1
|
Moore CP, Husson J, Boudaoud A, Amselem G, Baroud CN. Clogging of a Rectangular Slit by a Spherical Soft Particle. PHYSICAL REVIEW LETTERS 2023; 130:064001. [PMID: 36827557 DOI: 10.1103/physrevlett.130.064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The capture of a soft spherical particle in a rectangular slit leads to a nonmonotonic pressure-flow rate relation at low Reynolds number. Simulations reveal that the flow induced deformations of the trapped particle focus the streamlines and pressure drop to a small region. This increases the resistance to flow by several orders of magnitude as the driving pressure is increased. As a result, two regimes are observed in experiments and simulations: a flow-dominated regime for small particle deformations, where flow rate increases with pressure, and an elastic-dominated regime in which solid deformations block the flow.
Collapse
Affiliation(s)
- Charles Paul Moore
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Arezki Boudaoud
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Gabriel Amselem
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
2
|
Green BJ, Marazzini M, Hershey B, Fardin A, Li Q, Wang Z, Giangreco G, Pisati F, Marchesi S, Disanza A, Frittoli E, Martini E, Magni S, Beznoussenko GV, Vernieri C, Lobefaro R, Parazzoli D, Maiuri P, Havas K, Labib M, Sigismund S, Fiore PPD, Gunby RH, Kelley SO, Scita G. PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106097. [PMID: 35344274 DOI: 10.1002/smll.202106097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Circulating tumor cell (CTC) clusters are associated with increased metastatic potential and worse patient prognosis, but are rare, difficult to count, and poorly characterized biophysically. The PillarX device described here is a bimodular microfluidic device (Pillar-device and an X-magnetic device) to profile single CTCs and clusters from whole blood based on their size, deformability, and epithelial marker expression. Larger, less deformable clusters and large single cells are captured in the Pillar-device and sorted according to pillar gap sizes. Smaller, deformable clusters and single cells are subsequently captured in the X-device and separated based on epithelial marker expression using functionalized magnetic nanoparticles. Clusters of established and primary breast cancer cells with variable degrees of cohesion driven by different cell-cell adhesion protein expression are profiled in the device. Cohesive clusters exhibit a lower deformability as they travel through the pillar array, relative to less cohesive clusters, and have greater collective invasive behavior. The ability of the PillarX device to capture clusters is validated in mouse models and patients of metastatic breast cancer. Thus, this device effectively enumerates and profiles CTC clusters based on their unique geometrical, physical, and biochemical properties, and could form the basis of a novel prognostic clinical tool.
Collapse
Affiliation(s)
- Brenda J Green
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Margherita Marazzini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Ben Hershey
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Amir Fardin
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
| | - Giovanni Giangreco
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Federica Pisati
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Stefano Marchesi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Andrea Disanza
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuela Frittoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuele Martini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Serena Magni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | | | - Claudio Vernieri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Riccardo Lobefaro
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Dario Parazzoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Paolo Maiuri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Kristina Havas
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Mahmoud Labib
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Pier Paolo Di Fiore
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Rosalind H Gunby
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giorgio Scita
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| |
Collapse
|
3
|
Aoun L, Nègre P, Gonsales C, Seveau de Noray V, Brustlein S, Biarnes-Pelicot M, Valignat MP, Theodoly O. Leukocyte transmigration and longitudinal forward-thrusting force in a microfluidic Transwell device. Biophys J 2021; 120:2205-2221. [PMID: 33838136 DOI: 10.1016/j.bpj.2021.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Transmigration of leukocytes across blood vessels walls is a critical step of the immune response. Transwell assays examine transmigration properties in vitro by counting cells passages through a membrane; however, the difficulty of in situ imaging hampers a clear disentanglement of the roles of adhesion, chemokinesis, and chemotaxis. We used here microfluidic Transwells to image the cells' transition from 2D migration on a surface to 3D migration in a confining microchannel and measure cells longitudinal forward-thrusting force in microchannels. Primary human effector T lymphocytes adhering with integrins LFA-1 (αLβ2) had a marked propensity to transmigrate in Transwells without chemotactic cue. Both adhesion and contractility were important to overcome the critical step of nucleus penetration but were remarkably dispensable for 3D migration in smooth microchannels deprived of topographic features. Transmigration in smooth channels was qualitatively consistent with a propulsion by treadmilling of cell envelope and squeezing of cell trailing edge. Stalling conditions of 3D migration were then assessed by imposing pressure drops across microchannels. Without specific adhesion, the cells slid backward with subnanonewton forces, showing that 3D migration under stress is strongly limited by a lack of adhesion and friction with channels. With specific LFA-1 mediated adhesion, stalling occurred at around 3 and 6 nN in 2 × 4 and 4 × 4 μm2 channels, respectively, supporting that stalling of adherent cells was under pressure control rather than force control. The stall pressure of 4 mbar is consistent with the pressure of actin filament polymerization that mediates lamellipod growth. The arrest of adherent cells under stress therefore seems controlled by the compression of the cell leading edge, which perturbs cells front-rear polarization and triggers adhesion failure or polarization reversal. Although stalling assays in microfluidic Transwells do not mimic in vivo transmigration, they provide a powerful tool to scrutinize 2D and 3D migration, barotaxis, and chemotaxis.
