1
|
Orme B, Torun H, Unthank M, Fu YQ, Ford B, Agrawal P. Capillary wave tweezer. Sci Rep 2024; 14:12448. [PMID: 38816398 PMCID: PMC11637047 DOI: 10.1038/s41598-024-63154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
Precise control of microparticle movement is crucial in high throughput processing for various applications in scalable manufacturing, such as particle monolayer assembly and 3D bio-printing. Current techniques using acoustic, electrical and optical methods offer precise manipulation advantages, but their scalability is restricted due to issues such as, high input powers and complex fabrication and operation processes. In this work, we introduce the concept of capillary wave tweezers, where mm-scale capillary wave fields are dynamically manipulated to control the position of microparticles in a liquid volume. Capillary waves are generated in an open liquid volume using low frequency vibrations (in the range of 10-100 Hz) to trap particles underneath the nodes of the capillary waves. By shifting the displacement nodes of the waves, the trapped particles are precisely displaced. Using analytical and numerical models, we identify conditions under which a stable control over particle motion is achieved. By showcasing the ability to dynamically control the movement of microparticles, our concept offers a simple and high throughput method to manipulate particles in open systems.
Collapse
Affiliation(s)
- Bethany Orme
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Hamdi Torun
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Matthew Unthank
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yong-Qing Fu
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Bethan Ford
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Prashant Agrawal
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
2
|
Jory M, Donnarumma D, Blanc C, Bellouma K, Fort A, Vachier I, Casanellas L, Bourdin A, Massiera G. Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales. Interface Focus 2022; 12:20220028. [PMID: 36330325 PMCID: PMC9560788 DOI: 10.1098/rsfs.2022.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 10/16/2023] Open
Abstract
Mucus is a viscoelastic aqueous fluid that participates in the protective barrier of many mammals' epithelia. In the airways, together with cilia beating, mucus rheological properties are crucial for lung mucociliary function, and, when impaired, potentially participate in the onset and progression of chronic obstructive pulmonary disease (COPD). Samples of human mucus collected in vivo are inherently contaminated and are thus poorly characterized. Human bronchial epithelium (HBE) cultures, differentiated from primary cells at an air-liquid interface, are highly reliable models to assess non-contaminated mucus. In this paper, the viscoelastic properties of HBE mucus derived from healthy subjects, patients with COPD and from smokers are measured. Hallmarks of shear-thinning and elasticity are obtained at the macroscale, whereas at the microscale mucus appears as a heterogeneous medium showing an almost Newtonian behaviour in some extended regions and an elastic behaviour close to boundaries. In addition, we developed an original method to probe mucus adhesion at the microscopic scale using optical tweezers. The measured adhesion forces and the comparison with mucus-simulants rheology as well as mucus imaging collectively support a structure composed of a network of elastic adhesive filaments with a large mesh size, embedded in a very soft gel.
Collapse
Affiliation(s)
- Myriam Jory
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Dario Donnarumma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Christophe Blanc
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Karim Bellouma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Aurélie Fort
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Isabelle Vachier
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Laura Casanellas
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Arnaud Bourdin
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
| | - Gladys Massiera
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| |
Collapse
|
3
|
Kogo T, Shundo A, Wang C, Tanaka K. Spatial Heterogeneity Accompanying Gel Formation of Poly(N-isopropylacrylamide) Aqueous Solution at a Temperature below Cloud Point. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Takuro Kogo
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Atsuomi Shundo
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Chi Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Hidema R, Yatabe Z, Takahashi H, Higashikawa R, Suzuki H. Inverse integral transformation method to derive local viscosity distribution measured by optical tweezers. SOFT MATTER 2020; 16:6826-6833. [PMID: 32633310 DOI: 10.1039/d0sm00887g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Complex fluids have a non-uniform local inner structure; this is enhanced under deformation, inducing a characteristic flow, such as an abrupt increase in extensional viscosity and drag reduction. However, it is challenging to derive and quantify the non-uniform local structure of a low-concentration solution. In this study, we attempted to characterize the non-uniformity of dilute and semi-dilute polymer and worm-like micellar solutions using the local viscosity at the micro scale. The power spectrum density (PSD) of the particle displacement, measured using optical tweezers, was analyzed to calculate the local viscosity, and two methods were compared. One is based on the PSD roll-off method, which yields a single representative viscosity of the solution. The other is based on our proposed method, called the inverse integral transformation method (IITM), for deriving the local viscosity distribution. The distribution obtained through the IITM reflects the non-uniformity of the solutions at the micro scale, i.e., the distribution widens above the entanglement concentrations of the polymer or viscoelastic worm-like micellar solutions.
Collapse
Affiliation(s)
- Ruri Hidema
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
5
|
Shundo A, Matsumoto Y, Hayashi H, Tsuruzoe N, Matsuno H, Tanaka K. Mesoscopic heterogeneity in a nanocellulose-containing cell storage medium. J Mater Chem B 2020; 8:4570-4574. [PMID: 32412024 DOI: 10.1039/d0tb00219d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nanocellulose (NC)-containing medium is a promising candidate for cell storage that allows cell floating without any stirring. We here found that the NC medium was spatially heterogeneous in terms of its rheological properties. The characteristic length of the heterogeneity was a few tens of micrometers and it decreased upon sonication treatment. The length scale of the heterogeneity affected the cell suspension; the NC medium having a smaller length scale suppressed the cell sedimentation effectively.
Collapse
Affiliation(s)
- Atsuomi Shundo
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Passive and active microrheology of a lyotropic chromonic nematic liquid crystal disodium cromoglycate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Matsumoto Y, Shundo A, Ohno M, Tsuruzoe N, Goto M, Tanaka K. Evolution of heterogeneity accompanying sol-gel transitions in a supramolecular hydrogel. SOFT MATTER 2017; 13:7433-7440. [PMID: 28967654 DOI: 10.1039/c7sm01612c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When a peptide amphiphile is dispersed in water, it self-assembles into a fibrous network, leading to a supramolecular hydrogel. When the gel is physically disrupted by shaking, it transforms into a sol state. After aging at room temperature for a while, it spontaneously returns to the gel state, called sol-gel transition. However, repeating the sol-gel transition often causes a change in the rheological properties of the gel. To gain a better understanding of the sol-gel transition and its reversibility, we herein examined the thermal motion of probe particles at different locations in a supramolecular hydrogel. The sol obtained by shaking the gel was heterogeneous in terms of the rheological properties and the extent decreased with increasing aging time. This time course of heterogeneity, or homogeneity, which corresponded to the sol-to-gel transition, was observed for the 1st cycle. However, this was not the case for the 2nd and 3rd cycles; the heterogeneity was preserved even after aging. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and atomic force and confocal laser scanning microscopies revealed that, although the molecular aggregation states of amphiphiles both in the gel and sol remained unchanged with the cycles, the fibril density diversified to high and low density regions even after aging. The tracking of particles with different sizes indicated that the partial mesh size in the high density region and the characteristic length scale of the density fluctuation were smaller than 50 nm and 6 μm, respectively.
Collapse
Affiliation(s)
- Yuji Matsumoto
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Liu W, Wu C. Rheological Study of Soft Matters: A Review of Microrheology and Microrheometers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Liu
- Department of Physics; The Chinese University of Hong Kong; Shatin N.T. Hong Kong 999077
| | - Chi Wu
- Department of Chemistry; The Chinese University of Hong Kong; Shatin N.T. Hong Kong 999077
| |
Collapse
|