1
|
Rehel DA, Polson JM. Equilibrium behaviour of two cavity-confined polymers: effects of polymer width and system asymmetries. SOFT MATTER 2023; 19:1092-1108. [PMID: 36625101 DOI: 10.1039/d2sm01413k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Experiments using nanofluidic devices have proven effective in characterizing the physical properties of polymers confined to small cavities. Two recent studies using such methods examined the organization and dynamics of two DNA molecules in box-like cavities with strong confinement in one direction and with square and elliptical cross sections in the lateral plane. Motivated by these experiments, we employ Monte Carlo and Brownian dynamics simulations to study the physical behaviour of two polymers confined to small cavities with shapes comparable to those used in the experiments. We quantify the effects of varying the following polymer properties and confinement dimensions on the organization and dynamics of the polymers: the polymer width, the polymer contour length ratio, the cavity cross-sectional area, and the degree of cavity elongation for cavities with rectangular and elliptical cross sections. We find that the tendency for polymers to segregate is enhanced by increasing polymer width. For sufficiently small cavities, increasing cavity elongation promotes segregation and localization of identical polymers to opposite sides of the cavity along its long axis. A free-energy barrier controls the rate of polymers swapping positions, and the observed dynamics are roughly in accord with predictions of a simple theoretical model. Increasing the contour length difference between polymers significantly affects their organization in the cavity. In the case of a large linear polymer co-trapped with a small ring polymer in an elliptical cavity, the small polymer tends to lie near the lateral confining walls, and especially at the cavity poles for highly elongated ellipses.
Collapse
Affiliation(s)
- Desiree A Rehel
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, C1A 4P3, Canada.
| | - James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, C1A 4P3, Canada.
| |
Collapse
|
2
|
Knot Factories with Helical Geometry Enhance Knotting and Induce Handedness to Knots. Polymers (Basel) 2022; 14:polym14194201. [PMID: 36236148 PMCID: PMC9572405 DOI: 10.3390/polym14194201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
We performed molecular dynamics simulations of DNA polymer chains confined in helical nano-channels under compression in order to explore the potential of knot-factories with helical geometry to produce knots with a preferred handedness. In our simulations, we explore mutual effect of the confinement strength and compressive forces in a range covering weak, intermediate and strong confinement together with weak and strong compressive forces. The results find that while the common metrics of polymer chain in cylindrical and helical channels are very similar, the DNA in helical channels exhibits greatly different topology in terms of chain knottedness, writhe and handedness of knots. The results show that knots with a preferred chirality in terms of average writhe can be produced by using channels with a chosen handedness.
Collapse
|
3
|
Taylor MP. Confinement free energy for a polymer chain: Corrections to scaling. J Chem Phys 2022; 157:094902. [PMID: 36075705 DOI: 10.1063/5.0105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spatial confinement of a polymer chain results in a reduction of conformational entropy. For confinement of a flexible N-mer chain in a planar slit or cylindrical pore (confining dimension D), a blob model analysis predicts the asymptotic scaling behavior ΔF/N ∼ D-γ with γ ≈ 1.70, where ΔF is the free energy increase due to confinement. Here, we extend this scaling analysis to include the variation of local monomer density upon confinement giving ΔF/N ∼ D-γ(1 - h(N, D)), where the correction-to-scaling term has the form h ∼ Dy/NΔ with exponents y = 3 - γ ≈ 1.30 and Δ = 3/γ - 1 ≈ 0.76. To test these scaling predictions, we carry out Wang-Landau simulations of confined and unconfined tangent-hard-sphere chains (bead diameter σ) in the presence of a square-well trapping potential. The fully trapped chain provides a common reference state, allowing for an absolute determination of the confinement free energy. Our simulation results for 32 ≤ N ≤ 1024 and 3 ≤ D/σ ≤ 14 are well-described by the extended scaling relation giving exponents of γ = 1.69(1), y = 1.25(2), and Δ = 0.75(6).
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| |
Collapse
|
4
|
Rusková R, Račko D. Channels with Helical Modulation Display Stereospecific Sensitivity for Chiral Superstructures. Polymers (Basel) 2021; 13:3726. [PMID: 34771282 PMCID: PMC8588256 DOI: 10.3390/polym13213726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023] Open
Abstract
By means of coarse-grained molecular dynamics simulations, we explore chiral sensitivity of confining spaces modelled as helical channels to chiral superstructures represented by polymer knots. The simulations show that helical channels exhibit stereosensitivity to chiral knots localized on linear chains by effect of external pulling force and also to knots embedded on circular chains. The magnitude of the stereoselective effect is stronger for torus knots, the effect is weaker in the case of twist knots, and amphichiral knots do exhibit no chiral effects. The magnitude of the effect can be tuned by the so-far investigated radius of the helix, the pitch of the helix and the strength of the pulling force. The model is aimed to simulate and address a range of practical situations that may occur in experimental settings such as designing of nanotechnological devices for the detection of topological state of molecules, preparation of new gels with tailor made stereoselective properties, or diffusion of knotted DNA in biological conditions.