Collapse
Affiliation(s)
- Laurene Aoun
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Paulin Nègre
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Cristina Gonsales
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | | | - Sophie Brustlein
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | | | - Marie-Pierre Valignat
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France
| | - Olivier Theodoly
- LAI, Aix-Marseille Univ, CNRS, INSERM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
4
|
Mirzaaghaian A, Ramiar A, Ranjbar AA, Warkiani ME. Application of level-set method in simulation of normal and cancer cells deformability within a microfluidic device. J Biomech 2020; 112:110066. [DOI: 10.1016/j.jbiomech.2020.110066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
|
5
|
Varlet AA, Helfer E, Badens C. Molecular and Mechanobiological Pathways Related to the Physiopathology of FPLD2. Cells 2020; 9:cells9091947. [PMID: 32842478 PMCID: PMC7565540 DOI: 10.3390/cells9091947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Laminopathies are rare and heterogeneous diseases affecting one to almost all tissues, as in Progeria, and sharing certain features such as metabolic disorders and a predisposition to atherosclerotic cardiovascular diseases. These two features are the main characteristics of the adipose tissue-specific laminopathy called familial partial lipodystrophy type 2 (FPLD2). The only gene that is involved in FPLD2 physiopathology is the LMNA gene, with at least 20 mutations that are considered pathogenic. LMNA encodes the type V intermediate filament lamin A/C, which is incorporated into the lamina meshwork lining the inner membrane of the nuclear envelope. Lamin A/C is involved in the regulation of cellular mechanical properties through the control of nuclear rigidity and deformability, gene modulation and chromatin organization. While recent studies have described new potential signaling pathways dependent on lamin A/C and associated with FPLD2 physiopathology, the whole picture of how the syndrome develops remains unknown. In this review, we summarize the signaling pathways involving lamin A/C that are associated with the progression of FPLD2. We also explore the links between alterations of the cellular mechanical properties and FPLD2 physiopathology. Finally, we introduce potential tools based on the exploration of cellular mechanical properties that could be redirected for FPLD2 diagnosis.
Collapse
Affiliation(s)
- Alice-Anaïs Varlet
- Marseille Medical Genetics (MMG), INSERM, Aix Marseille University, 13005 Marseille, France;
| | - Emmanuèle Helfer
- Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), CNRS, Aix Marseille University, 13009 Marseille, France
- Correspondence: (E.H.); (C.B.); Tel.: +33-6-60-30-28-91 (E.H.); +33-4-91-78-68-94 (C.B.)
| | - Catherine Badens
- Marseille Medical Genetics (MMG), INSERM, Aix Marseille University, 13005 Marseille, France;
- Correspondence: (E.H.); (C.B.); Tel.: +33-6-60-30-28-91 (E.H.); +33-4-91-78-68-94 (C.B.)
| |
Collapse
|
6
|
Aoun L, Farutin A, Garcia-Seyda N, Nègre P, Rizvi MS, Tlili S, Song S, Luo X, Biarnes-Pelicot M, Galland R, Sibarita JB, Michelot A, Hivroz C, Rafai S, Valignat MP, Misbah C, Theodoly O. Amoeboid Swimming Is Propelled by Molecular Paddling in Lymphocytes. Biophys J 2020; 119:1157-1177. [PMID: 32882187 DOI: 10.1016/j.bpj.2020.07.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022] Open
Abstract
Mammalian cells developed two main migration modes. The slow mesenchymatous mode, like crawling of fibroblasts, relies on maturation of adhesion complexes and actin fiber traction, whereas the fast amoeboid mode, observed exclusively for leukocytes and cancer cells, is characterized by weak adhesion, highly dynamic cell shapes, and ubiquitous motility on two-dimensional and in three-dimensional solid matrix. In both cases, interactions with the substrate by adhesion or friction are widely accepted as a prerequisite for mammalian cell motility, which precludes swimming. We show here experimental and computational evidence that leukocytes do swim, and that efficient propulsion is not fueled by waves of cell deformation but by a rearward and inhomogeneous treadmilling of the cell external membrane. Our model consists of a molecular paddling by transmembrane proteins linked to and advected by the actin cortex, whereas freely diffusing transmembrane proteins hinder swimming. Furthermore, continuous paddling is enabled by a combination of external treadmilling and selective recycling by internal vesicular transport of cortex-bound transmembrane proteins. This mechanism explains observations that swimming is five times slower than the retrograde flow of cortex and also that lymphocytes are motile in nonadherent confined environments. Resultantly, the ubiquitous ability of mammalian amoeboid cells to migrate in two dimensions or three dimensions and with or without adhesion can be explained for lymphocytes by a single machinery of heterogeneous membrane treadmilling.
Collapse
Affiliation(s)
- Laurene Aoun
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | | | - Nicolas Garcia-Seyda
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Paulin Nègre
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | | | - Sham Tlili
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France; Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Solene Song
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Xuan Luo
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Martine Biarnes-Pelicot
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Jean-Baptiste Sibarita
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, Paris, France
| | - Salima Rafai
- University Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | - Marie-Pierre Valignat
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Chaouqi Misbah
- University Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| | - Olivier Theodoly
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
7
|
Mechanical adaptation of monocytes in model lung capillary networks. Proc Natl Acad Sci U S A 2020; 117:14798-14804. [PMID: 32554496 DOI: 10.1073/pnas.1919984117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper circulation of white blood cells (WBCs) in the pulmonary vascular bed is crucial for an effective immune response. In this branched vascular network, WBCs have to strongly deform to pass through the narrowest capillaries and bifurcations. Although it is known that this process depends on the cell mechanical properties, it is still poorly understood due to the lack of a comprehensive model of cell mechanics and of physiologically relevant experiments. Here, using an in-house microfluidic device mimicking the pulmonary capillary bed, we show that the dynamics of THP1 monocytes evolves along successive capillary-like channels, from a nonstationary slow motion with hops to a fast and smooth efficient one. We used actin cytoskeleton drugs to modify the traffic dynamics. This led us to propose a simple mechanical model that shows that a very finely tuned cortical tension combined with a high cell viscosity governs the fast transit through the network while preserving cell integrity. We finally highlight that the cortical tension controls the steady-state cell velocity via the viscous friction between the cell and the channel walls.
