1
|
Liu C, Jiang S, Luo C, Lu Y. State Transitions and Crystalline Structures of Single Polyethylene Rings: MD Simulations. J Phys Chem B 2024; 128:6598-6609. [PMID: 38941574 DOI: 10.1021/acs.jpcb.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
This study investigates the structural changes of cyclic polyethylene (PE) single chains during cooling through molecular dynamics simulations. The influence of topological constraint on a ring is examined by comparing it with the results of its linear counterpart. A pseudo phase diagram of state transition for PE rings based on length and temperature is constructed, revealing a consistent chain-folding transition during cooling. The shape anisotropy of short crystallized cyclic chains exhibits oscillations with chain length, leading to a more pronounced odd-even effect in single cyclic chains compared with the linear ones. A honeycomb model is proposed to elucidate the odd-even effect of chain folding in crystalline structures of single linear and cyclic chains, and we discuss its potential to predict surface tension. Analyses of the tight folding model and the re-entry modes demonstrate that a cyclic chain possesses a shorter average crystalline stem length and a more compact folded structure than its linear counterpart. The findings highlight the impact of topological change on crystallization and the odd-even effect of chain length, providing valuable insights for understanding polymer crystallization with different topologies.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shengming Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuanfu Luo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Jiang S, Lu Y, Luo C. State Transitions and Crystalline Structures of a Single Polyethylene Chain: MD Simulations. J Phys Chem B 2022; 126:964-975. [DOI: 10.1021/acs.jpcb.1c09471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shengming Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230 026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230 026, P. R. China
| | - Chuanfu Luo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230 026, P. R. China
| |
Collapse
|
3
|
Affiliation(s)
- Yuci Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Miglani C, Joseph JP, Gupta D, Singh A, Pal A. Modulation of flexo-rigid balance in photoresponsive thymine grafted copolymers towards designing smart healable coating. RSC Adv 2021; 11:39376-39386. [PMID: 35492467 PMCID: PMC9044496 DOI: 10.1039/d1ra07425c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Efficacy and durability of the photovoltaic device mandates its protection against hot, humid weather condition, high energy of UV light and unwanted scratches. Such challenges can be mitigated by smart polymeric coating with inherent properties e.g. hydrophobicity to prevent moisture, optimal viscocity for better processibility and crack-healing. The hydrophobic polymers TP1-TP4 containing pendant photo-crosslinkable thymine moieties are designed that undergo [2 + 2] photocycloaddition upon UVB irradiation and can be dynamically reverted back upon irradiation with UVC light. A judicious control of solvent environment, chain length, functionality% and concentration of the polymers regulate the aspects of photodimerization thereby, rendering intra or inter-chain collapse to form diverse nanostructures. Photodimerization of the thymine moieties renders coil to globule transformation in dilute condition whereas irradiation performed at high macromolecular concentration regime exhibits higher order nanostructures. The photoresponsive chain collapse leads to the formation of rigid crosslinked domains within flexible polymer chains akin to the hard-soft phases of thermoplastic elastomers. Such rigidification of the crosslinked segments endows a tool to photomodulate the glass transition temperature (T g) that can dynamically revert back upon decrosslinking. Further, the structural modulation of the polymers is explored towards autonomic and nonautonomic self-healing behaviour at ambient conditions. Moreover, the self-healing efficacy can be tuned with the film thickness and it remains unaltered upon using solar simulator or direct sunlight. Overall, such hydrophobic low T g polymers display photo-regulated self-healing mechanism consisting of both autonomic and non-autonomic self-healing and may find applications in designing smart protective coatings for photovoltaic devices.
Collapse
Affiliation(s)
- Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology Sector 81 Mohali Punjab-140306 India
| | - Jojo P Joseph
- Chemical Biology Unit, Institute of Nano Science and Technology Sector 81 Mohali Punjab-140306 India
| | - Deepika Gupta
- Chemical Biology Unit, Institute of Nano Science and Technology Sector 81 Mohali Punjab-140306 India
| | - Ashmeet Singh
- Chemical Biology Unit, Institute of Nano Science and Technology Sector 81 Mohali Punjab-140306 India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
5
|
Jung Y, Ha BY. Collapse transition of a heterogeneous polymer in a crowded medium. J Chem Phys 2021; 155:054902. [PMID: 34364346 DOI: 10.1063/5.0056446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long chain molecules can be entropically compacted in a crowded medium. We study the compaction transition of a heterogeneous polymer with ring topology by crowding effects in a free or confined space. For this, we use molecular dynamics simulations in which the effects of crowders are taken into account through effective interactions between chain segments. Our parameter choices are inspired by the Escherichia coli chromosome. The polymer consists of small and big monomers; the big monomers dispersed along the backbone are to mimic the binding of RNA polymerases. Our results show that the compaction transition is a two-step process: initial compaction induced by the association (clustering) of big monomers followed by a gradual overall compaction. They also indicate that cylindrical confinement makes the initial transition more effective; for representative parameter choices, the initial compaction accounts for about 60% reduction in the chain size. Our simulation results support the view that crowding promotes clustering of active transcription units into transcription factories.
