1
|
Chen Y, Chen PJ, Hu R, Zhu Y, Yu JH, Pham AV, Momeni O, Domier C, Dannenberg J, Li X, Yu G, Luhmann N. Frontier system-on-chip (SoC) technology for microwave diagnostics (invited). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:093516. [PMID: 39254431 DOI: 10.1063/5.0219545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
The next generation of fusion reactors, exemplified by projects such as the Demonstration Power Plant following the International Thermonuclear Experimental Reactor, faces the monumental challenge of proving the viability of generating electricity through thermonuclear fusion. This pursuit introduces heightened complexities in diagnostic methodologies, particularly in microwave-based diagnostics. The increased neutron fluence necessitates significant reductions in vessel penetrations and the elimination of internal diagnostics, posing substantial challenges. SoC technology offers a promising solution by enabling the miniaturization, modularization, integration, and enhancing the reliability of microwave systems. After seven years of research, our team successfully pioneered the V- and W-band system-on-chip approach, leading to the development of active transmitters and passive receiver modules applied in practical settings, notably within the DIII-D tokamak project. Arrays of these modules have supported microwave imaging diagnostics. New physics measurement results from the Electron Cyclotron Emission Imaging system on DIII-D provide compelling evidence of improved diagnostics following the adoption of SoC technology. Furthermore, we achieved a breakthrough in developing an F-band SoC, advancing higher frequency capabilities for fusion devices. These achievements represent a significant leap forward in fusion diagnostic technology, marking substantial progress toward establishing reliable and efficient plasma diagnostics for future fusion reactors.
Collapse
Affiliation(s)
- Ying Chen
- University of California, Davis, California 95616, USA
| | - Pin-Jung Chen
- University of California, Davis, California 95616, USA
| | - Robert Hu
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan, 30010
| | - Yilun Zhu
- University of California, Davis, California 95616, USA
| | - Jo-Han Yu
- University of California, Davis, California 95616, USA
| | - A-V Pham
- University of California, Davis, California 95616, USA
| | - Omeed Momeni
- University of California, Davis, California 95616, USA
| | - Calvin Domier
- University of California, Davis, California 95616, USA
| | | | - Xiaoliang Li
- University of California, Davis, California 95616, USA
| | - Guanying Yu
- University of California, Davis, California 95616, USA
| | | |
Collapse
|
2
|
Kim DK, Lee J, Lee DJ, Yun GS. Development of a toroidally resolved broadband ECE imaging system for measurement of turbulent fluctuations on the KSTAR. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:083507. [PMID: 39093114 DOI: 10.1063/5.0219245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
The two electron cyclotron emission imaging (ECEI) systems installed at adjacent ports (G and H) on the KSTAR tokamak incorporate large-aperture mm-wave optics, broadband electronics, and high speed digitization (up to 1 MSa/s) for 2D and quasi-3D visualization of MHD-scale fluid dynamics. Recently, the ECEI systems have been proved to be capable of visualization of smaller scale fluctuations albeit with a limited spatiotemporal resolution and even capable of measurement of ion cyclotron harmonic waves by direct high-speed sampling of the ECE IF signals. A four-channel prototype subsystem with a higher sampling rate up to 16 GS/s has been integrated into the G-port ECEI system, enabling the measurement of plasma waves in the GHz range in the form of modulated ECE signals and characterization of high-frequency turbulence during the evolution of pedestal. To achieve higher toroidal resolution in the turbulence measurement, the H-port ECEI system is now being upgraded to have a toroidally dual detector array of 2(toroidal) × 12(vertical) × 8(radial) channel configuration and a high-speed subsystem of 2(toroidal) × 4 channel configuration. The new mm-wave optics has been designed via beam propagation simulation, and the measured performance of the fabricated lens indicates a toroidal resolution of 8-10 cm depending on the focus position and zoom factor, allowing for the measurement of parallel wavenumber up to k‖ ∼ 0.8 cm-1.