Collapse
|
8
|
Davidson PM, Fedorchak GR, Mondésert-Deveraux S, Bell ES, Isermann P, Aubry D, Allena R, Lammerding J. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells. LAB ON A CHIP 2019; 19:3652-3663. [PMID: 31559980 PMCID: PMC6810812 DOI: 10.1039/c9lc00444k] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.
Collapse
Affiliation(s)
- Patricia M Davidson
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA. and Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Paris Science et Lettres, Sorbonne Université, France
| | - Gregory R Fedorchak
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| | | | - Emily S Bell
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| | - Philipp Isermann
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| | - Denis Aubry
- Laboratoire MSSMat UMR CNRS 8579, CentraleSupelec, Université Paris-Saclay, France
| | - Rachele Allena
- Arts et Metiers ParisTech, LBM/Institut de Biomécanique Humaine Georges Charpak, France
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| |
Collapse
|
9
|
Wang K, Sun X, Zhang Y, Wei Y, Chen D, Wu H, Song Z, Long R, Wang J, Chen J. Microfluidic Cytometry for High-Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels. Cytometry A 2019; 97:630-637. [PMID: 31637858 DOI: 10.1002/cyto.a.23921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
This article presents an approach of microfluidic flow cytometry capable of continuously characterizing cytoplasmic viscosities of single cells. The microfluidic system consists of a major constriction channel and a side constriction channel perpendicularly crossing each other. Cells are forced to rapidly travel through the major channel and are partially aspirated into the side channel when passing the channel junction. Numerical simulations were conducted to model the time dependence of the aspiration length into the side channel, which enables the measurement of cytoplasmic viscosity by fitting the model results to experimental data. As a demonstration for high-throughput measurement, the cytoplasmic viscosities of HL-60 cells that were native or treated by N-Formylmethionine-leucyl-phenylalanine (fMLP) were quantified with sample sizes as large as thousands of cells. Both the average and median cytoplasmic viscosities of native HL-60 cells were found to be about 10% smaller than those of fMLP-treated HL-60 cells, consistent with previous observations that fMLP treatment can increase the rigidity of white blood cells. Furthermore, the microfluidic system was used to process granulocytes from three donors (sample size >1,000 cells for each donor). The results revealed that the cytoplasmic viscosity of granulocytes from one donor was significantly higher than the other two, which may result from the fact that this donor just recovered from an inflammation. In summary, the developed microfluidic system can collect cytoplasmic viscosities from thousands of cells and may function as an enabling tool in the field of single-cell analysis. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| | - Xiaohao Sun
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado.,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanchen Wei
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hengan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zijian Song
- School of Information and Electronics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Rong Long
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Kim J, Li B, Scheideler OJ, Kim Y, Sohn LL. Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells. iScience 2019; 13:214-228. [PMID: 30870780 PMCID: PMC6416673 DOI: 10.1016/j.isci.2019.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Viscoelastic properties of cells provide valuable information regarding biological or clinically relevant cellular characteristics. Here, we introduce a new, electronic-based, microfluidic platform-visco-node-pore sensing (visco-NPS)-which quantifies cellular viscoelastic properties under periodic deformation. We measure the storage (G') and loss (G″) moduli (i.e., elasticity and viscosity, respectively) of cells. By applying a wide range of deformation frequencies, our platform quantifies the frequency dependence of viscoelastic properties. G' and G″ measurements show that the viscoelastic properties of malignant breast epithelial cells (MCF-7) are distinctly different from those of non-malignant breast epithelial cells (MCF-10A). With its sensitivity, visco-NPS can dissect the individual contributions of different cytoskeletal components to whole-cell mechanical properties. Moreover, visco-NPS can quantify the mechanical transitions of cells as they traverse the cell cycle or are initiated into an epithelial-mesenchymal transition. Visco-NPS identifies viscoelastic characteristics of cell populations, providing a biophysical understanding of cellular behavior and a potential for clinical applications.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Brian Li
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Olivia J Scheideler
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Youngbin Kim
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - Lydia L Sohn
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|
11
|
Kamyabi N, Khan ZS, Vanapalli SA. Flow-Induced Transport of Tumor Cells in a Microfluidic Capillary Network: Role of Friction and Repeated Deformation. Cell Mol Bioeng 2017; 10:563-576. [PMID: 31719874 PMCID: PMC6816673 DOI: 10.1007/s12195-017-0499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Circulating tumor cells (CTCs) in microcirculation undergo significant deformation and frictional interactions within microcapillaries. To understand the physical parameters governing their flow-induced transport, we studied the pressure-driven flow of cancer cells in a microfluidic model of a capillary network. METHODS Our microfluidic device contains an array of parallel constrictions separated by regions where cells can repetitively deform and relax. To characterize the transport behavior, we measured the entry time, transit time, and shape deformation of tumor cells as they squeeze through the network. RESULTS We found that entry and transit times of cells are much lower after repetitive deformation as their elongated shape enables easy transport in subsequent constrictions. Furthermore, upon repetitive deformation, the cells were able to relieve only 25% of their 40% imposed compressional strain, suggesting that tumor cells might have undergone plastic deformation or fatigue. To investigate the influence of surface friction, we characterized the transport behavior in the absence and presence of bovine serum albumin (BSA) coating on the constriction walls. We observed that BSA coating reduces the entry and transit time significantly. Finally, using two breast tumor cell lines, we investigated the effect of metastatic potential on transport properties. We found that the cell lines could be distinguished only upon surface treatment with BSA, thus surface-induced friction is an indicator of metastatic potential. CONCLUSIONS Our results suggest that pre-deformation can enhance the transport of CTCs in microcirculation and that frictional interactions with capillary walls can play an important role in influencing the transport of metastatic CTCs.
