1
|
Hattori S, Zhu Q. Revisiting Aspirin Polymorphic Stability Using a Machine Learning Potential. ACS OMEGA 2024; 9:36589-36599. [PMID: 39220495 PMCID: PMC11360032 DOI: 10.1021/acsomega.4c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
In this study, we present a systematic computational investigation to analyze the long-debated free energy stability of two well-known aspirin polymorphs, denoted as Form I and Form II. Specifically, we developed a strategy to collect training configurations covering diverse interatomic interactions between representative functional groups in aspirin crystals. Utilizing a state-of-the-art neural network interatomic potential (NNIP) model, we trained an accurate machine learning potential to simulate aspirin crystal dynamics under finite temperature conditions with ∼0.46 kJ/mol/molecule accuracy. Employing the trained NNIP model, we performed thermodynamic integration to assess the free energy difference between aspirins I and II, accounting for the anharmonic effects in a large supercell consisting of 512 molecules. For the first time, our results convincingly demonstrated that Form I is more stable than Form II at 300 K, ranging from 0.74 to 1.83 kJ/mol/molecule, aligning with experimental observations. Unlike the majority of previous simulations based on (quasi)harmonic approximations in a small super cell, which often found degenerate energies between aspirins I and II, our findings underscore the importance of anharmonic effects in determining polymorphic stability ranking. Furthermore, we proposed the use of the rotational degrees of freedom of methyl and ester/phenyl groups in aspirin crystals as characteristic motions to highlight rotational entropic contribution that favors the stability of Form I. From the structural perspective, we also found that the subtle free energy difference can be used to explain the distinct thermal expansion responses as observed in both experimental and simulation data. Beyond the aspirin polymorphism, we anticipate that such entropy-driven stabilization can be broadly applicable to many other organic systems, suggesting that our approach holds great promise for stability studies in small-molecule drug design.
Collapse
Affiliation(s)
- Shinnosuke Hattori
- Advanced
Research Laboratory, Research Platform, Sony Group Corporation, 4−14−1 Asahi-cho, Atsugi-shi 243−0014, Japan
| | - Qiang Zhu
- Department
of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
2
|
Červinka C, Štejfa V. Sublimation Properties of α,ω-Diamines Revisited from First-Principles Calculations. Chemphyschem 2020; 21:1184-1194. [PMID: 32243713 DOI: 10.1002/cphc.202000108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Indexed: 11/06/2022]
Abstract
Sublimation enthalpies of alkane-α,ω-diamines exhibit an odd-even pattern within their homologous series. First-principles calculations coupled with the quasi-harmonic approximation for crystals and with the conformation mixing model for the ideal gas are used to explain this phenomenon from the theoretical point of view. Crystals of the odd and even alkane-α,ω-diamines distinctly differ in their packing motifs. However, first-principles calculations indicate that it is a delicate interplay of the cohesive forces, phonons, molecular vibrations and conformational equilibrium which governs the odd-even pattern of the sublimation enthalpies within the homologous series. High molecular flexibility of the alkane-α,ω-diamines predetermines higher sensitivity of the computational model to the quality of the optimized geometries and relative conformational energies. Performance of high-throughput computational methods, such as the density functional tight binding (DFTB, GFN2-xTB) and the explicitly correlated dispersion-corrected Møller-Plesset perturbative method (MP2C-F12), are benchmarked against the consistent state-of-the-art calculations of conformational energies and interaction energies, respectively.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Vojtěch Štejfa
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
3
|
Nguyen BD, Chen GP, Agee MM, Burow AM, Tang MP, Furche F. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. J Chem Theory Comput 2020; 16:2258-2273. [DOI: 10.1021/acs.jctc.9b01176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Brian D. Nguyen
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Guo P. Chen
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Matthew M. Agee
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Asbjörn M. Burow
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Matthew P. Tang
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- University of California, Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
4
|
Lao KU, Herbert JM. A Simple Correction for Nonadditive Dispersion within Extended Symmetry-Adapted Perturbation Theory (XSAPT). J Chem Theory Comput 2018; 14:5128-5142. [DOI: 10.1021/acs.jctc.8b00527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Lao KU, Herbert JM. Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes. J Chem Theory Comput 2018; 14:2955-2978. [DOI: 10.1021/acs.jctc.8b00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Parrish RM, Thompson KC, Martínez TJ. Large-Scale Functional Group Symmetry-Adapted Perturbation Theory on Graphical Processing Units. J Chem Theory Comput 2018; 14:1737-1753. [DOI: 10.1021/acs.jctc.7b01053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert M. Parrish
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Keiran C. Thompson
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
McKinley JL, Beran GJO. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discuss 2018; 211:181-207. [PMID: 30027972 DOI: 10.1039/c8fd00048d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Quasi-harmonic approaches provide an economical route to modeling the temperature dependence of molecular crystal structures and properties. Several studies have demonstrated good performance of these models, at least for rigid molecules, when using fragment-based approaches with correlated wavefunction techniques. Many others have found success employing dispersion-corrected density functional theory (DFT). Here, a hierarchy of models in which the energies, geometries, and phonons are computed either with correlated methods or DFT are examined to identify which combinations produce useful predictions for properties such as the molar volume, enthalpy, and entropy as a function of temperature. The results demonstrate that refining DFT geometries and phonons with single-point energies based on dispersion-corrected second-order Møller-Plesset perturbation theory can provide clear improvements in the molar volumes and enthalpies compared to those obtained from DFT alone. Predicted entropies, which are governed by vibrational contributions, benefit less clearly from the hybrid schemes. Using these hybrid techniques, the room-temperature thermochemistry of acetaminophen (paracetamol) is predicted to address the discrepancy between two experimental sublimation enthalpy measurements.
