1
|
El Banna AA, McKenna GB. Challenging the Kauzmann paradox using an ultra-stable perfluoropolymer glass with a fictive temperature below the dynamic VFT temperature. Sci Rep 2023; 13:4224. [PMID: 36918591 PMCID: PMC10014873 DOI: 10.1038/s41598-023-31074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Ultra-stable fluoropolymer glasses were created using vacuum pyrolysis deposition that show large fictive temperature Tf reductions relative to the glass transition temperature Tg of the rejuvenated material. Tf was also found to be 11.4 K below the dynamic VFT temperature TVFT. Glass films with various thickness (200-1150 nm) were deposited onto different temperature substrates. Glassy films were characterized using rapid-chip calorimetry, Fourier-transform infrared spectroscopy and intrinsic viscosity measurements. Large enthalpy overshoots were observed upon heating and a Tf reduction of 62.6 K relative to the Tg of 348 K was observed. This reduction exceeds values reported for a 20-million-year-old amber and another amorphous fluoropolymer and is below the putative Kauzmann temperature TK for the material as related to TVFT. These results challenge the importance of the Kauzmann paradox in glass-formation and illustrates a powerful method for the exploration of material dynamics deep in the glassy state (Tf < T < Tg).
Collapse
Affiliation(s)
| | - Gregory B McKenna
- Texas Tech University, Lubbock, TX, USA. .,North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Berthier L, Ediger MD. How to "measure" a structural relaxation time that is too long to be measured? J Chem Phys 2020; 153:044501. [PMID: 32752666 DOI: 10.1063/5.0015227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has recently become possible to prepare ultrastable glassy materials characterized by structural relaxation times, which vastly exceed the duration of any feasible experiment. Similarly, new algorithms have led to the production of ultrastable computer glasses. Is it possible to obtain a reliable estimate of a structural relaxation time that is too long to be measured? We review, organize, and critically discuss various methods to estimate very long relaxation times. We also perform computer simulations of three dimensional ultrastable hard spheres glasses to test and quantitatively compare some of these methods for a single model system. The various estimation methods disagree significantly, and non-linear and non-equilibrium methods lead to a strong underestimate of the actual relaxation time. It is not yet clear how to accurately estimate extremely long relaxation times.
Collapse
Affiliation(s)
- L Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
3
|
Yoon H, McKenna GB. Testing the paradigm of an ideal glass transition: Dynamics of an ultrastable polymeric glass. SCIENCE ADVANCES 2018; 4:eaau5423. [PMID: 30588491 PMCID: PMC6303122 DOI: 10.1126/sciadv.aau5423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/20/2018] [Indexed: 05/29/2023]
Abstract
A major challenge to understanding glass-forming materials is obtaining equilibrium data far below the laboratory glass transition temperature T g. The challenge arises because it takes geologic aging times to achieve the equilibrium glassy state when temperatures are well below T g. Here, we finesse this problem through measurements on an ultrastable amorphous Teflon with fictive temperature T f near to its Kauzmann temperature T K. In the window between T f and T g, the material has a lower molecular mobility than the equilibrium state because of its low specific volume and enthalpy. Our measurements show that the determined scaled relaxation times deviate strongly from the classical expectation of divergence of time scales at a finite temperature. The results challenge the view of an ideal glass transition at or near to T K.
