C, Parneix P, Bréchignac P, Dhaouadi Z, Schmidt TW, Pino T. Visible photodissociation spectra of the 1- and 2-methylnaphthalene cations: laser spectroscopy and theoretical simulations. J Phys Chem A 2013; 117:13664-72. [PMID: 24117136 DOI: 10.1021/jp407627x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The electronic absorption spectra of the two methyl derivatives of the naphthalene cation were measured using an argon tagging technique. In both cases, a band system was observed in the visible range and assigned to the D2 ← D0 electronic transition. The 1-methylnaphthalene(+) absorption bands revealed a red shift of 808 cm(-1), relative to those of the naphthalene cation (14,906 cm(-1)), whereas for 2-methylnaphthalene(+) a blue shift of 226 cm(-1) appeared. A short vibrational progression, similar to the naphthalene cation, was also observed for both isomers and found to involve similar aromatic ring skeleton vibrations. Moreover, insights into the internal rotation motion of the methyl group were inferred, although the spectral resolution was not sufficient to fully resolve the substructure. These measurements were supported by detailed quantum chemical calculations. They allowed exploration of the potential energy curves along this internal coordinate, along with a complete simulation of the harmonic Franck-Condon factors using the cumulant Gaussian fluctuations formalism extended to include the internal rotation.
Collapse
Affiliation(s)
- Hela Friha
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud , 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chalyavi N, Sanelli JA, Dryza V, Bieske EJ. Electronic Spectroscopy of the 1,3-Cyclopentadiene Cation (C5H6+). J Phys Chem A 2013; 117:11276-81. [DOI: 10.1021/jp408449e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nahid Chalyavi
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Julian A. Sanelli
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Viktoras Dryza
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Evan J. Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Chalyavi N, Dryza V, Sanelli JA, Bieske EJ. Gas-phase electronic spectroscopy of the indene cation (C9H8+). J Chem Phys 2013; 138:224307. [DOI: 10.1063/1.4808380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|