Collapse
Affiliation(s)
- Renáta Rusková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
- Department of Plastics, Rubber and Fibres (IPM FCFT), Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Dušan Račko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
| |
Collapse
|
5
|
Polson JM, Rehel DA. Equilibrium organization, conformation, and dynamics of two polymers under box-like confinement. SOFT MATTER 2021; 17:5792-5805. [PMID: 34028486 DOI: 10.1039/d1sm00308a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Motivated by recent nanofluidics experiments, we use Brownian dynamics and Monte Carlo simulations to study the conformation, organization and dynamics of two polymer chains confined to a single box-like cavity. The polymers are modeled as flexible bead-spring chains, and the box has a square cross-section of side length L and a height that is small enough to compress the polymers in that dimension. For sufficiently large L, the system behaviour approaches that of an isolated polymer in a slit. However, the combined effects of crowding and confinement on the polymer organization, conformation and equilibrium dynamics become significant when where is the transverse radius of gyration for a slit geometry. In this regime, the centre-of-mass probability distribution in the transverse plane exhibits a depletion zone near the centre of the cavity (except at very small L) and a 4-fold symmetry with quasi-discrete positions. Reduction in polymer size with decreasing L arises principally from confinement rather than inter-polymer crowding. By contrast, polymer diffusion and internal motion are strongly affected by inter-polymer crowding. The two polymers tend to occupy opposite positions relative to the box centre, about which they diffuse relatively freely. Qualitatively, this static and dynamical behaviour differs significantly from that previously observed for confinement of two polymers to a narrow channel. The simulation results for a suitably chosen box width are qualitatively consistent with results from a recent experimental study of two λ-DNA chains confined to a nanofluidic cavity.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada.
| | - Desiree A Rehel
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada.
| |
Collapse
|
6
|
Polson JM, Zhu Q. Free energy and segregation dynamics of two channel-confined polymers of different lengths. Phys Rev E 2021; 103:012501. [PMID: 33601524 DOI: 10.1103/physreve.103.012501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Polymers confined to a narrow channel are subject to strong entropic forces that tend to drive the molecules apart. In this study, we use Monte Carlo computer simulations to study the segregation behavior of two flexible hard-sphere polymers under confinement in a cylindrical channel. We focus on the effects of using polymers of different lengths. We measure the variation of the conformational free energy, F, with the center-of-mass separation distance, λ. The simulations reveal four different separation regimes, characterized by different scaling properties of the free energy with respect to the polymer lengths and the channel diameter, D. We propose a regime map in which the state of the system is determined by the values of the quantities N_{2}/N_{1} and λ/(N_{1}+N_{2})D^{-β}, where N_{1} and N_{2} are the polymer lengths, and where β≈0.64. The observed scaling behavior of F(λ) in each regime is in reasonable agreement with predictions using a simple theoretical model. In addition, we use MC dynamics simulations to study the segregation dynamics of initially overlapping polymers by measurement of the incremental mean first-passage time with respect to λ. For systems characterized by a wide range of λ in which a short polymer is nested within a longer one, the segregation dynamics are close to that expected for two noninteracting one-dimensional random walkers undergoing unbiased diffusion. When the free-energy gradient is large, segregation is rapid and characterized by out-of-equilibrium effects.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Qinxin Zhu
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
7
|
Affiliation(s)
- W. Nowicki
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Du Y, Jiang H, Hou Z. Polymer segregation in cylindrical confinement revisited: A three-dimensional free energy landscape. J Chem Phys 2018; 149:244906. [DOI: 10.1063/1.5078419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yunfei Du
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Capaldi X, Liu Z, Zhang Y, Zeng L, Reyes-Lamothe R, Reisner W. Probing the organization and dynamics of two DNA chains trapped in a nanofluidic cavity. SOFT MATTER 2018; 14:8455-8465. [PMID: 30187055 DOI: 10.1039/c8sm01444b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here we present a pneumatically-actuated nanofluidic platform that has the capability of dynamically controlling the confinement environment of macromolecules in solution. Using a principle familiar from classic devices based on soft-lithography, the system uses pneumatic pressure to deflect a thin nitride lid into a nanoslit, confining molecules in an array of cavities embedded in the slit. We use this system to quantify the interactions of multiple confined DNA chains, a key problem in polymer physics with important implications for nanofluidic device performance and DNA partitioning/organization in bacteria and the eukaryotes. In particular, we focus on the problem of two-chain confinement, using differential staining of the chains to independently assess the chain conformation, determine the degree of partitioning/mixing in the cavities and assess coupled diffusion of the chain center-of-mass positions. We find that confinement of more than one chain in the cavity can have a drastic impact on the polymer dynamics and conformation.