Collapse
|
4
|
Cangialosi D. Glass Transition and Physical Aging of Confined Polymers Investigated by Calorimetric Techniques. RECENT ADVANCES, TECHNIQUES AND APPLICATIONS 2018. [DOI: 10.1016/b978-0-444-64062-8.00013-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
McKenna GB, Simon SL. 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01014] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| | - Sindee L. Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
6
|
Boucher VM, Cangialosi D, Alegría A, Colmenero J. Complex nonequilibrium dynamics of stacked polystyrene films deep in the glassy state. J Chem Phys 2017; 146:203312. [DOI: 10.1063/1.4977207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Yoon H, Koh YP, Simon SL, McKenna GB. An Ultrastable Polymeric Glass: Amorphous Fluoropolymer with Extreme Fictive Temperature Reduction by Vacuum Pyrolysis. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Heedong Yoon
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| | - Yung P. Koh
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| | - Sindee L. Simon
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering,
Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409-4121, United States
| |
Collapse
|
8
|
Xie SJ, Schweizer KS. Nonuniversal Coupling of Cage Scale Hopping and Collective Elastic Distortion as the Origin of Dynamic Fragility Diversity in Glass-Forming Polymer Liquids. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02272] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shi-Jie Xie
- Departments of Materials
Science and Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Departments of Materials
Science and Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Tylinski M, Chua YZ, Beasley MS, Schick C, Ediger MD. Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. J Chem Phys 2016; 145:174506. [DOI: 10.1063/1.4966582] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- M. Tylinski
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Y. Z. Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. S. Beasley
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - C. Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Novikov VN, Sokolov AP. Qualitative change in structural dynamics of some glass-forming systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062304. [PMID: 26764689 DOI: 10.1103/physreve.92.062304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Analysis of the temperature dependence of the structural relaxation time τ(α)(T) in supercooled liquids revealed a qualitatively distinct feature-a sharp, cusplike maximum in the second derivative of logτ(α)(T)at some T(max). It suggests that the super-Arrhenius temperature dependence of τ(α)(T) in glass-forming liquids eventually crosses over to an Arrhenius behavior at T<T(max), and there is no divergence of τ(α)(T) at nonzero T. T(max) can be above or below T(g), depending on the sensitivity of τ(T) to a change in the liquid's density quantified by the exponent γ in the scaling τ(α)(T)∼exp(A/Tρ(-γ)). These results might turn the discussion of the glass transition in a different direction-toward the origin of the limiting activation energy for structural relaxation at low T.
Collapse
Affiliation(s)
- V N Novikov
- Department of Chemistry and Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - A P Sokolov
- Department of Chemistry and Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
11
|
Abstract
Glasses are out-of-equilibrium systems aging under the crystallization threat. During ordinary glass formation, the atomic diffusion slows down, rendering its experimental investigation impractically long, to the extent that a timescale divergence is taken for granted by many. We circumvent these limitations here, taking advantage of a wide family of glasses rapidly obtained by physical vapor deposition directly into the solid state, endowed with different "ages" rivaling those reached by standard cooling and waiting for millennia. Isothermally probing the mechanical response of each of these glasses, we infer a correspondence with viscosity along the equilibrium line, up to exapoise values. We find a dependence of the elastic modulus on the glass age, which, traced back to the temperature steepness index of the viscosity, tears down one of the cornerstones of several glass transition theories: the dynamical divergence. Critically, our results suggest that the conventional wisdom picture of a glass ceasing to flow at finite temperature could be wrong.
Collapse
|
12
|
Ngai KL, Capaccioli S, Paluch M, Prevosto D. Temperature Dependence of the Structural Relaxation Time in Equilibrium below the Nominal Tg: Results from Freestanding Polymer Films. J Phys Chem B 2014; 118:5608-14. [DOI: 10.1021/jp502846t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. L. Ngai
- Dipartimento
di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
- CNR-IPCF, Institute for Chemical and Physical Processes, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| | - Simone Capaccioli
- Dipartimento
di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
- CNR-IPCF, Institute for Chemical and Physical Processes, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| | - Marian Paluch
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Daniele Prevosto
- CNR-IPCF, Institute for Chemical and Physical Processes, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| |
Collapse
|
13
|
Cangialosi D. Dynamics and thermodynamics of polymer glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:153101. [PMID: 24675099 DOI: 10.1088/0953-8984/26/15/153101] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.
Collapse
Affiliation(s)
- D Cangialosi
- Materials Physics Center, Paseo Manuel de Lardizabel 5 20018 San Sebastian, Spain
| |
Collapse
|
14
|
Zhao J, McKenna GB. Response to “Comment on ‘Temperature divergence of the dynamics of a poly(vinyl acetate) glass: Dielectric vs. mechanical behaviors’” [J. Chem. Phys. 139, 137101 (2013)]. J Chem Phys 2013; 139:137102. [DOI: 10.1063/1.4823799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|