Collapse
Affiliation(s)
- Nabiollah Kamyabi
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Ave, Lubbock, TX 79409 USA
| | - Zeina S. Khan
- Department of Mechanical Engineering, Texas Tech University, 6th St and Canton Ave, Lubbock, TX 79409 USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Ave, Lubbock, TX 79409 USA
| |
Collapse
|
12
|
Luo ZY, Bai BF. Off-center motion of a trapped elastic capsule in a microfluidic channel with a narrow constriction. SOFT MATTER 2017; 13:8281-8292. [PMID: 29071316 DOI: 10.1039/c7sm01425b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Owing to their significance in capsule-related engineering and biomedical applications, a number of studies have considered the dynamics of elastic capsules flowing in constricted microchannels. However, these studies have focused on capsules moving along the channel centerline. In the present study, we numerically investigate the transient motion of an elastic capsule in a microfluidic channel with a rectangular constriction, which is initially trapped at the constriction inlet while off the channel centerline (i.e., on the channel bottom-wall). Under the push of the surrounding flow, the capsule can squeeze into the constriction, but only if the capsule deformability or the constriction size is sufficiently large. We find that the critical capillary number leading to the penetration of the capsule into the constriction is larger for off-centerline capsules compared to centered capsules. The centered capsule is stationary at the steady state when it remains stuck at the constriction; in contrast, the off-centerline capsule is not stationary but exhibits a tank-treading motion, i.e., its overall shape maintains a nonspherical shape with a protrusion into the constriction while its membrane exhibits a continuous rotation. Further, we examine the dependence of the capsule motion type, capsule deformation degree and membrane tension distribution on the capillary number (measuring the effects of flow strength and membrane mechanics) and constriction geometries (including the constriction height and width). Finally, we discuss the mechanism governing the capsule motion by analyzing the hydrodynamic forces acting on the capsule. The shear force acting on the capsule top owing to the fluid flow in the gap between the capsule top and the channel top-wall is the main source inducing the membrane tank-treading rotation.
Collapse
Affiliation(s)
- Zheng Yuan Luo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | | |
Collapse
|
13
|
Khan ZS, Kamyabi N, Hussain F, Vanapalli SA. Passage times and friction due to flow of confined cancer cells, drops, and deformable particles in a microfluidic channel. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5f60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Babahosseini H, Strobl JS, Agah M. Microfluidic Iterative Mechanical Characteristics (iMECH) Analyzer for Single-Cell Metastatic Identification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:847-855. [PMID: 29034007 PMCID: PMC5637398 DOI: 10.1039/c6ay03342c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This study describes the development of a microfluidic biosensor called the iterative mechanical characteristics (iMECH) analyzer which enables label-free biomechanical profiling of individual cells for distinction between metastatic and non-metastatic human mammary cell lines. Previous results have demonstrated that pulsed mechanical nanoindentation can modulate the biomechanics of cells resulting in distinctly different biomechanical responses in metastatic and non-metastatic cell lines. The iMECH analyzer aims to move this concept into a microfluidic, clinically more relevant platform. The iMECH analyzer directs a cyclic deformation regimen by pulling cells through a test channel comprised of narrow deformation channels and interspersed with wider relaxation regions which together simulate a dynamic microenvironment. The results of the iMECH analysis of human breast cell lines revealed that cyclic deformations produce a resistance in non-metastatic 184A1 and MCF10A cells as determined by a drop in their average velocity in the iterative deformation channels after each relaxation. In contrast, metastatic MDA-MB-231 and MDA-MB-468 cells exhibit a loss of resistance as measured by a velocity raise after each relaxation. These distinctive modulatory mechanical responses of normal-like non-metastatic and metastatic cancer breast cells to the pulsed indentations paradigm provide a unique bio-signature. The iMECH analyzer represents a diagnostic microchip advance for discriminating metastatic cancer at the single-cell level.
Collapse
Affiliation(s)
- Hesam Babahosseini
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, US
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, US
| | - Jeannine S. Strobl
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, US
| | - Masoud Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, US
| |
Collapse
|
15
|
Gaveau A, Coetsier C, Roques C, Bacchin P, Dague E, Causserand C. Bacteria transfer by deformation through microfiltration membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Moure A, Gomez H. Computational model for amoeboid motion: Coupling membrane and cytosol dynamics. Phys Rev E 2016; 94:042423. [PMID: 27841601 DOI: 10.1103/physreve.94.042423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 12/12/2022]
Abstract
A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.