Collapse
Affiliation(s)
- Xavier Capaldi
- Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada.
| | - Zezhou Liu
- Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada.
| | - Yuning Zhang
- Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada.
| | - Lili Zeng
- Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada.
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 33649 Sir William Osler, Montreal, Quebec H3G 0B1, Canada
| | - Walter Reisner
- Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8, Canada.
| |
Collapse
|
10
|
Polson JM, Kerry DRM. Segregation of polymers under cylindrical confinement: effects of polymer topology and crowding. SOFT MATTER 2018; 14:6360-6373. [PMID: 30028460 DOI: 10.1039/c8sm01062e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monte Carlo computer simulations are used to study the segregation behaviour of two polymers under cylindrical confinement. Using a multiple-histogram method, the conformational free energy, F, of the polymers was measured as a function of the centre-of-mass separation distance, λ. We examined the scaling of the free energy functions with the polymer length, the length and diameter of the confining cylinder, the polymer topology (i.e. linear vs. ring polymers), and the packing fraction and size of mobile crowding agents. In the absence of crowders, the observed scaling of F(λ) is similar to that predicted using a simple model employing the de Gennes blob model and the approximation that the free energy of overlapping chains in a tube is equal to that of two isolated chains each in a tube of half the cross-sectional area. Simulations were used to test the latter approximation and reveal that it yields poor quantitative predictions. This, along with generic finite-size effects, likely gives rise to the discrepancies between the predicted and measured values of scaling exponents for F(λ). For segregation in the presence of crowding agents, the free energy barrier generally decreases with increasing crowder packing fraction, thus reducing the entropic forces driving segregation. However, for fixed packing fraction, the barrier increases as the crowder/monomer size ratio decreases.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada.
| | | |
Collapse
|
11
|
Bleha T, Cifra P. Stretching and compression of DNA by external forces under nanochannel confinement. SOFT MATTER 2018; 14:1247-1259. [PMID: 29363709 DOI: 10.1039/c7sm02413d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mechanical deformation of dsDNA molecules inside square nanochannels is investigated using simulations based on a coarse-grained model of DNA. The combined action of confinement and weak external forces is explored in a variety of confinement regimes, including the transition zone relevant to nanofluidic experiments. The computed free energy and force profiles are markedly affected by the channel size. Effective elastic softening of confined DNA molecules relative to the bulk DNA is observed in the channels of intermediate widths. The extension of DNA from its bulk equilibrium length in nanofluidic devices is resolved into contributions from the passive extension due to confinement and from the active stretching induced by force. Potential implications of the very different energy costs computed for the two extension modes (extension by confinement takes much more free energy than stretching by force) for behavior of DNA in nanofluidic chips are indicated.
Collapse
Affiliation(s)
- Tomáš Bleha
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia.
| | | |
Collapse
|
12
|
Polson JM, Tremblett AF, McLure ZRN. Free Energy of a Folded Polymer under Cylindrical Confinement. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Aidan F. Tremblett
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Zakary R. N. McLure
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
13
|
Benková Z, Rišpanová L, Cifra P. Effect of chain stiffness for semiflexible macromolecules in array of cylindrical nanoposts. J Chem Phys 2017; 147:134907. [DOI: 10.1063/1.4991649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Zuzana Benková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4168-007 Porto, Portugal
| | - Lucia Rišpanová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Peter Cifra
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
14
|
Racko D, Benedetti F, Dorier J, Burnier Y, Stasiak A. Molecular Dynamics Simulation of Supercoiled, Knotted, and Catenated DNA Molecules, Including Modeling of Action of DNA Gyrase. Methods Mol Biol 2017; 1624:339-372. [PMID: 28842894 DOI: 10.1007/978-1-4939-7098-8_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A detailed protocol of molecular dynamics simulations of supercoiled DNA molecules that can be in addition knotted or catenated is described. We also describe how to model ongoing action of DNA gyrase that introduces negative supercoing into DNA molecules. The protocols provide detailed instructions about model parameters, equations of used potentials, simulation, and visualization. Implementation of the model into a frequently used molecular dynamics simulation environment, ESPResSo, is shown step by step.
Collapse
Affiliation(s)
- Dusan Racko
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
- SIB Swiss Institute for Bioinformatics, 1015, Lausanne, Switzerland.