Collapse
Affiliation(s)
- Dong-Kwon Kim
- Department of Physics, POSTECH, Pohang, Gyeongbuk 37673, Korea
- Korea Institute of Fusion Energy, Daejeon 34133, Korea
| | - Jaehyun Lee
- Korea Institute of Fusion Energy, Daejeon 34133, Korea
| | - Dong Jae Lee
- Korea Institute of Fusion Energy, Daejeon 34133, Korea
| | - Gunsu S Yun
- Department of Physics, POSTECH, Pohang, Gyeongbuk 37673, Korea
- Division of Advanced Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
3
|
Qiu S, Himes L, Domier C, Tang X, Liu X, Hu F, Yu G, Li X, Zhu Y, Luhmann N, Xie J, Wu Z. Design of a 140 GHz waveguide notch filter for millimeter-wave receiver module protection in fusion plasma diagnostics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:023503. [PMID: 38350476 DOI: 10.1063/5.0176796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
A carefully designed waveguide-based millimeter-wave notch filter, operating at 140 GHz, safeguards plasma diagnostic instruments from gyrotron leakage. Utilizing cylindrical cavity resonators with aperture coupling, the filter efficiently resonates 140 GHz wave-power into the TE11p mode, optimizing various geometrical parameters for practical fabrication and high-yield production. Thorough thermal analysis ensures its ability to handle power. The filter achieves outstanding performance with over 90 dB rejection at 140 GHz while providing low insertion loss over the passband (110-138 GHz), which is ideally suited for system-on-chip approach F-band diagnostic system applications.
Collapse
Affiliation(s)
- Shasha Qiu
- University of California Davis, Davis, California 95616, USA
| | - Logan Himes
- University of California Davis, Davis, California 95616, USA
| | - Calvin Domier
- University of California Davis, Davis, California 95616, USA
| | - Xiaopin Tang
- University of California Davis, Davis, California 95616, USA
| | - Xianzi Liu
- University of California Davis, Davis, California 95616, USA
| | - Fengqi Hu
- University of California Davis, Davis, California 95616, USA
| | - Guanying Yu
- University of California Davis, Davis, California 95616, USA
| | - Xiaoliang Li
- University of California Davis, Davis, California 95616, USA
| | - Yilun Zhu
- University of California Davis, Davis, California 95616, USA
| | - Neville Luhmann
- University of California Davis, Davis, California 95616, USA
| | - Jinlin Xie
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengwei Wu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Li YC, Jiang M, Xu Y, Shi ZB, Xu JQ, Liu Y, Liang AS, Yang ZC, Wen J, Zhang YP, Wang XQ, Zhu YJ, Zhou H, Li W, Luo Y, Su X. MHD instability dynamics and turbulence enhancement towards the plasma disruption at the HL-2A tokamak. Sci Rep 2023; 13:4785. [PMID: 36959269 PMCID: PMC10036549 DOI: 10.1038/s41598-023-31304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The evolutions of MHD instability behaviors and enhancement of both electrostatic and electromagnetic turbulence towards the plasma disruption have been clearly observed in the HL-2A plasmas. Two types of plasma disruptive discharges have been investigated for similar equilibrium parameters: one with a distinct stage of a small central temperature collapse ([Formula: see text] 5-10%) around 1 millisecond before the thermal quench (TQ), while the other without. For both types, the TQ phase is preceded by a rotating 2/1 tearing mode, and it is the development of the cold bubble from the inner region of the 2/1 island O-point along with its inward convection that causes the massive energy loss. In addition, the micro-scale turbulence, including magnetic fluctuations and density fluctuations, increases before the small collapse, and more significantly towards the TQ. Also, temperature fluctuations measured by electron cyclotron emission imaging enhances dramatically at the reconnection site and expand into the island when approaching the small collapse and TQ, and the expansion is more significant close to the TQ. The observed turbulence enhancement near the X-point cannot be fully interpreted by the linear stability analysis by GENE. Evidences suggest that nonlinear effects, such as the reduction of local [Formula: see text] shear and turbulence spreading, may play an important role in governing turbulence enhancement and expansion. These results imply that the turbulence and its interaction with the island facilitate the stochasticity of the magnetic flux and formation of the cold bubble, and hence, the plasma disruption.
