1
|
Tang D, Liu A, Culpitt T, Hammes-Schiffer S, Li X. Simulating Magnetic Field-Driven Real-Time Quantum Dynamics Using London Nuclear-Electronic Orbital Approach. J Chem Theory Comput 2025. [PMID: 40249877 DOI: 10.1021/acs.jctc.5c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Harnessing a static magnetic field to drive molecular vibrations presents a promising avenue for controlling chemical processes. However, the coupling of nuclear dynamics with an external magnetic field has largely been explored only through classical approximations. In this work, we introduce a time-dependent quantum dynamics formalism based on London nuclear-electronic orbitals, enabling the simulation of magnetic field-driven quantum dynamics. Through simulations of HCN and H2CO molecules, we provide a detailed analysis of how the relative orientation of the magnetic field and vibrational symmetry influence the resulting quantum dynamics. Our findings reveal field-induced mode couplings and symmetry-dependent effects, offering new insights into the role of magnetic fields in vibrational control. This work establishes a quantum mechanical framework for understanding and manipulating vibrational dynamics using external magnetic fields, paving the way for novel applications in spectroscopy, reaction dynamics, and quantum control.
Collapse
Affiliation(s)
- Diandong Tang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Aodong Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tanner Culpitt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Franzke YJ, Pausch A, Holzer C. Application of the noncollinear Scalmani-Frisch formalism to current density functional theory. J Chem Phys 2025; 162:084104. [PMID: 39998164 DOI: 10.1063/5.0246433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
We generalize the noncollinear formalism proposed by Scalmani and Frisch [J. Chem. Theory Comput. 8, 2193 (2012)] to include the particle and spin current densities for meta-generalized gradient approximations and local hybrid functionals. This allows us to fully include the impact of spin-orbit coupling in relativistic calculations and for applications to finite magnetic fields. For the latter, we use London atomic orbitals to ensure gauge origin invariance. It is shown that this formalism is superior to the more common canonical noncollinear approach in relativistic calculations, as it naturally includes all three spin current densities in the closed-shell limit and avoids the projection onto the spin magnetization vector. This is important to easily restore rotational invariance in this limit. In addition, the Scalmani-Frisch approach can be made numerically stable and may lead to a nonvanishing local magnetic torque. However, both formalisms are rotationally invariant for open-shell systems and in finite magnetic fields.
Collapse
Affiliation(s)
- Yannick J Franzke
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Ansgar Pausch
- Theoretical Chemistry, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Cheng CY, Harari G, Rončević I, Peralta JE, Anderson HL, Wibowo-Teale AM, Hod O. Molecular Aharonov-Bohm-type interferometers based on porphyrin nanorings. Chem Sci 2025:d4sc07992b. [PMID: 39916886 PMCID: PMC11795298 DOI: 10.1039/d4sc07992b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
A goal of molecular electronics and spintronics is to create molecular devices that change their conductance in response to external stimuli. The Aharonov-Bohm (AB) effect implies that an electronic device formed from a quantum ring and metallic leads will exhibit such behavior under external magnetic fields. At first sight, it appears that unrealistically large fields would be required to significantly alter the conductance of a molecular ring. However, the sensitivity of a molecular AB interferometer to magnetic fields can be increased by weakening the coupling between the molecular ring and the metallic leads. An ideal molecular ring for an AB interferometer has a large radius (to encompass a larger fraction of the AB flux quantum), and a small effective mass (high electron mobility) to enhance its response to magnetic fields. Here, we use computational modelling to demonstrate that recently synthesized zinc porphyrin nanorings, with radii of 2-9 nm, could behave as molecular AB interferometers at achievable magnetic field strengths (5-10 T), if weak ring-lead coupling is used. Building on our recently developed semi-empirical approach, which incorporates the effects of finite magnetic fields on the electronic structure, we develop a transport computational platform that allows us to identify sharp Fano resonances in the transmittance probability of porphyrin nanorings that could be exploited to control the current with an applied magnetic field. These resonances are rationalized in terms of a magnetic field-induced delocalization of the molecular orbitals. Our findings indicate that molecular AB interferometry should be feasible with current experimental capabilities.
