1
|
Chen B. ASAP: An automatic sequential assignment program for congested multidimensional solid state NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107664. [PMID: 38522163 DOI: 10.1016/j.jmr.2024.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Accurate signal assignments can be challenging for congested solid-state NMR (ssNMR) spectra. We describe an automatic sequential assignment program (ASAP) to partially overcome this challenge. ASAP takes three input files: the residue type assignments (RTAs) determined from the better-resolved NCACX spectrum, the full peak list of the NCOCX spectrum, and the protein sequence. It integrates our auto-residue type assignment strategy (ARTIST) with the Monte Carlo simulated annealing (MCSA) algorithm to overcome the hurdle for accurate signal assignments caused by incomplete side-chain resonances and spectral congestion. Combined, ASAP demonstrates robust performance and accelerates signal assignments of large proteins (>200 residues) that lack crystalline order.
Collapse
Affiliation(s)
- Bo Chen
- Department of Physics, University of Central Florida, Orlando 32816, USA.
| |
Collapse
|
2
|
Ganguly S, Ramachandran R. A perspective on the relative merits/demerits of time-propagators based on Floquet theorem. Phys Chem Chem Phys 2023; 25:29747-29773. [PMID: 37885428 DOI: 10.1039/d3cp03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The present report examines the nuances of analytic methods employed in the derivation of evolution operators in periodically driven quantum systems based on Floquet theorem. Specifically, time-propagators of the form, U(t) = P(t)e-iH̄t defined in the Hilbert space (of finite dimension), are derived through generalized multimodal expansion of the operators involved. While Floquet methods defined in the extended Hilbert space (of infinite dimension) have remained the method of choice for the description of time-evolution at non-stroboscopic time-intervals, the expansion schemes discussed do present an attractive option for similar studies in the standard Hilbert space. Nevertheless, the convergence criteria and suitability of such methods deserve formal validation in problems of experimental relevance. Employing examples comprising periodic Hamiltonians from magnetic resonance spectroscopy, the exactness of Floquet based time-propagators in the Schrödinger and interaction representation is discussed. Through rigorous comparisons between simulations emerging from analytic and exact numerical methods, the relative merits and demerits of different formulations of Floquet based methods are also discussed.
Collapse
Affiliation(s)
- Shreyan Ganguly
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India.
| | - Ramesh Ramachandran
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India.
| |
Collapse
|
3
|
Solid State NMR a Powerful Technique for Investigating Sustainable/Renewable Cellulose-Based Materials. Polymers (Basel) 2022; 14:polym14051049. [PMID: 35267872 PMCID: PMC8914817 DOI: 10.3390/polym14051049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Solid state nuclear magnetic resonance (ssNMR) is a powerful and attractive characterization method for obtaining insights into the chemical structure and dynamics of a wide range of materials. Current interest in cellulose-based materials, as sustainable and renewable natural polymer products, requires deep investigation and analysis of the chemical structure, molecular packing, end chain motion, functional modification, and solvent–matrix interactions, which strongly dictate the final product properties and tailor their end applications. In comparison to other spectroscopic techniques, on an atomic level, ssNMR is considered more advanced, especially in the structural analysis of cellulose-based materials; however, due to a dearth in the availability of a broad range of pulse sequences, and time consuming experiments, its capabilities are underestimated. This critical review article presents the comprehensive and up-to-date work done using ssNMR, including the most advanced NMR strategies used to overcome and resolve the structural difficulties present in different types of cellulose-based materials.
Collapse
|
4
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
5
|
Ganapathy V, Ramachandran R. Effective Floquet Hamiltonian theory of multiple-quantum NMR in anisotropic solids involving quadrupolar spins: Challenges and Perspectives. J Chem Phys 2017; 147:144202. [DOI: 10.1063/1.4993313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vinay Ganapathy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali 140306, Punjab, India
| | - Ramesh Ramachandran
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali 140306, Punjab, India
| |
Collapse
|
6
|
Equbal A, Shankar R, Leskes M, Vega S, Nielsen NC, Madhu PK. Significance of symmetry in the nuclear spin Hamiltonian for efficient heteronuclear dipolar decoupling in solid-state NMR: A Floquet description of supercycled rCW schemes. J Chem Phys 2017; 146:104202. [PMID: 28298092 DOI: 10.1063/1.4977738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.
Collapse
Affiliation(s)
- Asif Equbal
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ravi Shankar
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michal Leskes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shimon Vega
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
7
|
Equbal A, Madhu PK, Meier BH, Nielsen NC, Ernst M, Agarwal V. Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR. J Chem Phys 2017; 146:084202. [DOI: 10.1063/1.4976997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Asif Equbal
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
- Center for Insoluble Protein Structures (inSpin) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P. K. Madhu
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Beat H. Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSpin) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
8
|
Li P, Chen Q, Zhang S. Analytical solution of cross polarization dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:76-79. [PMID: 25514062 DOI: 10.1016/j.jmr.2014.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
The first analytical solution under Hartman-Hahn match (ω1I=ω1S) for a stationary sample was derived by Müller et al. After the introduction of magic angle spinning (MAS), the dynamics becomes much more complicated. By transferring the Hamiltonian into a rotating frame, Stejskal et al. derived the effective Hamiltonian and the new condition of Hartman-Hahn match (ω1I-ω1S=nωr,n=±1,±2), which leads to an analytical solution of CP dynamics under very fast MAS. For both stationary and fast MAS results, the effective Hamiltonians are time-independent in the rotating frame. Under Hartman-Hahn match (ω1I=ω1S) and arbitrary MAS speed condition, the Hamiltonian is no longer time-independent, making the CP dynamics very intriguing. In this work, the solution is derived analytically in the zero- and double-quantum spaces. The initial polarization in the double-quantum space is a constant of motion under strong pulse condition (|ω1I+ω1S|≫|d(t)|), while the Hamiltonian in the zero-quantum space reduces to d(t)σz(Δ), which is time dependent but self commuting all the time. This Hamilontian acts on the initial density matrix successively, leading to an analytical solution of CP dynamics. Based on the result, a phenomenological solution is derived. When the MAS speed ωr→0 , this solution reduces to Müller's formula except a spin-lattice relaxation time in the rotating frame (T1ρ). Computer simulations and experimental results agree well with the solutions.
Collapse
Affiliation(s)
- Peng Li
- Department of Physics and Shanghai key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Qun Chen
- Department of Physics and Shanghai key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| | - Shanmin Zhang
- Department of Physics and Shanghai key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
9
|
SivaRanjan U, Ramachandran R. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory. J Chem Phys 2014; 140:054101. [DOI: 10.1063/1.4863212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|