Collapse
Affiliation(s)
- Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon 34141, South Korea
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Segiet D, Stockmann A, Sadowski J, Katzenberg F, Tiller JC. Insights in the Thermal Volume Transition of Poly(2‐oxazoline) Hydrogels. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dominik Segiet
- Biomaterials & Polymer Science, Department of Biochemical and Chemical Engineering TU Dortmund 44221 Dortmund Germany
| | - Annika Stockmann
- Biomaterials & Polymer Science, Department of Biochemical and Chemical Engineering TU Dortmund 44221 Dortmund Germany
| | - Jan Sadowski
- Biomaterials & Polymer Science, Department of Biochemical and Chemical Engineering TU Dortmund 44221 Dortmund Germany
| | - Frank Katzenberg
- Biomaterials & Polymer Science, Department of Biochemical and Chemical Engineering TU Dortmund 44221 Dortmund Germany
| | - Joerg C. Tiller
- Biomaterials & Polymer Science, Department of Biochemical and Chemical Engineering TU Dortmund 44221 Dortmund Germany
| |
Collapse
|
7
|
Cohen AE, Jackson NE, de Pablo JJ. Anisotropic Coarse-Grained Model for Conjugated Polymers: Investigations into Solution Morphologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander E. Cohen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas E. Jackson
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Baul U, Bley M, Dzubiella J. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules 2020; 21:3523-3538. [DOI: 10.1021/acs.biomac.0c00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Michael Bley
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS@FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
9
|
Diagrams of States of Single Flexible-Semiflexible Multi-Block Copolymer Chains: A Flat-Histogram Monte Carlo Study. Polymers (Basel) 2019; 11:polym11050757. [PMID: 31052227 PMCID: PMC6571722 DOI: 10.3390/polym11050757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023] Open
Abstract
The combination of flexibility and semiflexibility in a single molecule is a powerful design principle both in nature and in materials science. We present results on the conformational behavior of a single multiblock-copolymer chain, consisting of equal amounts of Flexible (F) and Semiflexible (S) blocks with different affinity to an implicit solvent. We consider a manifold of macrostates defined by two terms in the total energy: intermonomer interaction energy and stiffness energy. To obtain diagrams of states (pseudo-phase diagrams), we performed flat-histogram Monte Carlo simulations using the Stochastic Approximation Monte Carlo algorithm (SAMC). We have accumulated two-Dimensional Density of States (2D DoS) functions (defined on the 2D manifold of macrostates) for a SF-multiblock-copolymer chain of length N=64 with block lengths b = 4, 8, 16, and 32 in two different selective solvents. In an analysis of the canonical ensemble, we calculated the heat capacity and determined its maxima and the most probable morphologies in different regions of the state diagrams. These are rich in various, non-trivial morphologies, which are formed without any specific interactions, and depend on the block length and the type of solvent selectivity (preferring S or F blocks, respectively). We compared the diagrams with those for the non-selective solvent and reveal essential changes in some cases. Additionally, we implemented microcanonical analysis in the “conformational” microcanonical (NVU, where U is the potential energy) and the true microcanonical (NVE, where E is the total energy) ensembles with the aim to reveal and classify pseudo-phase transitions, occurring under the change of temperature.
Collapse
|
10
|
Zhang JZ, Peng XY, Liu S, Jiang BP, Ji SC, Shen XC. The Persistence Length of Semiflexible Polymers in Lattice Monte Carlo Simulations. Polymers (Basel) 2019; 11:E295. [PMID: 30960279 PMCID: PMC6419224 DOI: 10.3390/polym11020295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/10/2023] Open
Abstract
While applying computer simulations to study semiflexible polymers, it is a primary task to determine the persistence length that characterizes the chain stiffness. One frequently asked question concerns the relationship between persistence length and the bending constant of applied bending potential. In this paper, theoretical persistence lengths of polymers with two different bending potentials were analyzed and examined by using lattice Monte Carlo simulations. We found that the persistence length was consistent with theoretical predictions only in bond fluctuation model with cosine squared angle potential. The reason for this is that the theoretical persistence length is calculated according to a continuous bond angle, which is discrete in lattice simulations. In lattice simulations, the theoretical persistence length is larger than that in continuous simulations.