Collapse
Affiliation(s)
- Adrian Moure
- Universidade da Coruña, Campus de Elviña, 15071, A Coruña, Spain
| | - Hector Gomez
- Universidade da Coruña, Campus de Elviña, 15071, A Coruña, Spain
| |
Collapse
|
17
|
Yang T, Bragheri F, Minzioni P. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level. MICROMACHINES 2016; 7:E90. [PMID: 30404265 PMCID: PMC6189960 DOI: 10.3390/mi7050090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022]
Abstract
This paper presents a comprehensive review of the development of the optical stretcher, a powerful optofluidic device for single cell mechanical study by using optical force induced cell stretching. The different techniques and the different materials for the fabrication of the optical stretcher are first summarized. A short description of the optical-stretching mechanism is then given, highlighting the optical force calculation and the cell optical deformability characterization. Subsequently, the implementations of the optical stretcher in various cell-mechanics studies are shown on different types of cells. Afterwards, two new advancements on optical stretcher applications are also introduced: the active cell sorting based on cell mechanical characterization and the temperature effect on cell stretching measurement from laser-induced heating. Two examples of new functionalities developed with the optical stretcher are also included. Finally, the current major limitation and the future development possibilities are discussed.
Collapse
Affiliation(s)
- Tie Yang
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| | - Francesca Bragheri
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| |
Collapse
|
18
|
Yang T, Bragheri F, Nava G, Chiodi I, Mondello C, Osellame R, Berg-Sørensen K, Cristiani I, Minzioni P. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells. Sci Rep 2016; 6:23946. [PMID: 27040456 PMCID: PMC4819226 DOI: 10.1038/srep23946] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/17/2016] [Indexed: 12/17/2022] Open
Abstract
We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.
Collapse
Affiliation(s)
- Tie Yang
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100, Pavia, Italy
| | - Francesca Bragheri
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza, Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giovanni Nava
- Department of Biomedical Science and Translational Medicine, Università di Milano, Via F.lli Cervi 91, 20090 Segrate, Italy
| | - Ilaria Chiodi
- Institute of Molecular Genetics (IGM), CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics (IGM), CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Roberto Osellame
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza, Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Ilaria Cristiani
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100, Pavia, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100, Pavia, Italy
| |
Collapse
|
19
|
Huerre A, Jullien MC, Theodoly O, Valignat MP. Absolute 3D reconstruction of thin films topography in microfluidic channels by interference reflection microscopy. LAB ON A CHIP 2016; 16:911-916. [PMID: 26830018 DOI: 10.1039/c5lc01417d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The travel of droplets, bubbles, vesicles, capsules, living cells or small organisms in microchannels is a hallmark in microfluidics applications. A full description of the dynamics of such objects requires a quantitative understanding of the complex hydrodynamic and interfacial interactions between objects and channel walls. In this paper, we present an interferometric method that allows absolute topographic reconstruction of the interspace between an object and channel walls for objects confined in microfluidic channels. Wide field microscopic imaging in reflection interference contrast mode (RICM) is directly performed at the bottom wall of microfluidic chips. Importantly, we show that the reflections at both the lower and upper surface of the microchannel have to be considered in the quantitative analysis of the optical signal. More precisely, the contribution of the reflection at the upper surface is weighted depending on the light coherence length and channel height. Using several wavelengths and illumination apertures, our method allows reconstructing the topography of thin films on channel walls in a range of 0-500 nm, with a precision as accurate as 2 nm for the thinnest films. A complete description of the protocol is exemplified for oil in water droplets travelling in channels of height 10-400 μm at a speed up to 5 mm s(-1).
Collapse
Affiliation(s)
- A Huerre
- MMN, UMR CNRS Gulliver 7083, PSL research University, ESPCI ParisTech, 10 rue Vauquelin, F-75005 Paris, France
| | - M-C Jullien
- MMN, UMR CNRS Gulliver 7083, PSL research University, ESPCI ParisTech, 10 rue Vauquelin, F-75005 Paris, France
| | - O Theodoly
- LAI, INSERM UMR S 1067, CNRS UMR 7333, Aix-Marseille Universite 13009 Marseille, France
| | - M-P Valignat
- LAI, INSERM UMR S 1067, CNRS UMR 7333, Aix-Marseille Universite 13009 Marseille, France
| |
Collapse
|
20
|
Preira P, Forel JM, Robert P, Nègre P, Biarnes-Pelicot M, Xeridat F, Bongrand P, Papazian L, Theodoly O. The leukocyte-stiffening property of plasma in early acute respiratory distress syndrome (ARDS) revealed by a microfluidic single-cell study: the role of cytokines and protection with antibodies. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:8. [PMID: 26757701 PMCID: PMC4711060 DOI: 10.1186/s13054-015-1157-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/06/2015] [Indexed: 12/19/2022]
Abstract
Background Leukocyte-mediated pulmonary inflammation is a key pathophysiological mechanism involved in acute respiratory distress syndrome (ARDS). Massive sequestration of leukocytes in the pulmonary microvasculature is a major triggering event of the syndrome. We therefore investigated the potential role of leukocyte stiffness and adhesiveness in the sequestration of leukocytes in microvessels. Methods This study was based on in vitro microfluidic assays using patient sera. Cell stiffness was assessed by measuring the entry time (ET) of a single cell into a microchannel with a 6 × 9–μm cross-section under a constant pressure drop (ΔP = 160 Pa). Primary neutrophils and monocytes, as well as the monocytic THP-1 cell line, were used. Cellular adhesiveness to human umbilical vein endothelial cells was examined using the laminar flow chamber method. We compared the properties of cells incubated with the sera of healthy volunteers (n = 5), patients presenting with acute cardiogenic pulmonary edema (ACPE; n = 6), and patients