1
|
Hernández-Del-Valle M, Valencia-Expósito A, López-Izquierdo A, Casanova-Ferrer P, Tarazona P, Martín-Bermudo MD, Míguez DG. A coarse-grained approach to model the dynamics of the actomyosin cortex. BMC Biol 2022; 20:90. [PMID: 35459165 PMCID: PMC9034637 DOI: 10.1186/s12915-022-01279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Background The dynamics of the actomyosin machinery is at the core of many important biological processes. Several relevant cellular responses such as the rhythmic compression of the cell cortex are governed, at a mesoscopic level, by the nonlinear interaction between actin monomers, actin crosslinkers, and myosin motors. Coarse-grained models are an optimal tool to study actomyosin systems, since they can include processes that occur at long time and space scales, while maintaining the most relevant features of the molecular interactions. Results Here, we present a coarse-grained model of a two-dimensional actomyosin cortex, adjacent to a three-dimensional cytoplasm. Our simplified model incorporates only well-characterized interactions between actin monomers, actin crosslinkers and myosin, and it is able to reproduce many of the most important aspects of actin filament and actomyosin network formation, such as dynamics of polymerization and depolymerization, treadmilling, network formation, and the autonomous oscillatory dynamics of actomyosin. Conclusions We believe that the present model can be used to study the in vivo response of actomyosin networks to changes in key parameters of the system, such as alterations in the attachment of actin filaments to the cell cortex. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-022-01279-2).
Collapse
Affiliation(s)
- Miguel Hernández-Del-Valle
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - Antonio López-Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pau Casanova-Ferrer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pedro Tarazona
- IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica Teórica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Maria D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
2
|
Nasedkin A, Ermilova I, Swenson J. Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:927-940. [PMID: 34215900 PMCID: PMC8448678 DOI: 10.1007/s00249-021-01553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Microtubules are essential parts of the cytoskeleton that are built by polymerization of tubulin heterodimers into a hollow tube. Regardless that their structures and functions have been comprehensively investigated in a modern soft matter, it is unclear how properties of tubulin heterodimer influence and promote the self-assembly. A detailed knowledge of such structural mechanisms would be helpful in drug design against neurodegenerative diseases, cancer, diabetes etc. In this work atomistic molecular dynamics simulations were used to investigate the fundamental dynamics of tubulin heterodimers in a sheet and a short microtubule utilizing well-equilibrated structures. The breathing motions of the tubulin heterodimers during assembly show that the movement at the lateral interface between heterodimers (wobbling) dominates in the lattice. The simulations of the protofilament curvature agrees well with recently published experimental data, showing curved protofilaments at polymerization of the microtubule plus end. The tubulin heterodimers exposed at the microtubule minus end were less curved and displayed altered interactions at the site of sheet closure around the outmost heterodimers, which may slow heterodimer binding and polymerization, providing a potential explanation for the limited dynamics observed at the minus end.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| |
Collapse
|
3
|
Zha J, Zhang Y, Xia K, Gräter F, Xia F. Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Front Mol Biosci 2021; 7:632122. [PMID: 33659274 PMCID: PMC7917235 DOI: 10.3389/fmolb.2020.632122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Microtubules are one of the most important components in the cytoskeleton and play a vital role in maintaining the shape and function of cells. Because single microtubules are some micrometers long, it is difficult to simulate such a large system using an all-atom model. In this work, we use the newly developed convolutional and K-means coarse-graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single microtubule, on the basis of the low electron microscopy density data of microtubules. We discuss the rationale of the micro-coarse-grained microtubule models of different resolutions and explore microtubule models up to 12-micron length. We use the devised microtubule model to quantify mechanical properties of microtubules of different lengths. Our model allows mesoscopic simulations of micrometer-level biomaterials and can be further used to study important biological processes related to microtubule function.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Frauke Gräter
- Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloβ-Wolfsbrunnenweg 35, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraβe 29, Heidelberg, Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
4
|
Khan MI, Hasan F, Mahmud KAHA, Adnan A. Recent Computational Approaches on Mechanical Behavior of Axonal Cytoskeletal Components of Neuron: A Brief Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42493-020-00043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Belonogov L, Bailey ME, Tyler MA, Kazemi A, Ross JL. Katanin catalyzes microtubule depolymerization independently of tubulin C-terminal tails. Cytoskeleton (Hoboken) 2019; 76:254-268. [PMID: 30980604 PMCID: PMC6618852 DOI: 10.1002/cm.21522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/03/2023]
Abstract
Microtubule network remodeling is an essential process for cell development, maintenance, cell division, and motility. Microtubule‐severing enzymes are key players in the remodeling of the microtubule network; however, there are still open questions about their fundamental biochemical and biophysical mechanisms. Here, we explored the ability of the microtubule‐severing enzyme katanin to depolymerize stabilized microtubules. Interestingly, we found that the tubulin C‐terminal tail (CTT), which is required for severing, is not required for katanin‐catalyzed depolymerization. We also found that the depolymerization of microtubules lacking the CTT does not require ATP or katanin's ATPase activity, although the ATP turnover enhanced depolymerization. We also observed that the depolymerization rate depended on the katanin concentration and was best described by a hyperbolic function. Finally, we demonstrate that katanin can bind to filaments that lack the CTT, contrary to previous reports. The results of our work indicate that microtubule depolymerization likely involves a mechanism in which binding, but not enzymatic activity, is required for tubulin dimer removal from the filament ends.