Collapse
Affiliation(s)
- Jing-Zi Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xiang-Yao Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Shan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Shi-Chen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
11
|
Chudoba R, Heyda J, Dzubiella J. Tuning the collapse transition of weakly charged polymers by ion-specific screening and adsorption. SOFT MATTER 2018; 14:9631-9642. [PMID: 30457144 DOI: 10.1039/c8sm01646a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The experimentally observed swelling and collapse response of weakly charged polymers to the addition of specific salts displays quite convoluted behavior that is not easy to categorize. Here we use a minimalistic implicit-solvent/explicit-salt simulation model with a focus on ion-specific interactions between ions and a single weakly charged polyelectrolyte to qualitatively explain the observed effects. In particular, we demonstrate ion-specific screening and bridging effects cause collapse at low salt concentrations whereas the same strong ion-specific direct interactions drive re-entrant swelling at high concentrations. Consistently with experiments, a distinct salt concentration at which the salting-out power of anions inverts from the reverse to direct Hofmeister series is observed. At this so called isospheric point, the ion-specific effects vanish. Furthermore, with additional simplifying assumptions, an ion-specific mean-field model is developed for the collapse transition which quantitatively agrees with the simulations. Our work demonstrates the sensitivity of the structural behavior of charged polymers to the addition of specific salt beyond simple screening and shall be useful for further guidance of experiments.
Collapse
Affiliation(s)
- Richard Chudoba
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany.
| | | | | |
Collapse
|
12
|
Wu J, Cheng C, Liu G, Zhang P, Chen T. The folding pathways and thermodynamics of semiflexible polymers. J Chem Phys 2018; 148:184901. [PMID: 29764123 DOI: 10.1063/1.5018114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inspired by the protein folding and DNA packing, we have systematically studied the thermodynamic and kinetic behaviors of single semiflexible homopolymers by Langevin dynamics simulations. In line with experiments, a rich variety of folding products, such as rod-like bundles, hairpins, toroids, and a mixture of them, are observed in the complete diagram of states. Moreover, knotted structures with a significant population are found in a certain range of bending stiffness in thermal equilibrium. As the solvent quality becomes poorer, the population of the intermediate occurring in the folding process increases, which leads to a severe chevron rollover for the folding arm. However, the population of the intermediates in the unfolding process is very low, insufficient to induce unfolding arm rollover. The total types of folding pathways from the coil state to the toroidal state for a semiflexible polymer chain remain unchanged by varying the solvent quality or temperature, whereas the kinetic partitioning into different folding events can be tuned significantly. In the process of knotting, three types of mechanisms, namely, plugging, slipknotting, and sliding, are discovered. Along the folding evolution, a semiflexible homopolymer chain can knot at any stage of folding upon leaving the extended coil state, and the probability to find a knot increases with chain compactness. In addition, we find rich types of knotted topologies during the folding of a semiflexible homopolymer chain. This study should be helpful in gaining insight into the general principles of biopolymer folding.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Chenqian Cheng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Gaoyuan Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Tao Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
13
|
Pyrlin SV, Hine NDM, Kleij AW, Ramos MMD. Self-assembly of bis-salphen compounds: from semiflexible chains to webs of nanorings. SOFT MATTER 2018; 14:1181-1194. [PMID: 29349462 DOI: 10.1039/c7sm02371e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The recently-observed self-assembly of certain salphen-based compounds into neuron-like networks of microrings interconnected with nano-thin strings may suggest a new highly-potent tool for nanoscale patterning. However, the mechanism behind such phenomena needs to be clarified before they can be applied in materials design. Here we show that, in contrast with what was initially presumed, the emergence of a "rings-and-rods" pattern is unlikely to be explained by merging, collapse and piercing of vesicles as in previously reported cases of nanorings self-assembly via non-bonding interactions. We propose an alternative explanation: the compounds under study form a 1D coordination polymer, the fibres of which are elastic enough to fold into toroidal globules upon solvent evaporation, while being able to link separate chains into extended networks. This becomes possible because the structure of the compound's scaffold is found to adopt a very different conformation from that inferred in the original work. Based on ab initio and molecular dynamics calculations we propose a step-by-step description of self-assembly process of a supramolecular structure which explains all the observed phenomena in a simple and clear way. The individual roles of the compound' s scaffold structure, coordination centres, functional groups and solvent effects are also explained, opening a route to control the morphology of self-assembled networks and to synthesize new compounds exhibiting similar behaviour.