Collapse
Affiliation(s)
- Chi Y Cheng
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Gil Harari
- School of Chemistry, The Sackler Centre for Computational Molecular and Materials Science, Tel Aviv University Tel Aviv 6997801 Israel
| | - Igor Rončević
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Juan E Peralta
- Department of Physics, Central Michigan University Mount Pleasant MI 48859 USA
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Andrew M Wibowo-Teale
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Oded Hod
- School of Chemistry, The Sackler Centre for Computational Molecular and Materials Science, Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
4
|
Franco-Pérez M, Heidar-Zadeh F, Ayers PW, De Proft F, Vela A, Gázquez JL, Geerlings P. Temperature and external fields in conceptual density functional theory. Chem Sci 2024; 15:20090-20121. [PMID: 39568928 PMCID: PMC11575627 DOI: 10.1039/d4sc04181j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Until quite recently, Conceptual DFT (CDFT) was mainly based on the energy functional, E[N,v], where the number of electrons N and the external potential v are state variables. One of the strengths of CDFT, however, is the ease with which additional and/or different state variables can be incorporated. Here, the incorporation of new variables-namely temperature and external fields-is discussed, outlining the motivation for these extensions, sketching their theoretical/computational context, and presenting some elucidative examples. Using the Grand Canonical Ensemble, finite temperature can be introduced, ameliorating the N-differentiability problem and leading to new well-behaved chemical reactivity concepts. Incorporating temperature as an additional fundamental variable enables us to formulate a novel suite of "thermodynamic" reactivity descriptors, including important concepts like the heat capacity of electronic systems. The mathematical structure underpinning the set of (well-behaved) finite-temperature reactivity indices can guide the formulation of plausible definitions for local analogs of global descriptors. This endeavor is especially significant in the case of local hardness, a concept that has remained elusive since the inception of CDFT. The ever-increasing portfolio of experimental reaction conditions to creatively synthesize new molecules, needs the introduction of various external "fields" like electric and magnetic fields (ε and B), mechanical forces (F) and pressure (P) to describe the state of the chemical system. The conventional energy functional can be expressed in a general form, E[N,v,X], where X denotes the "field". Response functions to changes in the field can then be defined in analogy to classical thermodynamics. The electric field results display a case of a field-induced selectivity in a reaction channel of the Fukui function. Remarkably, atomic electronegativity and hardness in magnetic fields display a piecewise behavior in magnetic fields, associated to configurational jumps upon increasing field strength. The overall compression of their ranges for stronger fields may be insightful when investigating chemistry in extremely high fields. The electronegativity and hardness of diatomics under mechanical force can be traced back to changes in equilibrium distances in the neutral, cationic and anionic state, parallel with the evolution of an intrinsic atomic volume under pressure.
Collapse
Affiliation(s)
- Marco Franco-Pérez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma, de México, Cd Universitaria Ciudad de México Mexico
| | | | - Paul W Ayers
- Department of Chemistry, McMaster University Hamilton Ontario L8S 4L8 Canada
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel Pleinlaan 2 B-1050 Brussels Belgium
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudio Avanzados (Cinvestav) Av. IPN 2508, San Pedro Zacatenco 07360 CDMX Mexico
| | - José L Gázquez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa Av. San Rafael Atlixco, 186 09340 CDMX Mexico
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel Pleinlaan 2 B-1050 Brussels Belgium
| |
Collapse
|
5
|
Culpitt T, Tellgren EI, Peters LDM, Helgaker T. Non-adiabatic coupling matrix elements in a magnetic field: Geometric gauge dependence and Berry phase. J Chem Phys 2024; 161:184109. [PMID: 39530363 DOI: 10.1063/5.0229854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Non-adiabatic coupling matrix elements (NACMEs) are important in quantum chemistry, particularly for molecular dynamics methods such as surface hopping. However, NACMEs are gauge dependent. This presents a difficulty for their calculation in general, where there are no restrictions on the gauge function except that it be differentiable. These cases are relevant for complex-valued electronic wave functions, such as those that arise in the presence of a magnetic field or spin-orbit coupling. In addition, the Berry curvature and Berry force play an important role in molecular dynamics in a magnetic field and are also relevant in the context of spin-orbit coupling. For methods such as surface hopping, excited-state Berry curvatures will also be of interest. With this in mind, we have developed a scheme for the calculation of continuous, differentiable NACMEs as a function of the molecular geometry for complex-valued wave functions. We demonstrate the efficacy of the method using the H2 molecule at the full configuration-interaction (FCI) level of theory. In addition, ground- and excited-state Berry curvatures are computed for the first time using FCI theory. Finally, Berry phases are computed directly in terms of diagonal NACMEs.