Collapse
Affiliation(s)
- Y C Li
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - M Jiang
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China.
| | - Y Xu
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Z B Shi
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China
| | - J Q Xu
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China
| | - Yi Liu
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China
| | - A S Liang
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China
| | - Z C Yang
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China
| | - J Wen
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China
| | - Y P Zhang
- Southwestern Institute of Physics, P. O. Box 432, Chengdu, 610041, People's Republic of China
| | - X Q Wang
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Y J Zhu
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - H Zhou
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - W Li
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Y Luo
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - X Su
- Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| |
Collapse
|
5
|
Yu X, Shi ZB, Jiang M, Yu GY, Zhu YL, Yang ZC, Chen W, Zhu YR, Fang KR, Tong RH, Han JH, Zhang XR. Analysis of synthetic electron cyclotron emission from the high field side of HL-2M tokamak plasmas. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083518. [PMID: 36050087 DOI: 10.1063/5.0098907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A synthetic electron cyclotron emission (ECE) diagnostic is used to interpret ECE signals from preset plasma equilibrium profiles, including magnetic field, electron density, and electron temperature. According to the simulation results, the electron temperature (Te) profile covering the harmonic overlap region can be obtained by receiving ECE signals at the high field side (HFS) of the HL-2M plasma. The third harmonic ECE at the low field side (LFS) cannot pass through the second harmonic resonance layer at the HFS unless the optical thickness (τ) of the second harmonic becomes gray (τ ≤ 2). In addition, the impact of the relativistic frequency down-shift has been evaluated and corrected. The measurable range of the HFS ECE has been calculated by scanning different parameters (electron density, temperature, and magnetic field). Higher plasma parameters allow a wider radial range of electron temperature measurements. The minimum inner measurable position can reach R = 120 cm (r/a = -0.89) when the product of core temperature (Te0) and density (ne0) is greater than 35 × 1019 keV m-3, which is extended by more than 30 cm inward compared with that of the LFS measurement. The HFS ECE will greatly improve the diagnostic ability of ECE systems on the HL-2M tokamak.
Collapse
Affiliation(s)
- X Yu
- Southwestern Institute of Physics, Chengdu 610041, China
| | - Z B Shi
- Southwestern Institute of Physics, Chengdu 610041, China
| | - M Jiang
- Southwestern Institute of Physics, Chengdu 610041, China
| | - G Y Yu
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
| | - Y L Zhu
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
| | - Z C Yang
- Southwestern Institute of Physics, Chengdu 610041, China
| | - W Chen
- Southwestern Institute of Physics, Chengdu 610041, China
| | - Y R Zhu
- Southwestern Institute of Physics, Chengdu 610041, China
| | - K R Fang
- Southwestern Institute of Physics, Chengdu 610041, China
| | - R H Tong
- Southwestern Institute of Physics, Chengdu 610041, China
| | - J H Han
- Sichuan University, Chengdu 610065, China
| | - X R Zhang
- Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
High level of integration of front-end imaging optics system for electron cyclotron emission imaging diagnostics on the DIII-D tokamak. FUSION ENGINEERING AND DESIGN 2021. [DOI: 10.1016/j.fusengdes.2021.112915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
|
8
|
Quasi-optical electron cyclotron emission imaging diagnostic advancements on the J-TEXT tokamak. FUSION ENGINEERING AND DESIGN 2020. [DOI: 10.1016/j.fusengdes.2020.111636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Yang Z, Zhou J, Pan X, Cao J, Yu G, Domier C, Zhu Y, Chang F, Zhang Z, Gao Y, Luhmann N, Xie X. Development of intelligent control module for the J-TEXT electron cyclotron emission imaging system. FUSION ENGINEERING AND DESIGN 2020. [DOI: 10.1016/j.fusengdes.2020.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Yang Z, Jiang M, Shi Z, Ding X, Luhmann N, Zhong W, Chen W, Shi P, Xu Y, Wen J, Liang A, Liu Y, Yang Q. Development of ECE/ECEI diagnostics and MHD-related studies on HL-2A tokamak. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920303014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel 60-channel electron cyclotron emission (ECE) radiometer has been designed and tested for the measurement of electron temperature profiles on the HL-2A tokamak. This system is based on the intermediate frequency division technique, and has the features of wide working frequency range (60−90 GHz) and high temporal-spatial resolution (3 µs, 1 cm), which covers almost the entire plasma region. Also, an electron cyclotron emission imaging (ECEI) system has been developed for studying two dimensional electron temperature fluctuations. It is comprised of several front-end quasi-optical lenses, a 24 channel heterodyne imaging array with a tunable RF frequency range spanning 60−135 GHz, and a set of back-end ECEI electronics that together generate two 24×8 array images of the 2nd harmonic X-mode electron cyclotron emission from the HL-2A plasma. The measurement region can be flexibly shifted due to two independent local oscillator sources, and the field of view can be adjusted easily by changing the position of the zoom lenses as well. The temporal resolution is about 2.5 µs and the achievable spatial resolution is 1 cm. The ECE/ECEI diagnostics have been demonstrated to be powerful tools to study MHD-related physics including the multi-scale interaction between macro-scale MHD and micro-scale turbulence on the HL-2A tokamak.
Collapse
|
11
|
Xie XL, Yang ZJ, Pan XM, Zhu YL, Zhou J, Zhou H, Zhuang G. Hyperbolic lens design of local oscillator optics system for electron cyclotron emission imaging on J-TEXT. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10H101. [PMID: 30399902 DOI: 10.1063/1.5035098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An electron cyclotron emission imaging diagnostic system that contains two 16-antenna arrays is being developed on J-TEXT tokamak. In this heterodyne system, the mixers in the front microwave antenna are used to down-convert the electron cyclotron emission to a 2-12 GHz radio frequency. All of the 24 antenna mixers in the individual enclosure box are driven by shining local oscillator (LO) power via launching optics. The previous approach for LO optics was designed with spherical and cylinder lenses, which has limitations such as the inhomogeneity of the energy deposition on different channels and the difficulty of optics alignment. A new generation of LO optics has been designed and applied on J-TEXT with a hyperbolic lens for uniform power deposition across the entire antenna array. The robustness of the optical alignment will be significantly increased with three hyperbolic lenses. Furthermore, the simulation results and robustness analysis of these LO optics are discussed in this paper.
Collapse
Affiliation(s)
- X L Xie
- International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Z J Yang
- International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - X M Pan
- International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Y L Zhu
- University of California, Davis, California 95616, USA
| | - J Zhou
- International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - H Zhou
- International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - G Zhuang
- Department of Modern Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Zhu Y, Ye Y, Yu JH, Tobias B, Pham AV, Wang Y, Luo C, Domier CW, Kramer G, Ren Y, Diallo A, Nazikian R, Chen M, Yu G, Luhmann NC. Liquid crystal polymer receiver modules for electron cyclotron emission imaging on the DIII-D tokamak. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10H120. [PMID: 30399858 DOI: 10.1063/1.5035373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
A new generation of millimeter-wave heterodyne imaging receiver arrays has been developed and demonstrated on the DIII-D electron cyclotron emission imaging (ECEI) system. Improved circuit integration, improved noise performance, and enhanced shielding from out-of-band emission are made possible by using advanced liquid crystal polymer (LCP) substrates and monolithic microwave integrated circuit (MMIC) receiver chips. This array exhibits ∼15 dB additional gain and >30× reduction in noise temperature compared to previous generation ECEI arrays. Each LCP horn-waveguide module houses a 3 × 3 mm GaAs MMIC receiver chip, which consists of a low noise millimeter-wave preamplifier, balanced mixer, and IF amplifier together with a local oscillator multiplier chain driven at ∼12 GHz. A proof-of-principle partial LCP instrument with 5 poloidal channels was installed on DIII-D in 2017, with a full proof-of-principle system (20 poloidal × 8 radial channels) installed and commissioned in early 2018. The enhanced shielding of the LCP modules is seen to greatly reduce the sensitivity of ECEI signals to out-of-band microwave noise which has plagued previous ECEI studies on DIII-D. The LCP ECEI system is expected to be a valuable diagnostic tool for pedestal region measurements, focusing particularly on electron temperature evolution during edge localized mode bursting.