with ARDS (n = 22), of whom 13 were classified as having moderate to severe disease and the remaining 9 as having mild disease. Results Rapid and strong stiffening of primary neutrophils and monocytes was induced within 30 minutes (mean ET >50 seconds) by sera from the ARDS group compared with both the healthy subjects and the ACPE groups (mean ET <1 second) (p < 0.05). Systematic measurements with the THP-1 cell line allowed for the establishment of a strong correlation between stiffening and the severity of respiratory status (mean ET 0.82 ± 0.08 seconds for healthy subjects, 1.6 ± 1.0 seconds for ACPE groups, 10.5 ± 6.1 seconds for mild ARDS, and 20.0 ± 8.1 seconds for moderate to severe ARDS; p < 0.05). Stiffening correlated with the cytokines interleukin IL-1β, IL-8, tumor necrosis factor TNF-α, and IL-10 but not with interferon-γ, transforming growth factor-β, IL-6, or IL-17. Strong stiffening was induced by IL-1β, IL-8, and TNF-α but not by IL-10, and incubations with sera and blocking antibodies against IL-1β, IL-8, or TNF-α significantly diminished the stiffening effect of serum. In contrast, the measurements of integrin expression (CD11b, CD11a, CD18, CD49d) and leukocyte–endothelium adhesion showed a weak and slow response after incubation with the sera of patients with ARDS (several hours), suggesting a lesser role of leukocyte adhesiveness compared with leukocyte stiffness in early ARDS. Conclusions The leukocyte stiffening induced by cytokines in the sera of patients might play a role in the sequestration of leukocytes in the lung capillary beds during early ARDS. The inhibition of leukocyte stiffening with blocking antibodies might inspire future therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1157-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pascal Preira
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| | - Jean-Marie Forel
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France. .,Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France.
| | - Philippe Robert
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| | - Paulin Nègre
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France.,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France
| | - Martine Biarnes-Pelicot
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France.,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France
| | - Francois Xeridat
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France. .,Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France.
| | - Pierre Bongrand
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| | - Laurent Papazian
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France. .,Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France.
| | - Olivier Theodoly
- Adhésion et Inflammation, Université Aix-Marseille, INSERM U1067, CNRS UMR7333, 163 avenue de Luminy, Marseille, 13009, France. .,Laboratoire d'Immunologie, Assistance Publique - Hôpitaux de Marseille, 147, boulevard Baille, F-13285 Cedx 05, Marseille, France.
| |
Collapse
|
21
|
Martinez Vazquez R, Nava G, Veglione M, Yang T, Bragheri F, Minzioni P, Bianchi E, Di Tano M, Chiodi I, Osellame R, Mondello C, Cristiani I. An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells. Integr Biol (Camb) 2015; 7:477-84. [PMID: 25804890 DOI: 10.1039/c5ib00023h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular mechanical properties constitute good markers to characterize tumor cells, to study cell population heterogeneity and to highlight the effect of drug treatments. In this work, we describe the fabrication and validation of an integrated optofluidic chip capable of analyzing cellular deformability on the basis of the pressure gradient needed to push a cell through a narrow constriction. We demonstrate the ability of the chip to discriminate between tumorigenic and metastatic breast cancer cells (MCF7 and MDA-MB231) and between human melanoma cells with different metastatic potential (A375P and A375MC2). Moreover, we show that this chip allows highlighting the effect of drugs interfering with microtubule organization (paclitaxel, combretastatin A-4 and nocodazole) on cancer cells, which leads to changes in the pressure-gradient required to push cells through the constriction. Our single-cell microfluidic device for mechanical evaluation is compact and easy to use, allowing for an extensive use in different laboratory environments.
Collapse
Affiliation(s)
- R Martinez Vazquez
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Constriction Channel Based Single-Cell Mechanical Property Characterization. MICROMACHINES 2015. [DOI: 10.3390/mi6111457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Tlili S, Gay C, Graner F, Marcq P, Molino F, Saramito P. Colloquium: Mechanical formalisms for tissue dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:121. [PMID: 25957180 DOI: 10.1140/epje/i2015-15033-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/22/2014] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The understanding of morphogenesis in living organisms has been renewed by tremendous progress in experimental techniques that provide access to cell scale, quantitative information both on the shapes of cells within tissues and on the genes being expressed. This information suggests that our understanding of the respective contributions of gene expression and mechanics, and of their crucial entanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assist the design and interpretation of experiments, point out the main ingredients and assumptions, and ultimately lead to predictions. The newly accessible local information thus calls for a reflection on how to select suitable classes of mechanical models. We review both mechanical ingredients suggested by the current knowledge of tissue behaviour, and modelling methods that can help generate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell") and tissue scale ("inter-cell") contributions. We recall the mathematical framework developed for continuum materials and explain how to transform a constitutive equation into a set of partial differential equations amenable to numerical resolution. We show that when plastic behaviour is relevant, the dissipation function formalism appears appropriate to generate constitutive equations; its variational nature facilitates numerical implementation, and we discuss adaptations needed in the case of large deformations. The present article gathers theoretical methods that can readily enhance the significance of the data to be extracted from recent or future high throughput biomechanical experiments.