Collapse
Affiliation(s)
- Liudmila Belonogov
- Department of Physics, University of Massachusetts, Amherst, Massachusetts
| | - Megan E Bailey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Madison A Tyler
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Arianna Kazemi
- Department of Physics, University of Massachusetts, Amherst, Massachusetts
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts, Amherst, Massachusetts.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
6
|
Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 2018; 52:119-126. [PMID: 30508766 DOI: 10.1016/j.sbi.2018.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/05/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023]
Abstract
Recent progress in coarse-grained (CG) molecular modeling and simulation has facilitated an influx of computational studies on biological macromolecules and their complexes. Given the large separation of length-scales and time-scales that dictate macromolecular biophysics, CG modeling and simulation are well-suited to bridge the microscopic and mesoscopic or macroscopic details observed from all-atom molecular simulations and experiments, respectively. In this review, we first summarize recent innovations in the development of CG models, which broadly include structure-based, knowledge-based, and dynamics-based approaches. We then discuss recent applications of different classes of CG models to explore various macromolecular complexes. Finally, we conclude with an outlook for the future in this ever-growing field of biomolecular modeling.
Collapse
|
7
|
Jiang N, Bailey ME, Burke J, Ross JL, Dima RI. Modeling the effects of lattice defects on microtubule breaking and healing. Cytoskeleton (Hoboken) 2017; 74:3-17. [PMID: 27935245 DOI: 10.1002/cm.21346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
Microtubule reorganization often results from the loss of polymer induced through breakage or active destruction by energy-using enzymes. Pre-existing defects in the microtubule lattice likely lower structural integrity and aid filament destruction. Using large-scale molecular simulations, we model diverse microtubule fragments under forces generated at specific positions to locally crush the filament. We show that lattices with 2% defects are crushed and severed by forces three times smaller than defect-free ones. We validate our results with direct comparisons of microtubule kinking angles during severing. We find a high statistical correlation between the angle distributions from experiments and simulations indicating that they sample the same population of structures. Our simulations also indicate that the mechanical environment of the filament affects breaking: local mechanical support inhibits healing after severing, especially in the case of filaments with defects. These results recall reports of microtubule healing after flow-induced bending and corroborate prior experimental studies that show severing is more likely at locations where microtubules crossover in networks. Our results shed new light on mechanisms underlying the ability of microtubules to be destroyed and healed in the cell, either by external forces or by severing enzymes wedging dimers apart. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| | - Megan E Bailey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Jessica Burke
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| | - Jennifer L Ross
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, 01003.,Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| |
Collapse
|
8
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|
9
|
Bailey ME, Jiang N, Dima RI, Ross JL. Invited review: Microtubule severing enzymes couple atpase activity with tubulin GTPase spring loading. Biopolymers 2017; 105:547-56. [PMID: 27037673 DOI: 10.1002/bip.22842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
Abstract
Microtubules are amazing filaments made of GTPase enzymes that store energy used for their own self-destruction to cause a stochastically driven dynamics called dynamic instability. Dynamic instability can be reproduced in vitro with purified tubulin, but the dynamics do not mimic that observed in cells. This is because stabilizers and destabilizers act to alter microtubule dynamics. One interesting and understudied class of destabilizers consists of the microtubule-severing enzymes from the ATPases Associated with various cellular Activities (AAA+) family of ATP-enzymes. Here we review current knowledge about GTP-driven microtubule dynamics and how that couples to ATP-driven destabilization by severing enzymes. We present a list of challenges regarding the mechanism of severing, which require development of experimental and modeling approaches to shed light as to how severing enzymes can act to regulate microtubule dynamics in cells. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 547-556, 2016.
Collapse
Affiliation(s)
- Megan E Bailey
- Department of Physiology and Biophysics, 1705 NE Pacific St., Seattle, WA 98195
| | - Nan Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati OH 45221
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati OH 45221
| | - Jennifer L Ross
- Department of Physics, 666 N. Pleasant St. University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
10
|
Bodmer NK, Theisen KE, Dima RI. Molecular investigations into the mechanics of a muscle anchoring complex. Biophys J 2016; 108:2322-32. [PMID: 25954889 DOI: 10.1016/j.bpj.2015.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/16/2015] [Accepted: 03/13/2015] [Indexed: 11/15/2022] Open
Abstract
The titin-telethonin complex, essential for anchoring filaments in the Z-disk of the sarcomere, is composed of immunoglobulin domains. Surprisingly, atomic force microscopy experiments showed that it resists forces much higher than the typical immunoglobulin domain and that the force distribution is unusually broad. To investigate the origin of this behavior, we developed a multiscale simulation approach, combining minimalist and atomistic models (SOP-AT). By following the mechanical response of the complex on experimental timescales, we found that the mechanical stability of titin-telethonin is modulated primarily by the strength of contacts between telethonin and the two titin chains, and secondarily by the timescales of conformational excursions inside telethonin and the pulled titin domains. Importantly, the conformational transitions executed by telethonin in simulations support its proposed role in mechanosensing. Our SOP-AT computational approach thus provides a powerful tool for the exploration of the link between conformational diversity and the broadness of the mechanical response, which can be applied to other multidomain complexes.
Collapse
Affiliation(s)
| | - Kelly E Theisen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
11
|
Gruebele M, Thirumalai D. Perspective: Reaches of chemical physics in biology. J Chem Phys 2013; 139:121701. [PMID: 24089712 PMCID: PMC5942441 DOI: 10.1063/1.4820139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023] Open
Abstract
Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.
Collapse
Affiliation(s)
- Martin Gruebele
- Departments of Chemistry and Physics, and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|