Collapse
Affiliation(s)
- Y Zhu
- University of California Davis, Davis, California 95616, USA
| | - Y Ye
- University of California Davis, Davis, California 95616, USA
| | - J-H Yu
- University of California Davis, Davis, California 95616, USA
| | - B Tobias
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A-V Pham
- University of California Davis, Davis, California 95616, USA
| | - Y Wang
- University of California Davis, Davis, California 95616, USA
| | - C Luo
- University of California Davis, Davis, California 95616, USA
| | - C W Domier
- University of California Davis, Davis, California 95616, USA
| | - G Kramer
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - Y Ren
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - A Diallo
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - R Nazikian
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - M Chen
- University of California Davis, Davis, California 95616, USA
| | - G Yu
- University of California Davis, Davis, California 95616, USA
| | - N C Luhmann
- University of California Davis, Davis, California 95616, USA
| |
Collapse
|
13
|
Chen C, Sun S, Ji X, Yin Z. Development of a real time magnetic island identification system for HL-2A tokamak. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:083510. [PMID: 28863647 DOI: 10.1063/1.4997958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel real time magnetic island identification system for HL-2A is introduced. The identification method is based on the measurement of Mirnov probes and the equilibrium flux constructed by the equilibrium fit (EFIT) code. The system consists of an analog front board and a digital processing board connected by a shield cable. Four octal-channel analog-to-digital convertors are utilized for 100 KHz simultaneous sampling of all the probes, and the applications of PCI extensions for Instrumentation platform and reflective memory allow the system to receive EFIT results simultaneously. A high performance field programmable gate array (FPGA) is used to realize the real time identification algorithm. Based on the parallel and pipeline processing of the FPGA, the magnetic island structure can be identified with a cycle time of 3 ms during experiments.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shan Sun
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiaoquan Ji
- Southwestern Institute of Physics, Chengdu 610041, People's Republic of China
| | - Zejie Yin
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
14
|
Shi Z, Jiang M, Yu L, Chen W, Shi P, Zhong W, Yang Z, Zhang B, Ji X, Li Y, Zhou Y, Song S, Huang M, Song X, Li J, Yuan B, Fu B, Liu Z, Ding X, Xu Y, Yang Q, Duan X. Study of energetic particle physics with advanced ECEI system on the HL-2A tokamak. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714701003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Li D, Dong YB, Deng W, Shi ZB, Fu BZ, Gao JM, Wang TB, Zhou Y, Liu Y, Yang QW, Duan XR. Bayesian tomography and integrated data analysis in fusion diagnostics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:11E319. [PMID: 27910627 DOI: 10.1063/1.4960542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this article, a Bayesian tomography method using non-stationary Gaussian process for a prior has been introduced. The Bayesian formalism allows quantities which bear uncertainty to be expressed in the probabilistic form so that the uncertainty of a final solution can be fully resolved from the confidence interval of a posterior probability. Moreover, a consistency check of that solution can be performed by checking whether the misfits between predicted and measured data are reasonably within an assumed data error. In particular, the accuracy of reconstructions is significantly improved by using the non-stationary Gaussian process that can adapt to the varying smoothness of emission distribution. The implementation of this method to a soft X-ray diagnostics on HL-2A has been used to explore relevant physics in equilibrium and MHD instability modes. This project is carried out within a large size inference framework, aiming at an integrated analysis of heterogeneous diagnostics.