Collapse
Affiliation(s)
- Sergey V Pyrlin
- Department of Physics and Center of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | | | | | | |
Collapse
|
14
|
Morozova TI, Nikoubashman A. Coil–Globule Collapse of Polystyrene Chains in Tetrahydrofuran–Water Mixtures. J Phys Chem B 2018; 122:2130-2137. [DOI: 10.1021/acs.jpcb.7b10603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tatiana I. Morozova
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
15
|
Chudoba R, Heyda J, Dzubiella J. Temperature-Dependent Implicit-Solvent Model of Polyethylene Glycol in Aqueous Solution. J Chem Theory Comput 2017; 13:6317-6327. [DOI: 10.1021/acs.jctc.7b00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Richard Chudoba
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstraße
15, D-12489 Berlin, Germany
- Institut
für Weiche Materie und Funktionale Materialen, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Jan Heyda
- Department
of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-16628 Praha 6, Czech Republic
| | - Joachim Dzubiella
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstraße
15, D-12489 Berlin, Germany
- Institut
für Weiche Materie und Funktionale Materialen, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| |
Collapse
|
16
|
Markina AA, Ivanov VA, Komarov PV, Khokhlov AR, Tung SH. Self-Assembly of Lecithin and Bile Salt in the Presence of Inorganic Salt in Water: Mesoscale Computer Simulation. J Phys Chem B 2017; 121:7878-7888. [PMID: 28737387 DOI: 10.1021/acs.jpcb.7b04566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The influence of inorganic salt on the structure of lecithin/bile salt mixtures in aqueous solution is studied by means of dissipative particle dynamics simulations. We propose a coarse-grained model of phosphatidylcholine and two types of bile salts (sodium cholate and sodium deoxycholate) and also take into account the presence of low molecular weight salt. This model allows us to study the system on rather large time and length scales (up to about ∼20 μs and 50 nm) and to reveal mechanisms of experimentally observed increasing viscosity upon increasing the low molecular weight salt concentration in this system. We show that increasing the low molecular weight salt concentration induces the growth of cylinder-like micelles formed in lecithin/bile salt mixtures in water. These wormlike micelles can entangle into transient networks displaying perceptible viscoelastic properties. Computer simulation results are in good qualitative agreement with experimental observations.
Collapse
Affiliation(s)
| | | | - Pavel V Komarov
- Institute of Organoelement Compounds RAS , Moscow 119991, Russian Federation.,Tver State University , Tver 170100, Russian Federation
| | - Alexei R Khokhlov
- Moscow State University , Moscow 119991, Russian Federation.,Institute of Organoelement Compounds RAS , Moscow 119991, Russian Federation
| | | |
Collapse
|
17
|
Werlich B, Taylor MP, Shakirov T, Paul W. On the Pseudo Phase Diagram of Single Semi-Flexible Polymer Chains: A Flat-Histogram Monte Carlo Study. Polymers (Basel) 2017; 9:E38. [PMID: 30970714 PMCID: PMC6432196 DOI: 10.3390/polym9020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/10/2023] Open
Abstract
Local stiffness of polymer chains is instrumental in all structure formation processes of polymers, from crystallization of synthetic polymers to protein folding and DNA compactification. We present Stochastic Approximation Monte Carlo simulations-a type of flat-histogram Monte Carlo method-determining the density of states of a model class of single semi-flexible polymer chains, and, from this, their complete thermodynamic behavior. The chains possess a rich pseudo phase diagram as a function of stiffness and temperature, displaying non-trivial ground-state morphologies. This pseudo phase diagram also depends on chain length. Differences to existing pseudo phase diagrams of semi-flexible chains in the literature emphasize the fact that the mechanism of stiffness creation matters.
Collapse
Affiliation(s)
- Benno Werlich
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| | - Mark P Taylor
- Department of Physics, Hiram College, Hiram, OH 44234, USA.
| | - Timur Shakirov
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| |
Collapse
|
18
|
Jiang Y, McNeill J. Light-Harvesting and Amplified Energy Transfer in Conjugated Polymer Nanoparticles. Chem Rev 2016; 117:838-859. [DOI: 10.1021/acs.chemrev.6b00419] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yifei Jiang
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jason McNeill
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
19
|
Zablotskiy SV, Martemyanova JA, Ivanov VA, Paul W. Stochastic approximation Monte Carlo algorithm for calculation of diagram of states of a single flexible-semiflexible copolymer chain. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x1606016x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Zierenberg J, Marenz M, Janke W. Dilute Semiflexible Polymers with Attraction: Collapse, Folding and Aggregation. Polymers (Basel) 2016; 8:E333. [PMID: 30974608 PMCID: PMC6432187 DOI: 10.3390/polym8090333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
We review the current state on the thermodynamic behavior and structural phases of self- and mutually-attractive dilute semiflexible polymers that undergo temperature-driven transitions. In extreme dilution, polymers may be considered isolated, and this single polymer undergoes a collapse or folding transition depending on the internal structure. This may go as far as to stable knot phases. Adding polymers results in aggregation, where structural motifs again depend on the internal structure. We discuss in detail the effect of semiflexibility on the collapse and aggregation transition and provide perspectives for interesting future investigations.