Collapse
Affiliation(s)
- Tanner Culpitt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
6
|
Sun S, Gu B, Hu H, Lu L, Tang D, Chernyak VY, Li X, Mukamel S. Direct Probe of Conical Intersection Photochemistry by Time-Resolved X-ray Magnetic Circular Dichroism. J Am Chem Soc 2024; 146:19863-19873. [PMID: 38989850 DOI: 10.1021/jacs.4c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The direct probing of photochemical dynamics by detecting the electronic coherence generated during passage through conical intersections is an intriguing challenge. The weak coherence signal and the difficulty in preparing purely excited wave packets that exclude coherence from other sources make it experimentally challenging. We propose to use time-resolved X-ray magnetic circular dichroism to probe the wave packet dynamics around the conical intersection. The magnetic field amplifies the relative strength of the electronic coherence signal compared to populations through the magnetic field response anisotropy. More importantly, since the excited state relaxation through conical intersections involves a change of parity, the magnetic coupling matches the symmetry of the response function with the electronic coherence, making the coherence signal only sensitive to the conical intersection induced coherence and excludes the pump pulse induced coherence between the ground state and excited state. In this theoretical study, we apply this technique to the photodissociation dynamics of a pyrrole molecule and demonstrate its capability of probing electronic coherence at a conical intersection as well as population transfer. We demonstrate that a magnetic field can be effectively used to extract novel information about electron and nuclear molecular dynamics.
Collapse
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of California, Irvine, California 92697, United states
- Departmnet of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Diandong Tang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, 656 West Kirby, Detroit, Michigan 48202, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, United states
- Departmnet of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Blaschke S, Stopkowicz S, Pausch A. Efficient approximate screening techniques for integrals over London atomic orbitals. J Chem Phys 2024; 161:024117. [PMID: 38995080 DOI: 10.1063/5.0217246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Efficient integral screening techniques are essential for the investigation of extended molecular structures. This work presents a critical assessment of well-established approximate screening techniques and extends them for integrals over London atomic orbitals, which are required in the presence of strong, external magnetic fields. Through the examination of helium clusters in such extreme environments, we demonstrate that seemingly straightforward extensions of field-free screening techniques as proposed in the recent literature can lead to significant errors. To rectify this, we propose two alternative screening techniques that lead to the desired speedups while still maintaining strict error control.