Collapse
Affiliation(s)
- Dong Li
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Y B Dong
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Wei Deng
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Z B Shi
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - B Z Fu
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - J M Gao
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - T B Wang
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Yan Zhou
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Yi Liu
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Q W Yang
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - X R Duan
- Southwestern Institute of Physics, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
16
|
Nam YB, Lee DJ, Lee J, Kim C, Yun GS, Lee W, Park HK. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:11E130. [PMID: 27910535 DOI: 10.1063/1.4961290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) Te fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2-2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ∼2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.
Collapse
Affiliation(s)
- Y B Nam
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - D J Lee
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - J Lee
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - C Kim
- Pennsylvania State University, Old Main, State College, Pennsylvania 16801, USA
| | - G S Yun
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - W Lee
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - H K Park
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
17
|
Pan XM, Yang ZJ, Ma XD, Zhu YL, Luhmann NC, Domier CW, Ruan BW, Zhuang G. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:11E106. [PMID: 27910430 DOI: 10.1063/1.4959875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.
Collapse
Affiliation(s)
- X M Pan
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Z J Yang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X D Ma
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Y L Zhu
- School of Physics, University of Science and Technology of China, Anhui 230026, China
| | - N C Luhmann
- Davis Millimeter Wave Research Center, University of California, Davis, California 95616, USA
| | - C W Domier
- Davis Millimeter Wave Research Center, University of California, Davis, California 95616, USA
| | - B W Ruan
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - G Zhuang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Jiang M, Shi ZB, Domier CW, Luhmann NC, Zhong WL, Chen W, Liu ZT, Ding XT, Yang QW, Zhang BY, Yang ZC, Shi PW, Liu Y, Fu BZ, Xu Y. Note: Upgrade of electron cyclotron emission imaging system and preliminary results on HL-2A tokamak. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:076107. [PMID: 26233421 DOI: 10.1063/1.4927072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The electron cyclotron emission imaging system on the HL-2A tokamak has been upgraded to 24 (poloidally) × 16 (radially) channels based on the previous 24 × 8 array. The measurement region can be flexibly shifted due to the independence of the two local oscillator sources, and the field of view can be adjusted easily by changing the position of the zoom lenses. The temporal resolution is about 2.5 μs and the achievable spatial resolution is 1 cm. After laboratory calibration, it was installed on HL-2A tokamak in 2014, and the local 2D mode structures of MHD activities were obtained for the first time.
Collapse
Affiliation(s)
- M Jiang
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - Z B Shi
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - C W Domier
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
| | - N C Luhmann
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
| | - W L Zhong
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - W Chen
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - Z T Liu
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - X T Ding
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - Q W Yang
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - B Y Zhang
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - Z C Yang
- School of Physics and Chemistry, Xihua University, Chengdu 610039, China
| | - P W Shi
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - Y Liu
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - B Z Fu
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| | - Y Xu
- Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
| |
Collapse
|
19
|
Yun GS, Lee W, Choi MJ, Lee J, Kim M, Leem J, Nam Y, Choe GH, Park HK, Park H, Woo DS, Kim KW, Domier CW, Luhmann NC, Ito N, Mase A, Lee SG. Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:11D820. [PMID: 25430233 DOI: 10.1063/1.4890401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B0 = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.
Collapse
Affiliation(s)
- G S Yun
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - W Lee
- Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| | - M J Choi
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - J Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - M Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - J Leem
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Y Nam
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - G H Choe
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - H K Park
- Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| | - H Park
- School of Electrical Engineering, Kyungpook National University, Daegu 702-701, Korea
| | - D S Woo
- School of Electrical Engineering, Kyungpook National University, Daegu 702-701, Korea
| | - K W Kim
- School of Electrical Engineering, Kyungpook National University, Daegu 702-701, Korea
| | - C W Domier
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
| | - N C Luhmann
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
| | - N Ito
- KASTEC, Kyushu University, Kasuga-shi, Fukuoka 812-8581, Japan
| | - A Mase
- Ube National College of Technology, Ube-shi, Yamaguchi 755-8555, Japan
| | - S G Lee
- National Fusion Research Institute, Daejeon 305-333, Korea
| |
Collapse
|