Collapse
Affiliation(s)
- Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Martin Marenz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| |
Collapse
|
21
|
Zablotskiy SV, Martemyanova JA, Ivanov VA, Paul W. Diagram of states and morphologies of flexible-semiflexible copolymer chains: A Monte Carlo simulation. J Chem Phys 2016; 144:244903. [PMID: 27369540 DOI: 10.1063/1.4946035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A single copolymer chain consisting of multiple flexible (F) and semiflexible (S) blocks has been studied using a continuum bead-spring model by Stochastic Approximation Monte Carlo simulations, which determine the density of states of the model. The only difference between F and S blocks is the intramolecular bending potential, all non-bonded interactions are equal. The state diagrams for this class of models display multiple nematic phases in the collapsed state, characterized through a demixing of the blocks of different stiffness and orientational ordering of the stiff blocks. We observe dumbbell-like morphologies, lamellar phases, and for the larger block lengths also Saturn-like structures with a core of flexible segments and the stiff segments forming a ring around the core.
Collapse
Affiliation(s)
| | | | - Viktor A Ivanov
- Faculty of Physics, Moscow State University, Moscow 119991, Russia
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06099, Germany
| |
Collapse
|
22
|
Marenz M, Janke W. Knots as a Topological Order Parameter for Semiflexible Polymers. PHYSICAL REVIEW LETTERS 2016; 116:128301. [PMID: 27058105 DOI: 10.1103/physrevlett.116.128301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 06/05/2023]
Abstract
Using a combination of the multicanonical Monte Carlo algorithm and the replica-exchange method, we investigate the influence of bending stiffness on the conformational phases of a bead-stick homopolymer model and present the pseudophase diagram for the complete range of semiflexible polymers, from flexible to stiff. Although it is a simple model, we observe a rich variety of conformational phases, reminiscent of conformations observed for synthetic polymers or biopolymers. Depending on the bending stiffness, the model exhibits different pseudophases like bent, hairpin, or toroidal. In particular, we find thermodynamically stable knots and unusual transitions into these knotted phases with a clear phase coexistence, but almost constant mean total energy, and hence almost no latent heat.
Collapse
Affiliation(s)
- Martin Marenz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| |
Collapse
|
23
|
Janke W, Paul W. Thermodynamics and structure of macromolecules from flat-histogram Monte Carlo simulations. SOFT MATTER 2016; 12:642-657. [PMID: 26574738 DOI: 10.1039/c5sm01919b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the last decade flat-histogram Monte Carlo simulations, especially multi-canonical and Wang-Landau simulations, have emerged as a strong tool to study the statistical mechanics of polymer chains. These investigations have focused on coarse-grained models of polymers on the lattice and in the continuum. Phase diagrams of chains in bulk as well as chains attached to surfaces were studied, for homopolymers as well as for protein-like models. Also, aggregation behavior in solution of these models has been investigated. We will present here the theoretical background for these simulations, explain the algorithms used and discuss their performance and give an overview over the systems studied with these methods in the literature, where we will limit ourselves to studies of coarse-grained model systems. Implementations of these algorithms on parallel computers will be also briefly described. In parallel to the development of these simulation methods, the power of a micro-canonical analysis of such simulations has been recognized, and we present the current state of the art in applying the micro-canonical analysis to phase transitions in nanoscopic polymer systems.
Collapse
Affiliation(s)
- Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, 04009 Leipzig, Germany.
| | | |
Collapse
|
24
|
Schulz B, Chudoba R, Heyda J, Dzubiella J. Tuning the critical solution temperature of polymers by copolymerization. J Chem Phys 2015; 143:243119. [DOI: 10.1063/1.4934017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Bernhard Schulz
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Richard Chudoba
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6, Czech Republic
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
25
|
Coil to globule transition of homo- and block-copolymer with different topological constraint and chain stiffness. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5430-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Heyda J, Dzubiella J. Thermodynamic description of Hofmeister effects on the LCST of thermosensitive polymers. J Phys Chem B 2014; 118:10979-88. [PMID: 25147931 DOI: 10.1021/jp5041635] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cosolvent effects on protein or polymer collapse transitions are typically discussed in terms of a two-state free energy change that is strictly linear in cosolute concentration. Here we investigate in detail the nonlinear thermodynamic changes of the collapse transition occurring at the lower critical solution temperature (LCST) of the role-model polymer poly(N-isopropylacrylamide) [PNIPAM] induced by Hofmeister salts. First, we establish an equation, based on the second-order expansion of the two-state free energy in concentration and temperature space, which excellently fits the experimental LCST curves and enables us to directly extract the corresponding thermodynamic parameters. Linear free energy changes, grounded on generic excluded-volume mechanisms, are indeed found for strongly hydrated kosmotropes. In contrast, for weakly hydrated chaotropes, we find significant nonlinear changes related to higher order thermodynamic derivatives of the preferential interaction parameter between salts and polymer. The observed non-monotonic behavior of the LCST can then be understood from a not yet recognized sign change of the preferential interaction parameter with salt concentration. Finally, we find that solute partitioning models can possibly predict the linear free energy changes for the kosmotropes, but fail for chaotropes. Our findings cast strong doubt on their general applicability to protein unfolding transitions induced by chaotropes.