Collapse
Affiliation(s)
- Simon Blaschke
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Fachrichtung Chemie, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, D-66123 Saarbrücken, Germany
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315 Oslo, Norway
| | - Ansgar Pausch
- Theoretical Chemistry, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wibowo-Teale M, Huynh BC, Wibowo-Teale AM, De Proft F, Geerlings P. Symmetry and reactivity of π-systems in electric and magnetic fields: a perspective from conceptual DFT. Phys Chem Chem Phys 2024; 26:15156-15180. [PMID: 38747576 PMCID: PMC11135622 DOI: 10.1039/d4cp00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The extension of conceptual density-functional theory (conceptual DFT) to include external electromagnetic fields in chemical systems is utilised to investigate the effects of strong magnetic fields on the electronic charge distribution and its consequences on the reactivity of π-systems. Formaldehyde, H2CO, is considered as a prototypical example and current-density-functional theory (current-DFT) calculations are used to evaluate the electric dipole moment together with two principal local conceptual DFT descriptors, the electron density and the Fukui functions, which provide insight into how H2CO behaves chemically in a magnetic field. In particular, the symmetry properties of these quantities are analysed on the basis of group, representation, and corepresentation theories using a recently developed automatic program for symbolic symmetry analysis, QSYM2. This allows us to leverage the simple symmetry constraints on the macroscopic electric dipole moment components to make profound predictions on the more nuanced symmetry transformation properties of the microscopic frontier molecular orbitals (MOs), electron densities, and Fukui functions. This is especially useful for complex-valued MOs in magnetic fields whose detailed symmetry analyses lead us to define the new concepts of modular and phasal symmetry breaking. Through these concepts, the deep connection between the vanishing constraints on the electric dipole moment components and the symmetry of electron densities and Fukui functions can be formalised, and the inability of the magnetic field in all three principal orientations considered to induce asymmetry with respect to the molecular plane of H2CO can be understood from a molecular perspective. Furthermore, the detailed forms of the Fukui functions reveal a remarkable reversal in the direction of the dipole moment along the CO bond in the presence of a parallel or perpendicular magnetic field, the origin of which can be attributed to the mixing between the frontier MOs due to their subduced symmetries in magnetic fields. The findings in this work are also discussed in the wider context of a long-standing debate on the possibility to create enantioselectivity by external fields.
Collapse
Affiliation(s)
- Meilani Wibowo-Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Bang C Huynh
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Andrew M Wibowo-Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Frank De Proft
- Research group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Paul Geerlings
- Research group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
9
|
Kitsaras MP, Grazioli L, Stopkowicz S. The approximate coupled-cluster methods CC2 and CC3 in a finite magnetic field. J Chem Phys 2024; 160:094112. [PMID: 38441261 DOI: 10.1063/5.0189350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 08/16/2024] Open
Abstract
In this paper, we report on the implementation of CC2 and CC3 in the context of molecules in finite magnetic fields. The methods are applied to the investigation of atoms and molecules through spectroscopic predictions and geometry optimizations for the study of the atmosphere of highly magnetized White Dwarf stars. We show that ground-state finite-field (ff) CC2 is a reasonable alternative to CCSD for energies and, in particular, for geometrical properties. For excited states, ff-CC2 is shown to perform well for states with predominant single-excitation character. Yet, for cases in which the excited state wavefunction has double-excitation character with respect to the reference, ff-CC2 can easily lead to completely unphysical results. Ff-CC3, however, is shown to reproduce the CCSDT behavior very well and enables the treatment of larger systems at a high accuracy.
Collapse
Affiliation(s)
- Marios-Petros Kitsaras
- Fachrichtung Chemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Laura Grazioli
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
10
|
Schattenberg C, Wodyński A, Åström H, Sundholm D, Kaupp M, Lehtola S. Revisiting Gauge-Independent Kinetic Energy Densities in Meta-GGAs and Local Hybrid Calculations of Magnetizabilities. J Phys Chem A 2023; 127:10896-10907. [PMID: 38100678 PMCID: PMC10758120 DOI: 10.1021/acs.jpca.3c06244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
In a recent study [J. Chem. Theory Comput. 2021, 17, 1457-1468], some of us examined the accuracy of magnetizabilities calculated with density functionals representing the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA (mGGA), as well as global hybrid (GH) and range-separated (RS) hybrid functionals by assessment against accurate reference values obtained with coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)]. Our study was later extended to local hybrid (LH) functionals by Holzer et al. [J. Chem. Theory Comput. 2021, 17, 2928-2947]; in this work, we examine a larger selection of LH functionals, also including range-separated LH (RSLH) functionals and strong-correlation LH (scLH) functionals. Holzer et al. also studied the importance of the physically correct handling of the magnetic gauge dependence of the kinetic energy density (τ) in mGGA calculations by comparing the Maximoff-Scuseria formulation of τ used in our aforementioned study to the more physical current-density extension derived by Dobson. In this work, we also revisit this comparison with a larger selection of mGGA functionals. We find that the newly tested LH, RSLH, and scLH functionals outperform all of the functionals considered in the previous studies. The various LH functionals afford the seven lowest mean absolute errors while also showing remarkably small standard deviations and mean errors. Most strikingly, the best two functionals are scLHs that also perform remarkably well in cases with significant multiconfigurational character, such as the ozone molecule, which is traditionally excluded from statistical error evaluations due to its large errors with common density functionals.