Collapse
Affiliation(s)
- Sham Tlili
- Laboratoire Matière et Systèmes Complexes, Université Denis Diderot - Paris 7, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, F-75205, Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
24
|
Force transmission during adhesion-independent migration. Nat Cell Biol 2015; 17:524-9. [PMID: 25774834 PMCID: PMC6485532 DOI: 10.1038/ncb3134] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/12/2015] [Indexed: 12/15/2022]
Abstract
When cells move using integrin-based focal adhesions, they pull in the direction of motion with large, ~100 Pa, stresses that contract the substrate1. Integrin-mediated adhesions, however, are not required for in vivo confined migration2. During focal adhesion-free migration, the transmission of propelling forces, and their magnitude and orientation, are not understood. Here, we combine theory and experiments to investigate the forces involved in adhesion-free migration. Using a non-adherent blebbing cell line as a model, we show that actin cortex flows drive cell movement via non-specific substrate friction. Strikingly, the forces propelling the cell forward are several orders of magnitude lower than during focal adhesion-based motility. Moreover, the force distribution in adhesion-free migration is inverted: it acts to expand, rather than contract, the substrate in the direction of motion. This fundamentally different mode of force transmission may have implications for cell-cell and cell-substrate interactions during migration in vivo.
Collapse
|
25
|
Karimi A, Karig D, Kumar A, Ardekani AM. Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. LAB ON A CHIP 2015; 15:23-42. [PMID: 25385289 PMCID: PMC4261921 DOI: 10.1039/c4lc01095g] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacteria in natural and artificial environments often reside in self-organized, integrated communities known as biofilms. Biofilms are highly structured entities consisting of bacterial cells embedded in a matrix of self-produced extracellular polymeric substances (EPS). The EPS matrix acts like a biological 'glue' enabling microbes to adhere to and colonize a wide range of surfaces. Once integrated into biofilms, bacterial cells can withstand various forms of stress such as antibiotics, hydrodynamic shear and other environmental challenges. Because of this, biofilms of pathogenic bacteria can be a significant health hazard often leading to recurrent infections. Biofilms can also lead to clogging and material degradation; on the other hand they are an integral part of various environmental processes such as carbon sequestration and nitrogen cycles. There are several determinants of biofilm morphology and dynamics, including the genotypic and phenotypic states of constituent cells and various environmental conditions. Here, we present an overview of the role of relevant physical processes in biofilm formation, including propulsion mechanisms, hydrodynamic effects, and transport of quorum sensing signals. We also provide a survey of microfluidic techniques utilized to unravel the associated physical mechanisms. Further, we discuss the future research areas for exploring new ways to extend the scope of the microfluidic approach in biofilm studies.
Collapse
Affiliation(s)
- A. Karimi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - D. Karig
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723
| | - A. Kumar
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada AB T6G 2G8
| | - A. M. Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Ahmad IL, Ahmad MR. Trends in characterizing single cell's stiffness properties. MICRO AND NANO SYSTEMS LETTERS 2014. [DOI: 10.1186/s40486-014-0008-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Yamada A, Lee S, Bassereau P, Baroud CN. Trapping and release of giant unilamellar vesicles in microfluidic wells. SOFT MATTER 2014; 10:5878-85. [PMID: 24930637 DOI: 10.1039/c4sm00065j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe the trapping and release of giant unilamellar vesicles (GUVs) in a thin and wide microfluidic channel, as they cross indentations etched in the channel ceiling. This trapping results from the reduction of the membrane elastic energy, which is stored in the GUV as it squeezes to enter into the thin channel. We demonstrate that GUVs whose diameter is slightly larger than the channel height can be trapped and that they can be untrapped by flowing the outer fluid beyond a critical velocity. GUVs smaller than the channel height flow undisturbed while those much larger cannot squeeze into the thin regions. Within the range that allows trapping, larger GUVs are anchored more strongly than smaller GUVs. The ability to trap vesicles provides optical access to the GUVs for extended periods of time; this allows the observation of recirculation flows on the surface of the GUVs, in the forward direction near the mid-plane of the channel and in the reverse direction elsewhere. We also obtain the shape of GUVs under different flow conditions through confocal microscopy. This geometric information is used to derive a mechanical model of the force balance that equates the viscous effects from the outer flow with the elastic effects based on the variation of the membrane stretching energy. This model yields good agreement with the experimental data when values of the stretching moduli are taken from the scientific literature. This microfluidic approach provides a new way of storing a large number of GUVs at specific locations, with or without the presence of an outer flow. As such, it constitutes a high-throughput alternative to micropipette manipulation of individual GUVs for chemical or biological applications.