Collapse
Affiliation(s)
- Jessica L McKinley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
8
|
Aina AA, Misquitta AJ, Price SL. From dimers to the solid-state: Distributed intermolecular force-fields for pyridine. J Chem Phys 2017; 147:161722. [DOI: 10.1063/1.4999789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander A. Aina
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Alston J. Misquitta
- School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Sarah L. Price
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
9
|
Červinka C, Fulem M. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty. J Chem Theory Comput 2017; 13:2840-2850. [PMID: 28437618 DOI: 10.1021/acs.jctc.7b00164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational methodology for calculation of sublimation enthalpies of molecular crystals from first principles is developed and validated by comparison to critically evaluated literature experimental data. Temperature-dependent sublimation enthalpies for a set of selected 22 molecular crystals in their low-temperature phases are calculated. The computational methodology consists of several building blocks based on high-level electronic structure methods of quantum chemistry and statistical thermodynamics. Ab initio methods up to the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction with an estimated complete basis set description [CCSD(T)/CBS] are used to calculate the cohesive energies of crystalline phases within a fragment-based additive scheme. Density functional theory (DFT) calculations with periodic boundary conditions (PBC) coupled with the quasi-harmonic approximation are used to evaluate the thermal contributions to the enthalpy of the solid phase. The properties of the vapor phase are calculated within the ideal-gas model using the rigid-rotor harmonic-oscillator model with correction for internal rotation using a one-dimensional hindered rotor approximation and a proper treatment of the molecular rotational degrees of freedom in the vicinity of 0 K. All individual terms contributing to the sublimation enthalpy as a function of temperature are discussed and their uncertainties estimated by comparison to critically evaluated experimental data.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology , Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology , Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| |
Collapse
|
10
|
Červinka C, Beran GJO. Ab initio thermodynamic properties and their uncertainties for crystalline α-methanol. Phys Chem Chem Phys 2017; 19:29940-29953. [DOI: 10.1039/c7cp06605h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the performance of quasi-harmonic electronic structure methods for modeling molecular crystals at finite temperatures and pressures, thermodynamic properties are calculated for the low-temperature α polymorph of crystalline methanol and their computational uncertainties are analyzed.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry
- University of Chemistry and Technology Prague
- CZ-166 28 Prague 6
- Czech Republic
| | | |
Collapse
|
11
|
Tan SYS, Wylie L, Begic I, Tran D, Izgorodina EI. Application of spin-ratio scaled MP2 for the prediction of intermolecular interactions in chemical systems. Phys Chem Chem Phys 2017; 19:28936-28942. [DOI: 10.1039/c7cp04391k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Accurate prediction of intermolecular interactions plays a pivotal role in many areas of chemistry and biology including (but not limited to) the design of pharmaceuticals, solid electrolytes and food additives.