Collapse
Affiliation(s)
- Caspar
J. Schattenberg
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Hugo Åström
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Susi Lehtola
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Ofstad BS, Wibowo-Teale M, Kristiansen HE, Aurbakken E, Kitsaras MP, Schøyen ØS, Hauge E, Irons TJP, Kvaal S, Stopkowicz S, Wibowo-Teale AM, Pedersen TB. Magnetic optical rotation from real-time simulations in finite magnetic fields. J Chem Phys 2023; 159:204109. [PMID: 38018753 DOI: 10.1063/5.0171927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
We present a numerical approach to magnetic optical rotation based on real-time time-dependent electronic-structure theory. Not relying on perturbation expansions in the magnetic field strength, the formulation allows us to test the range of validity of the linear relation between the rotation angle per unit path length and the magnetic field strength that was established empirically by Verdet 160 years ago. Results obtained from time-dependent coupled-cluster and time-dependent current density-functional theory are presented for the closed-shell molecules H2, HF, and CO in magnetic fields up to 55 kT at standard temperature and pressure conditions. We find that Verdet's linearity remains valid up to roughly 10-20 kT, above which significant deviations from linearity are observed. Among the three current density-functional approximations tested in this work, the current-dependent Tao-Perdew-Staroverov-Scuseria hybrid functional performs the best in comparison with time-dependent coupled-cluster singles and doubles results for the magnetic optical rotation.
Collapse
Affiliation(s)
- Benedicte Sverdrup Ofstad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Meilani Wibowo-Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Håkon Emil Kristiansen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Einar Aurbakken
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Marios Petros Kitsaras
- Physical and Theoretical Chemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | | | - Eirill Hauge
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, 0164 Oslo, Norway
| | - Tom J P Irons
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stella Stopkowicz
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
- Physical and Theoretical Chemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Andrew M Wibowo-Teale
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Thomas Bondo Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Cheng CY, Wibowo-Teale AM. Semiempirical Methods for Molecular Systems in Strong Magnetic Fields. J Chem Theory Comput 2023; 19:6226-6241. [PMID: 37672773 PMCID: PMC10536997 DOI: 10.1021/acs.jctc.3c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 09/08/2023]
Abstract
A general scheme is presented to extend semiempirical methods to include the effects of arbitrary strength magnetic fields, while maintaining computational efficiency. The approach utilizes three main modifications; a London atomic orbital (LAO) basis set is introduced, field-dependent kinetic energy corrections are added to the model Hamiltonian, and spin-Zeeman interaction energy terms are included. The approach is applied to the widely available density-functional tight-binding method GFN1-xTB. Considering the basis set requirements for the kinetic energy corrections in a magnetic field leads to two variants: a single-basis approach GFN1-xTB-M0 and a dual-basis approach GFN1-xTB-M1. The LAO basis in the latter includes the appropriate nodal structure for an accurate representation of the kinetic energy corrections. The variants are assessed by benchmarking magnetizabilities and nuclear magnetic resonance shielding constants calculated using weak magnetic fields. Remarkably, the GFN1-xTB-M1 approach also exhibits excellent performance for strong fields, |B | ≤ 0.2B0 (B0 = 2.3505 × 105 T), recovering exotic features such as the para- to dia-magnetic transition in the BH molecule and the preferred electronic configuration, molecular conformation, and orientation of benzene. At stronger field strengths, |B | > 0.2B0, a degradation in the quality of the results is observed. The utility of GFN1-xTB-M1 is demonstrated by performing conformer searches in a range of field strengths for the cyclooctatetraene molecule, with GFN1-xTB-M1 capturing the transition from tub to planar conformations at high field, consistent with much more computationally demanding current-density functional theory calculations. Magnetically induced currents are also shown to be well described for the benzene and infinitene molecules, the latter demonstrating the flexibility and computational efficiency of the approach. The GFN1-xTB-M1 approach is a useful tool for the study of structure, conformation, and dynamics of large systems in magnetic fields at the semiempirical level as well as for preoptimization of molecular structure in ab initio calculations, enabling more efficient exploration of complex potential energy surfaces and reactivity in the presence of external fields.