Collapse
Affiliation(s)
- Jan Heyda
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | | |
Collapse
|
27
|
Heyda J, Soll S, Yuan J, Dzubiella J. Thermodynamic Description of the LCST of Charged Thermoresponsive Copolymers. Macromolecules 2014. [DOI: 10.1021/ma402577h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jan Heyda
- Soft
Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner
Platz 1, 14109 Berlin, Germany
| | - Sebastian Soll
- Department
of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Jiayin Yuan
- Department
of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Joachim Dzubiella
- Soft
Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner
Platz 1, 14109 Berlin, Germany
- Department
of Physics, Humboldt-Universität zu Berlin, Newtonstrasse
15, 12489 Berlin, Germany
| |
Collapse
|
28
|
Ivanov VA, Martemyanova JA, Rodionova AS, Stukan MR. Computer simulation of stiff-chain polymers. POLYMER SCIENCE SERIES C 2013. [DOI: 10.1134/s1811238213060039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kłos JS, Sommer JU. Simulation of Complexes between a Charged Dendrimer and a Linear Polyelectrolyte with Finite Rigidity. MACROMOL THEOR SIMUL 2012. [DOI: 10.1002/mats.201100120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Forrey C, Douglas JF, Gilson MK. The Fundamental Role of Flexibility on the Strength of Molecular Binding. SOFT MATTER 2012; 8:6385-6392. [PMID: 22707976 PMCID: PMC3374587 DOI: 10.1039/c2sm25160d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Non-covalent molecular association underlies a diverse set of biologically and technologically relevant phenomena, including the action of drugs on their biomolecular targets and self- and supra-molecular assembly processes. Computer models employed to model binding frequently use interaction potentials with atomistic detail while neglecting the thermal molecular motions of the binding species. However, errors introduced by this simplification and, more broadly, the thermodynamic consequences of molecular flexibility on binding, are little understood. Here, we isolate the fundamental relationship of molecular flexibility to binding thermodynamics via simulations of simplified molecules with a wide range of flexibilities but the same interaction potential. Disregarding molecular motion is found to generate large errors in binding entropy, enthalpy and free energy, even for molecules that are nearly rigid. Indeed, small decreases in rigidity markedly reduce affinity for highly rigid molecules. Remarkably, precisely the opposite occurs for more flexible molecules, for which increasing flexibility leads to stronger binding affinity. We also find that differences in flexibility suffice to generate binding specificity: for example, a planar surface selectively binds rigid over flexible molecules. Intriguingly, varying molecular flexibility while keeping interaction potentials constant leads to near-linear enthalpy-entropy compensation over a wide range of flexibilities, with the unexpected twist that increasing flexibility produces opposite changes in entropy and enthalpy for molecules in the flexible versus the rigid regime. Molecular flexibility is thus a crucial determinant of binding affinity and specificity and variations in flexibility can lead to strong yet non-intuitive consequences.
Collapse
Affiliation(s)
- Christopher Forrey
- Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA
| | - Jack F. Douglas
- Polymers Division, National Institute of Standards and Technology, 1 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0736, USA
| |
Collapse
|
31
|
Yuan B, He L, Zhang L. Magnetic-induced coil-globule transition for polyelectrolytes. J Appl Polym Sci 2012. [DOI: 10.1002/app.36769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Torras J, Sanchez-Navas C, Bertran O, Alemán C. On the modeling of aggregates of an optically active regioregular polythiophene. Phys Chem Chem Phys 2012; 14:1881-91. [DOI: 10.1039/c2cp23122k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
The application of condensed matter methods to the study of the conformation and elastic properties of biopolymers and the transport of DNA through cell membranes. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Dolgushev M, Berezovska G, Blumen A. Branched Semiflexible Polymers: Theoretical and Simulation Aspects. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Li T, Yang X, Nies E. A Replica Exchange Molecular Dynamics Simulation of a Single Polyethylene Chain: Temperature Dependence of Structural Properties and Chain Conformational Study at the Equilibrium Melting Temperature. J Chem Theory Comput 2011; 7:188-202. [PMID: 26606232 DOI: 10.1021/ct100513y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational properties of a finite length polyethylene chain were explored over a wide range of temperatures using a replica exchange molecular dynamics simulation providing high quality simulation data representative for the equilibrium behavior of the chain molecule. The radial distribution function (RDF) and the structure factor S(q) of the chain as a function of temperature are analyzed in detail. The different characteristic peaks in the RDF and S(q) were assigned to specific distances in the chain and structural changes occurring with the temperature. In S(q), a peak characteristic for the order in the solid state was found and used to determine the equilibrium melting temperature. A detailed scaling analysis of the structure factor covering the full q range was performed according to the work of Hammouda. In the Θ region, a quantitative analysis of the full structure factor was done using the equivalent Kuhn chain, which enabled us to assign the Θ region of our chain and to demonstrate, in our particular case, the failure of the Gaussian chain approach. The chain conformational properties at the equilibrium melting temperature are discussed using conformational distribution functions, using the largest principal component of the radius of gyration and shape parameters as order parameters. We demonstrate that for the system studied here, the Landau free energy expression based on this conformational distribution information leads to erroneous conclusions concerning the thermodynamic transition behavior. Finally, we focus on the instantaneous conformational properties at the equilibrium melting temperature and give a detailed analysis of the conformational shapes using different shape parameters and a simulation snapshot. We show that the chain does not only take the lamellar rod-like and globular conformational shapes, typical of the solid and liquid states, but can also explore many other conformational states, including the toroidal conformational state. It is the first demonstration that a flexible molecule like PE can also take a toroidal conformational state, which is normally linked to stiffer chains.