Collapse
Affiliation(s)
| | - Luke Wylie
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Ivan Begic
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Dennis Tran
- School of Chemistry
- Monash University
- Clayton
- Australia
| | | |
Collapse
|
12
|
Klimeš J. Lattice energies of molecular solids from the random phase approximation with singles corrections. J Chem Phys 2016; 145:094506. [DOI: 10.1063/1.4962188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiří Klimeš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague 8, Czech Republic and Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
13
|
Červinka C, Fulem M, Růžička K. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals. J Chem Phys 2016; 144:064505. [PMID: 26874495 DOI: 10.1063/1.4941055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol(-1) on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Květoslav Růžička
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| |
Collapse
|
14
|
Abstract
Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
15
|
Goldey MB, Belzunces B, Head-Gordon M. Attenuated MP2 with a Long-Range Dispersion Correction for Treating Nonbonded Interactions. J Chem Theory Comput 2015; 11:4159-68. [DOI: 10.1021/acs.jctc.5b00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew B. Goldey
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bastien Belzunces
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Burns LA, Marshall MS, Sherrill CD. Appointing silver and bronze standards for noncovalent interactions: a comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. J Chem Phys 2015; 141:234111. [PMID: 25527923 DOI: 10.1063/1.4903765] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracy and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance.
Collapse
Affiliation(s)
- Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Michael S Marshall
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
17
|
Reilly AM, Tkatchenko A. van der Waals dispersion interactions in molecular materials: beyond pairwise additivity. Chem Sci 2015; 6:3289-3301. [PMID: 28757994 PMCID: PMC5514477 DOI: 10.1039/c5sc00410a] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/29/2015] [Indexed: 12/25/2022] Open
Abstract
van der Waals (vdW) dispersion interactions are a key ingredient in the structure, stability, and response properties of many molecular materials and essential for us to be able to understand and design novel intricate molecular systems. Pairwise-additive models of vdW interactions are ubiquitous, but neglect their true quantum-mechanical many-body nature. In this perspective we focus on recent developments and applications of methods that can capture collective and many-body effects in vdW interactions. Highlighting a number of recent studies in this area, we demonstrate both the need for and usefulness of explicit many-body treatments for obtaining qualitative and quantitative accuracy for modelling molecular materials, with applications presented for small-molecule dimers, supramolecular host-guest complexes, and finally stability and polymorphism in molecular crystals.
Collapse
Affiliation(s)
- Anthony M Reilly
- The Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge , CB2 1EZ , UK
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin 14195 , Germany . ; Tel: +49 3084134802
| | - Alexandre Tkatchenko
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin 14195 , Germany . ; Tel: +49 3084134802
| |
Collapse
|
18
|
Parrish RM, Sherrill CD. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition. J Chem Phys 2015; 141:044115. [PMID: 25084889 DOI: 10.1063/1.4889855] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in systems with up to 220 atoms and 2845 basis functions.
Collapse
Affiliation(s)
- Robert M Parrish
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
19
|
Climent-Medina JV, Pérez-Jiménez ÁJ, Moral M, San-Fabián E, Sancho-García JC. Intra- and Intermolecular Dispersion Interactions in [n]Cycloparaphenylenes: Do They Influence Their Structural and Electronic Properties? Chemphyschem 2015; 16:1520-8. [DOI: 10.1002/cphc.201500068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/09/2022]
|
20
|
Matczak P, Wojtulewski S. Performance of Møller-Plesset second-order perturbation theory and density functional theory in predicting the interaction between stannylenes and aromatic molecules. J Mol Model 2015; 21:41. [PMID: 25677452 PMCID: PMC4326664 DOI: 10.1007/s00894-015-2589-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/26/2015] [Indexed: 11/21/2022]
Abstract
The performances of Møller-Plesset second-order perturbation theory (MP2) and density functional theory (DFT) have been assessed for the purposes of investigating the interaction between stannylenes and aromatic molecules. The complexes between SnX2 (where X = H, F, Cl, Br, and I) and benzene or pyridine are considered. Structural and energetic properties of such complexes are calculated using six MP2-type and 14 DFT methods. The assessment of the above-mentioned methods is based on the comparison of the structures and interaction energies predicted by these methods with reference computational data. A very detailed analysis of the performances of the MP2-type and DFT methods is carried out for two complexes, namely SnH2-benzene and SnH2-pyridine. Of the MP2-type methods, the reference structure of SnH2-benzene is reproduced best by SOS-MP2, whereas SCS-MP2 is capable of mimicking the reference structure of SnH2-pyridine with the greatest accuracy. The latter method performs best in predicting the interaction energy between SnH2 and benzene or pyridine. Among the DFT methods, ωB97X provides the structures and interaction energies of the SnH2-benzene and SnH2-pyridine complexes with good accuracy. However, this density functional is not as effective in reproducing the reference data for the two complexes as the best performing MP2-type methods. Next, the DFT methods are evaluated using the full test set of SnX2-benzene and SnX2-pyridine complexes. It is found that the range-separated hybrid or dispersion-corrected density functionals should be used for describing the interaction in such complexes with reasonable accuracy.