- Polymer Institute of the Slovak Academy of Sciences, 842 36, Bratislava, Slovak Republic.
| | - Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute for Bioinformatics, 1015, Lausanne, Switzerland
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute for Bioinformatics, 1015, Lausanne, Switzerland
| | - Yannis Burnier
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
- Institute of Theoretical Physics, Ecole Polytechnique Federal de Lausanne, 1015, Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Dai L, Renner CB, Doyle PS. The polymer physics of single DNA confined in nanochannels. Adv Colloid Interface Sci 2016; 232:80-100. [PMID: 26782150 DOI: 10.1016/j.cis.2015.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given.
Collapse
Affiliation(s)
- Liang Dai
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Singapore
| | - C Benjamin Renner
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, United States
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, United States.
| |
Collapse
|
16
|
Xu Z, Wang C, Sheng N, Hu G, Zhou Z, Fang H. Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field. J Chem Phys 2016; 144:014302. [PMID: 26747801 DOI: 10.1063/1.4939151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.
Collapse
Affiliation(s)
- Zhen Xu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunlei Wang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Nan Sheng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guohui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Zhewei Zhou
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
17
|
Chen Y, Yu W, Wang J, Luo K. Polymer segregation under confinement: Influences of macromolecular crowding and the interaction between the polymer and crowders. J Chem Phys 2015; 143:134904. [DOI: 10.1063/1.4932370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yuhao Chen
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Jiajun Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| |
Collapse
|
18
|
Affiliation(s)
- Elena Minina
- Institute for Computational
Physics, University of Stuttgart, Stuttgart, Germany
| | - Axel Arnold
- Institute for Computational
Physics, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
19
|
Racko D, Benedetti F, Dorier J, Burnier Y, Stasiak A. Generation of supercoils in nicked and gapped DNA drives DNA unknotting and postreplicative decatenation. Nucleic Acids Res 2015; 43:7229-36. [PMID: 26150424 PMCID: PMC4551925 DOI: 10.1093/nar/gkv683] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023] Open
Abstract
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA–DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.
Collapse
Affiliation(s)
- Dusan Racko
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland Polymer Institute of the Slovak Academy of Sciences, 842 36 Bratislava, Slovakia
| | - Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland Vital-IT, SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
| | - Yannis Burnier
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015-Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
| |
Collapse
|
20
|
Račko D, Cifra P. Arm retraction and escape transition in semi-flexible star polymer under cylindrical confinement. J Mol Model 2015; 21:186. [DOI: 10.1007/s00894-015-2735-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022]
|
21
|
Ha BY, Jung Y. Polymers under confinement: single polymers, how they interact, and as model chromosomes. SOFT MATTER 2015; 11:2333-2352. [PMID: 25710099 DOI: 10.1039/c4sm02734e] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
How confinement or a physical constraint modifies polymer chains is not only a classical problem in polymer physics but also relevant in a variety of contexts such as single-molecule manipulations, nanofabrication in narrow pores, and modelling of chromosome organization. Here, we review recent progress in our understanding of polymers in a confined (and crowded) space. To this end, we highlight converging views of these systems from computational, experimental, and theoretical approaches, and then clarify what remains to be clarified. In particular, we focus on exploring how cylindrical confinement reshapes individual chains and induces segregation forces between them - by pointing to the relationships between intra-chain organization and chain segregation. In the presence of crowders, chain molecules can be entropically phase-separated into a condensed state. We include a kernel of discussions on the nature of chain compaction by crowders, especially in a confined space. Finally, we discuss the relevance of confined polymers for the nucleoid, an intracellular space in which the bacterial chromosome is tightly packed, in part by cytoplasmic crowders.
Collapse
Affiliation(s)
- Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | |
Collapse
|
22
|
Polson JM, Montgomery LG. Polymer segregation under confinement: Free energy calculations and segregation dynamics simulations. J Chem Phys 2014; 141:164902. [DOI: 10.1063/1.4898714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Logan G. Montgomery
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
23
|
Roushan M, Kaur P, Karpusenko A, Countryman PJ, Ortiz CP, Fang Lim S, Wang H, Riehn R. Probing transient protein-mediated DNA linkages using nanoconfinement. BIOMICROFLUIDICS 2014; 8:034113. [PMID: 25379073 PMCID: PMC4162420 DOI: 10.1063/1.4882775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/30/2014] [Indexed: 05/16/2023]
Abstract
We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNApolymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches.
Collapse
Affiliation(s)
- Maedeh Roushan
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Parminder Kaur
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Alena Karpusenko
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | | | - Carlos P Ortiz
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Shuang Fang Lim
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Hong Wang
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Robert Riehn
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| |
Collapse
|