Collapse
Affiliation(s)
- Chi Y. Cheng
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Andrew M. Wibowo-Teale
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
13
|
Wong J, Ganoe B, Liu X, Neudecker T, Lee J, Liang J, Wang Z, Li J, Rettig A, Head-Gordon T, Head-Gordon M. An in-silico NMR laboratory for nuclear magnetic shieldings computed via finite fields: Exploring nucleus-specific renormalizations of MP2 and MP3. J Chem Phys 2023; 158:164116. [PMID: 37114707 PMCID: PMC10148725 DOI: 10.1063/5.0145130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
We developed and implemented a method-independent, fully numerical, finite difference approach to calculating nuclear magnetic resonance shieldings, using gauge-including atomic orbitals. The resulting capability can be used to explore non-standard methods, given only the energy as a function of finite-applied magnetic fields and nuclear spins. For example, standard second-order Møller-Plesset theory (MP2) has well-known efficacy for 1H and 13C shieldings and known limitations for other nuclei such as 15N and 17O. It is, therefore, interesting to seek methods that offer good accuracy for 15N and 17O shieldings without greatly increased compute costs, as well as exploring whether such methods can further improve 1H and 13C shieldings. Using a small molecule test set of 28 species, we assessed two alternatives: κ regularized MP2 (κ-MP2), which provides energy-dependent damping of large amplitudes, and MP2.X, which includes a variable fraction, X, of third-order correlation (MP3). The aug-cc-pVTZ basis was used, and coupled cluster with singles and doubles and perturbative triples [CCSD(T)] results were taken as reference values. Our κ-MP2 results reveal significant improvements over MP2 for 13C and 15N, with the optimal κ value being element-specific. κ-MP2 with κ = 2 offers a 30% rms error reduction over MP2. For 15N, κ-MP2 with κ = 1.1 provides a 90% error reduction vs MP2 and a 60% error reduction vs CCSD. On the other hand, MP2.X with a scaling factor of 0.6 outperformed CCSD for all heavy nuclei. These results can be understood as providing renormalization of doubles amplitudes to partially account for neglected triple and higher substitutions and offer promising opportunities for future applications.
Collapse
Affiliation(s)
- Jonathan Wong
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Brad Ganoe
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Xiao Liu
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tim Neudecker
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joonho Lee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jiashu Liang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zhe Wang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jie Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Adam Rettig
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
14
|
Summa FF. Spin Currents Induced in Open-Shell Molecules by Static and Uniform Magnetic and Electric Fields in the Presence of a Spin-Orbit Coupling Interaction and Conservation Law. J Chem Theory Comput 2023; 19:2491-2501. [PMID: 37104848 PMCID: PMC10173463 DOI: 10.1021/acs.jctc.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The derivation of the total induced current density vector field, in the presence of static and uniform magnetic and electric fields, is illustrated in a more clear and formally correct language together with a discussion on the charge-current conservation law not presented before for the spin-orbit coupling contribution. The theory here exposed turns out to be in fully agreement with the theory of Special Relativity and it is applicable to open-shell molecules in the presence of a nonvanishing spin orbit coupling. The discussion here exposed turns out to be accurately valid for a strictly central field due to the chosen approximation of the spin-orbit coupling Hamiltonian, but it is appropriate to deal correctly with molecular systems. The ab initio calculation of spin current densities has been implemented at both unrestricted Hartree-Fock and unrestricted DFT levels of theory. Some maps of spin currents on molecules of interest, i.e., the CH3 radical and the superoctazethrene molecule are also illustrated.