Collapse
Affiliation(s)
- Ting Li
- Polymer Research Division, Department of Chemistry, The Leuven Mathematical Modeling and Computational Science Centre (LMCC) and the Leuven Materials Research Centre (LMRC), Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium, State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100080, Peoples' Republic of China, Laboratory of Polymer Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Xiaozhen Yang
- Polymer Research Division, Department of Chemistry, The Leuven Mathematical Modeling and Computational Science Centre (LMCC) and the Leuven Materials Research Centre (LMRC), Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium, State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100080, Peoples' Republic of China, Laboratory of Polymer Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Erik Nies
- Polymer Research Division, Department of Chemistry, The Leuven Mathematical Modeling and Computational Science Centre (LMCC) and the Leuven Materials Research Centre (LMRC), Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium, State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100080, Peoples' Republic of China, Laboratory of Polymer Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
36
|
Lee CK, Hua CC. Nanoparticle interaction potentials constructed by multiscale computation. J Chem Phys 2010; 132:224904. [DOI: 10.1063/1.3447890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Theodorakis PE, Paul W, Binder K. Interplay between Chain Collapse and Microphase Separation in Bottle-Brush Polymers with Two Types of Side Chains. Macromolecules 2010. [DOI: 10.1021/ma100414u] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Panagiotis E. Theodorakis
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - Wolfgang Paul
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
- Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, von-Seckendorff-Platz 1, 06120 Halle, Germany
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| |
Collapse
|
38
|
Pevnaya OS, Kramarenko EY, Khokhlov AR. AB-Block Copolymer with Moving B Blocks as a Model for Interpolymer Complexes. MACROMOL THEOR SIMUL 2010. [DOI: 10.1002/mats.200900078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Shie SC, Lee CK, Hua CC, Chen SA. A Predictive Coarse-Grained Model for Semiflexible Polymers in Specific Solvents. MACROMOL THEOR SIMUL 2010. [DOI: 10.1002/mats.200900075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Shimomura K, Nakanishi H, Mitarai N. Nonideal behavior of the intramolecular structure factor of dilute polymers in a theta solvent. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:051804. [PMID: 20364998 DOI: 10.1103/physreve.80.051804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Indexed: 05/29/2023]
Abstract
We study the configurational properties of single polymers in a theta solvent by Monte Carlo simulation of the bond fluctuation model. The intramolecular structure factor at the theta point is found to be distinctively different from that of the ideal chain. The structure factor shows a hump around q approximately 5/Rg and a dip around q approximately 10/Rg in the Kratky plot with Rg being the radius of gyration. This feature is apparently similar to that in a melt. The theoretical expression by the simple perturbation expansion to the first order in terms of the Mayer function can be fitted to the obtained structure factor quite well, but the second virial coefficient cannot be set to zero.
Collapse
Affiliation(s)
- Kenji Shimomura
- Department of Physics, Kyushu University 33, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
41
|
The application of quantum chemistry and condensed matter theory in studying amino-acids, protein folding and anticancer drug technology. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0558-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
|
43
|
Ivanov VA, Martemyanova JA, Müller M, Paul W, Binder K. Conformational Changes of a Single Semiflexible Macromolecule Near an Adsorbing Surface: A Monte Carlo Simulation. J Phys Chem B 2008; 113:3653-68. [DOI: 10.1021/jp806348y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. A. Ivanov
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - J. A. Martemyanova
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - M. Müller
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - W. Paul
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - K. Binder
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| |
Collapse
|
44
|
Vasilevskaya VV, Markov VA, ten Brinke G, Khokhlov AR. Self-Organization in Solutions of Stiff-Chain Amphiphilic Macromolecules. Macromolecules 2008. [DOI: 10.1021/ma800465j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. V. Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Ul.28, Moscow 119991, Russia, Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia, and Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - V. A. Markov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Ul.28, Moscow 119991, Russia, Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia, and Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - G. ten Brinke
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Ul.28, Moscow 119991, Russia, Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia, and Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - A. R. Khokhlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Ul.28, Moscow 119991, Russia, Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia, and Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
45
|
Chain length dependence of folding transition in a semiflexible homo-polymer chain: Appearance of a core–shell structure. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Abstract
The equilibrium properties of an isolated polyethylene ring chain are studied by using molecular dynamics (MD) simulations. The results of an 80-bond linear chain are also presented, which are in agreement with previous studies of square-well chains and Lennard-Jones (LJ) homopolymers. Mainly, we focus on the collapse of polyethylene ring chains. At high temperatures, a fully oblate structure is observed for the ring chains with different chain lengths. For such an oblate structure, a shape factor of delta(*)=0.25 and a rodlike scaling relation between the radius of gyration and chain lengths could be deduced easily in theory, and the same results are obtained by our MD simulations. Such an oblate structure can be obtained by Monte Carlo simulation only for sufficient stiff ring chains. When the temperature decreases, an internal energy barrier is observed. This induces a strong peak in the heat capacity, denoting a gas-liquid-like transition. This energy barrier comes mainly from the local monomer-monomer interactions, i.e., the bond-stretching, the bond-bending, and the torsion potentials. A low temperature peak is also observed in the same heat capacity curve, representing a liquid-solid-like transition. These numerical simulation results support a two-stage collapse of polyethylene ring chains; however, the nature should be different from the square-well and LJ ring chains.