Collapse
Affiliation(s)
- Ayako Yamada
- Institut Curie, Centre de Recherche; CNRS, UMR168; Université Pierre et Marie Curie; Labex CelTisPhyBio and Paris Sciences et Lettres, F-75248 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
28
|
Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H. Microfluidic analysis of red blood cell deformability. J Biomech 2014; 47:1767-76. [DOI: 10.1016/j.jbiomech.2014.03.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/28/2023]
|
29
|
Kang YJ, Yeom E, Seo E, Lee SJ. Bubble-free and pulse-free fluid delivery into microfluidic devices. BIOMICROFLUIDICS 2014; 8:014102. [PMID: 24753723 PMCID: PMC3982455 DOI: 10.1063/1.4863355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/15/2014] [Indexed: 05/26/2023]
Abstract
The bubble-free and pulse-free fluid delivery is critical to reliable operation of microfluidic devices. In this study, we propose a new method for stable bubble-free and pulse-free fluid delivery in a microfluidic device. Gas bubbles are separated from liquid by using the density difference between liquid and gas in a closed cavity. The pulsatile flow caused by a peristaltic pump is stabilized via gas compressibility. To demonstrate the proposed method, a fluidic chamber which is composed of two needles for inlet and outlet, one needle for a pinch valve and a closed cavity is carefully designed. By manipulating the opening or closing of the pinch valve, fluids fill up the fluidic chamber or are delivered into a microfluidic device through the fluidic chamber in a bubble-free and pulse-free manner. The performance of the proposed method in bubble-free and pulse-free fluid delivery is quantitatively evaluated. The proposed method is then applied to monitor the temporal variations of fluidic flows of rat blood circulating within a complex fluidic network including a rat, a pinch valve, a reservoir, a peristaltic pump, and the microfluidic device. In addition, the deformability of red blood cells and platelet aggregation are quantitatively evaluated from the information on the temporal variations of blood flows in the microfluidic device. These experimental demonstrations confirm that the proposed method is a promising tool for stable, bubble-free, and pulse-free supply of fluids, including whole blood, into a microfluidic device. Furthermore, the proposed method will be used to quantify the biophysical properties of blood circulating within an extracorporeal bypass loop of animal models.
Collapse
Affiliation(s)
- Yang Jun Kang
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea ; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Eunseok Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea ; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
30
|
Mbaye S, Séchet P, Pignon F, Martins JMF. Influence of hydrodynamics on the growth kinetics of glass-adhering Pseudomonas putida cells through a parallel plate flow chamber. BIOMICROFLUIDICS 2013; 7:54105. [PMID: 24404068 PMCID: PMC3785520 DOI: 10.1063/1.4821244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/01/2013] [Indexed: 05/28/2023]
Abstract
The objective of this work was to investigate the influence of hydrodynamics on the growth kinetics of surface-adhering Pseudomonas putida cells. The results showed in particular that under non substrate-limiting conditions, the early step of bacterial apparent growth rate is lower than those measured with suspended cells. Contrary to previously cited authors which explain this behavior to the different adhesive properties of the "daughter"-cells (which makes more probable the detachment of these daughter-cells), in our experimental conditions, that explanation does not hold and we show a clear dependence of growth kinetics with flow conditions, due to the formation of boundary layer concentration at low Reynolds number. These results revealed that using Monod law in the modeling of biofilm growth in fixed-biomass processes should be performed with care.
Collapse
Affiliation(s)
- S Mbaye
- Laboratoire d'Ecoulements Géophysiques et Industriels, UMR 5519 CNRS, Grenoble INP, Université Joseph Fourier, BP 53 F-38041 Grenoble Cedex 9, France ; Laboratoire Rhéologie et Procédés, UMR 5520 CNRS, Université Joseph Fourier, Grenoble INP, BP 53 F-38041 Grenoble Cedex 9, France
| | - P Séchet
- Laboratoire d'Ecoulements Géophysiques et Industriels, UMR 5519 CNRS, Grenoble INP, Université Joseph Fourier, BP 53 F-38041 Grenoble Cedex 9, France
| | - F Pignon
- Laboratoire Rhéologie et Procédés, UMR 5520 CNRS, Université Joseph Fourier, Grenoble INP, BP 53 F-38041 Grenoble Cedex 9, France
| | - J M F Martins
- Laboratoire d'étude des Transferts en Hydrologie et Environnement, UMR 5519 CNRS-INSU, Grenoble INP, IRD, Université Joseph Fourier Grenoble, BP53 F-38041 Grenoble Cedex 9, France
| |
Collapse
|
31
|
Wu T, Feng JJ. Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. BIOMICROFLUIDICS 2013; 7:44115. [PMID: 24404048 PMCID: PMC3751956 DOI: 10.1063/1.4817959] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/26/2013] [Indexed: 05/12/2023]
Abstract
Malaria-infected red blood cells (iRBCs) become less deformable with the progression of infection and tend to occlude microcapillaries. This process has been investigated in vitro using microfluidic channels. The objective of this paper is to provide a quantitative basis for interpreting the experimental observations of iRBC occlusion of microfluidic channels. Using a particle-based model for the iRBC, we simulate the traverse of iRBCs through a converging microfluidic channel and explore the progressive loss of cell deformability due to three factors: the stiffening of the membrane, the reduction of the cell's surface-volume ratio, and the growing solid parasites inside the cell. When examined individually, each factor tends to hinder the passage of the iRBC and lengthen the transit time. Moreover, at sufficient magnitude, each may lead to obstruction of narrow microfluidic channels. We then integrate the three factors into a series of simulations that mimic the development of malaria infection through the ring, trophozoite, and schizont stages. These simulations successfully reproduce the experimental observation that with progression of infection, the iRBC transitions from passage to blockage in larger and larger channels. The numerical results suggest a scheme for quantifying iRBC rigidification through microfluidic measurements of the critical pressure required for passage.
Collapse
Affiliation(s)
- Tenghu Wu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada ; Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| |
Collapse
|