Collapse
Affiliation(s)
- Francesco Ferdinando Summa
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA Italy
| |
Collapse
|
15
|
Geerlings P, De Proft F. External fields in conceptual density functional theory. J Comput Chem 2023; 44:442-455. [PMID: 36054623 DOI: 10.1002/jcc.26978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 12/31/2022]
Abstract
The necessity of the recent incorporation of new external variables in the context of conceptual DFT (CDFT) is discussed based on the ever-increasing portfolio of experimental reaction conditions in the endeavor of experimentalists to synthesize new molecules with unprecedented properties. Electric and magnetic fields (ε and B), mechanical forces (F), and confinement are proposed as valuable new variables, extending conventional CDFT and its associated response functions. A finite field approach is used to calculate the evolution of both global and local descriptors in a selected series of atomic and molecular applications, and from it derive new response function involving, with one exception, the first derivative to the field considered. The electric field results, displaying, for example, a case of a field-induced enantioselectivity in the Fukui function, may be instrumental in the recent upsurge of chemistry in oriented external electric fields. The study of atomic electronegativity and hardness in magnetic fields displays a piecewise behavior, associated to configurational jumps upon increasing field strength and reveals an overall compression of their ranges for stronger fields, which may be guiding upon investigating chemistry in extremely high fields like in white dwarfs. The evolution of the electronegativity and hardness of diatomics under mechanical force can elegantly be traced back to differences in their equilibrium distance in the neutral, cationic, and anionic state. The well-known reduction of the polarizability under confinement can be seen as a fore-runner of the increasing hardness of atoms under pressure, presently under investigation. Periodicity showing up in a spontaneous way in the variety of properties is a leitmotiv in this study, as well as the interconnections/analogies between the different response functions.
Collapse
Affiliation(s)
- Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Speake BT, Irons TJP, Wibowo M, Johnson AG, David G, Teale AM. An Embedded Fragment Method for Molecules in Strong Magnetic Fields. J Chem Theory Comput 2022; 18:7412-7427. [PMID: 36414537 DOI: 10.1021/acs.jctc.2c00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An extension of the embedded fragment method for calculations on molecular clusters is presented, which includes strong external magnetic fields. The approach is flexible, allowing for calculations at the Hartree-Fock, current-density-functional theory, Møller-Plesset perturbation theory, and coupled-cluster levels using London atomic orbitals. For systems consisting of discrete molecular subunits, calculations using London atomic orbitals can be performed in a computationally tractable manner for systems beyond the reach of conventional calculations, even those accelerated by resolution-of-the-identity or Cholesky decomposition methods. To assess the applicability of the approach, applications to water clusters are presented, showing how strong magnetic fields enhance binding within the clusters. However, our calculations suggest that, contrary to previous suggestions in the literature, this enhanced binding may not be directly attributable to strengthening of hydrogen bonding. Instead, these results suggest that this arises for larger field strengths as a response of the system to the presence of the external field, which induces a charge density build up between the monomer units. The approach is embarrassingly parallel and its computational tractability is demonstrated for clusters of up to 103 water molecules in triple-ζ basis sets, which would correspond to conventional calculations with more than 12 000 basis functions.
Collapse
Affiliation(s)
- Benjamin T Speake
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United KIngdom
| | - Tom J P Irons
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United KIngdom
| | - Meilani Wibowo
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United KIngdom
| | - Andrew G Johnson
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United KIngdom
| | - Grégoire David
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United KIngdom.,Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Andrew M Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United KIngdom.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
17
|
Wibowo M, Huynh BC, Cheng CY, Irons TJP, Teale AM. Understanding ground and excited-state molecular structure in strong magnetic fields using the maximum overlap method. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2152748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meilani Wibowo
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Bang C. Huynh
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Chi Y. Cheng
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Tom J. P. Irons
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
18
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
19
|
Monzel L, Pausch A, Peters L, Tellgren E, Helgaker T, Klopper W. Molecular Dynamics of Linear Molecules in Strong Magnetic Fields. J Chem Phys 2022; 157:054106. [DOI: 10.1063/5.0097800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular rotations and vibrations have been extensively studied by chemists for decades, both experimentally using spectroscopic methods and theoretically with the help of quantum chemistry. However, the theoretical investigation of molecular rotations and vibrations in strong magnetic fields requires computationally more demanding tools. As such, proper calculations of rotational and vibrational spectra were not feasible up until very recently. In this work, we present rotational and vibrational spectra for two small linear molecules, H2 and LiH, in strong magnetic fields. By treating the nuclei as classical particles, trajectories for rotations and vibrations are simulated from ab initio molecular dynamics. Born-Oppenheimer potential energy surfaces are calculated at the Hartree-Fock and MP2 levels of theory, using London atomic orbitals to ensure gauge origin invariance. For the calculation of nuclear trajectories, a highly efficient Tajima propagator is introduced, incorporating the Berry curvature tensor accounting for the screening of nuclear charges.