Collapse
Affiliation(s)
- Piotr Matczak
- Department of Theoretical and Structural Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236, Lodz, Poland,
| | | |
Collapse
|
21
|
Sancho-García JC, Pérez-Jiménez AJ, Olivier Y. Determining the cohesive energy of coronene by dispersion-corrected DFT methods: Periodic boundary conditions vs. molecular pairs. J Chem Phys 2015; 142:054702. [DOI: 10.1063/1.4907268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. C. Sancho-García
- Departamento de Química Física, Universidad de Alicante, E-03080 Alicante, Spain
| | - A. J. Pérez-Jiménez
- Departamento de Química Física, Universidad de Alicante, E-03080 Alicante, Spain
| | - Y. Olivier
- Laboratory for Chemistry of Novel Materials, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
22
|
Heit Y, Beran GJO. Exploiting space-group symmetry in fragment-based molecular crystal calculations. J Comput Chem 2014; 35:2205-14. [DOI: 10.1002/jcc.23737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/23/2014] [Accepted: 08/31/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Yonaton Heit
- Department of Chemistry; University of California; Riverside California 92521
| | - Gregory J. O. Beran
- Department of Chemistry; University of California; Riverside California 92521
| |
Collapse
|
23
|
|
24
|
Reilly AM, Tkatchenko A. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. PHYSICAL REVIEW LETTERS 2014; 113:055701. [PMID: 25126928 DOI: 10.1103/physrevlett.113.055701] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Indexed: 05/29/2023]
Abstract
Aspirin has been used and studied for over a century but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.
Collapse
Affiliation(s)
- Anthony M Reilly
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Alexandre Tkatchenko
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
25
|
Parrish RM, Hohenstein EG, Sherrill CD. Tractability gains in symmetry-adapted perturbation theory including coupled double excitations: CCD+ST(CCD) dispersion with natural orbital truncations. J Chem Phys 2014; 139:174102. [PMID: 24206282 DOI: 10.1063/1.4826520] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work focuses on efficient and accurate treatment of the intermolecular dispersion interaction using the CCD+ST(CCD) dispersion approach formulated by Williams et al. [J. Chem. Phys. 103, 4586 (1995)]. We apply natural orbital truncation techniques to the solution of the monomer coupled-cluster double (CCD) equations, yielding substantial accelerations in this computationally demanding portion of the SAPT2+(CCD), SAPT2+(3)(CCD), and SAPT2+3(CCD) analyses. It is shown that the wholly rate-limiting dimer-basis particle-particle ladder term can be computed in a reduced natural virtual space which is essentially the same size as the monomer-basis virtual space, with an error on the order of a few thousandths of 1 kcal mol(-1). Coupled with our existing natural orbital techniques for the perturbative triple excitation contributions [E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 104107 (2010)], this technique provides speedups of greater than an order of magnitude for the evaluation of the complete SAPT2+3(CCD) decomposition, with a total error of a few hundredths of 1 kcal mol(-1). The combined approach yields tractability gains of almost 2× in the system size, allowing for SAPT2+3(CCD)/aug-cc-pVTZ analysis to be performed for systems such as adenine-thymine for the first time. Natural orbital based SAPT2+3(CCD)/aug-cc-pVTZ results are presented for stacked and hydrogen-bonded configurations of uracil dimer and the adenine-thymine dimer.
Collapse
Affiliation(s)
- Robert M Parrish
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | |
Collapse
|
26
|
Huang Y, Goldey M, Head-Gordon M, Beran GJO. Achieving High-Accuracy Intermolecular Interactions by Combining Coulomb-Attenuated Second-Order Møller–Plesset Perturbation Theory with Coupled Kohn–Sham Dispersion. J Chem Theory Comput 2014; 10:2054-63. [DOI: 10.1021/ct5002329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuanhang Huang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew Goldey
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gregory J. O. Beran
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
27
|
Goldey M, DiStasio, RA, Shao Y, Head-Gordon M. Shared memory multiprocessing implementation of resolution-of-the-identity second-order Møller–Plesset perturbation theory with attenuated and unattenuated results for intermolecular interactions between large molecules. Mol Phys 2014. [DOI: 10.1080/00268976.2013.869363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Beran GJO, Wen S, Nanda K, Huang Y, Heit Y. Accurate and Robust Molecular Crystal Modeling Using Fragment-Based Electronic Structure Methods. Top Curr Chem (Cham) 2013; 345:59-93. [DOI: 10.1007/128_2013_502] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|