Borah BJ, Lee JC, Chi HH, Hsiao YT, Yen CT, Sun CK. Nyquist-exceeding high voxel rate acquisition in mesoscopic multiphoton microscopy for full-field submicron resolution resolvability.
iScience 2021;
24:103041. [PMID:
34585109 PMCID:
PMC8450254 DOI:
10.1016/j.isci.2021.103041]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The Nyquist-Shannon criterion has never been realized in a laser-scanning mesoscopic multiphoton microscope (MPM) with a large field-of-view (FOV)-resolution ratio, especially when employing a high-frequency resonant-raster-scanning. With a high optical resolution nature, a current mesoscopic-MPM either neglects the criterion and degrades the digital resolution to twice the pixel size, or reduces the FOV and/or the raster-scanning speed to avoid aliasing. We introduce a Nyquist figure-of-merit (NFOM) parameter to characterize a laser-scanning MPM in terms of its optical-resolution retrieving ability. Based on NFOM, we define the maximum aliasing-free FOV, and subsequently, a cross-over excitation wavelength, below which the FOV becomes NFOM-constrained irrespective of an optimized optical design. We validate our idea in a custom-built mesoscopic-MPM with millimeter-scale FOV yielding an ultra-high FOV-resolution ratio of >3,000, while securing up-to a 1.6 mm Nyquist-satisfied aliasing-free FOV, a ∼400 nm lateral resolution, and a 70 M/s effective voxel-sampling rate, all at the same time.
Nyquist figure-of-merit is introduced to characterize laser-scanning MPM digitization
Maximum aliasing-free FOV and cross-over excitation wavelength are formulated
High repetition-rate laser can enable high-speed large-FOV high-resolution MPM imaging
Up-to 1.6 mm-wide non-aliased FOV and ∼400 nm digital resolution at 8 kHz line-rate
Collapse