Collapse
Affiliation(s)
- Jiaye Su
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | |
Collapse
|
47
|
Markov VA, Vasilevskaya VV, Khalatur PG, ten Brinke G, Khokhlov AR. Conformational properties of rigid-chain amphiphilic macromolecules: The phase diagram. POLYMER SCIENCE SERIES A 2008. [DOI: 10.1134/s0965545x08060059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Binder K, Paul W. Recent Developments in Monte Carlo Simulations of Lattice Models for Polymer Systems. Macromolecules 2008. [DOI: 10.1021/ma702843z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Binder
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - W. Paul
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| |
Collapse
|
49
|
Ivanov VA, An EA, Spirin LA, Stukan MR, Müller M, Paul W, Binder K. Equation of state for macromolecules of variable flexibility in good solvents: a comparison of techniques for Monte Carlo simulations of lattice models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:026702. [PMID: 17930169 DOI: 10.1103/physreve.76.026702] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Indexed: 05/25/2023]
Abstract
The osmotic equation of state for the athermal bond fluctuation model on the simple cubic lattice is obtained from extensive Monte Carlo simulations. For short macromolecules (chain length N=20 ) we study the influence of various choices for the chain stiffness on the equation of state. Three techniques are applied and compared in order to critically assess their efficiency and accuracy: the "repulsive wall" method, the thermodynamic integration method (which rests on the feasibility of simulations in the grand canonical ensemble), and the recently advocated sedimentation equilibrium method, which records the density profile in an external (e.g., gravitationlike) field and infers, via a local density approximation, the equation of state from the hydrostatic equilibrium condition. We confirm the conclusion that the latter technique is far more efficient than the repulsive wall method, but we find that the thermodynamic integration method is similarly efficient as the sedimentation equilibrium method. For very stiff chains the onset of nematic order enforces the formation of an isotropic-nematic interface in the sedimentation equilibrium method leading to strong rounding effects and deviations from the true equation of state in the transition regime.
Collapse
Affiliation(s)
- V A Ivanov
- Faculty of Physics, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
50
|
Ou Z, Muthukumar M. Langevin dynamics of semiflexible polyelectrolytes: rod-toroid-globule-coil structures and counterion distribution. J Chem Phys 2007; 123:074905. [PMID: 16229618 DOI: 10.1063/1.1940054] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have investigated the nature of counterion condensation on uniformly charged semiflexible polyelectrolyte chains and the concomitant configurations by monitoring the role of chain stiffness, chain length, counterion valency, and the strength of electrostatic interaction. The counterion condensation is seen to follow the adsorption process and the effective polymer charge increases with chain stiffness. Size and shape, as calculated through the radius of gyration, effective persistence length, and hydrodynamic radius, are studied. Stable coil-like, globular, folded-chain, toroidal, and rodlike configurations are possible at suitable combinations of values of chain stiffness, chain length, electrostatic interaction strength, and the valency of counterion. For high strengths of electrostatic interactions, sufficiently stiff polyelectrolytes form toroids in the presence of multivalent counterions, whereas flexible polyelectrolytes form disordered globules. The kinetic features of the nucleation and growth of toroids are monitored. Several metastable structures are found to frustrate the formation of toroids. The generic pathway involves the nucleation of one primary loop somewhere along the chain contour, followed by a growth process where the rest of the chain is folded continuously on top of the primary loop. The dependence of the average radii of toroids on the chain length is found to be roughly linear, in disagreement with existing scaling arguments.
Collapse
Affiliation(s)
- Zhaoyang Ou
- Department of Polymer Science and Engineering, Materials Research Science and Engineering Center, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|