Collapse
Affiliation(s)
- Laurenz Monzel
- Karlsruhe Institute of Technology Institute of Physical Chemistry, Germany
| | - Ansgar Pausch
- Karlsruhe Institute of Technology Faculty of Chemistry and Biosciences, Germany
| | | | | | | | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Faculty of Chemistry and Biosciences, Germany
| |
Collapse
|
20
|
Franzke YJ, Holzer C. Communication: Impact of the current density on paramagnetic NMR properties. J Chem Phys 2022; 157:031102. [DOI: 10.1063/5.0103898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Meta-generalized gradient approximations (meta-GGAs) and local hybrid functionals generally depend on the kinetic energy density τ. For magnetic properties, this necessitates generalizations to ensure gauge invariance. In most implementations, τ is generalized by incorporating the external magnetic field. However, this introduces artifacts in the response of the density matrix and does not satisfy the iso-orbital constraint. Here, we extend previous approaches based on the current density to paramagnetic NMR shieldings and EPR g-tensors. The impact is assessed for main-group compounds and transition-metal complexes considering 25 density functional approximations. It is shown that the current density leads to substantial improvements-especially for the popular Minnesota and SCAN functional families. Thus, we strongly recommend to use the current density generalized τ in paramagnetic NMR and EPR calculations with meta-GGAs.
Collapse
Affiliation(s)
- Yannick J. Franzke
- Fachbereich Chemie, Philipps-Universität Marburg Fachbereich Chemie, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruher Institut für Technologie Fakultät für Physik, Germany
| |
Collapse
|
21
|
Pemberton MJ, Irons TJP, Helgaker T, Teale AM. Revealing the exotic structure of molecules in strong magnetic fields. J Chem Phys 2022; 156:204113. [DOI: 10.1063/5.0092520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A novel implementation for the calculation of molecular gradients under strong magnetic fields is employed at the current-density functional theory level to optimize the geometries of molecular structures, which change significantly under these conditions. An analog of the ab initio random structure search is utilized to determine the ground-state equilibrium geometries for He n and CH n systems at high magnetic field strengths, revealing the most stable structures to be those in high-spin states with a planar geometry aligned perpendicular to the field. The electron and current densities for these systems have also been investigated to develop an explanation of chemical bonding in the strong field regime, providing an insight into the exotic chemistry present in these extreme environments.
Collapse
Affiliation(s)
- Miles J. Pemberton
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Tom J. P. Irons
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| |
Collapse
|
22
|
Lemmens L, De Vriendt X, Bultinck P, Acke G. Analyzing the Behavior of Spin Phases in External Magnetic Fields by Means of Spin-Constrained States. J Chem Theory Comput 2022; 18:3364-3376. [PMID: 35611406 DOI: 10.1021/acs.jctc.1c00953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During molecular dissociation in the presence of an external uniform magnetic field, electrons flip their spin antiparallel to the magnetic field because of the stabilizing influence of the spin Zeeman operator. Although generalized Hartree-Fock descriptions furnish the optimal mean-field energetic description of such bond-breaking processes, they are allowed to break Ŝz symmetry, leading to intricate and unexpected spin phases and phase transitions. In this work, we show that the behavior of these molecular spin phases can be interpreted in terms of spin phase diagrams constructed by constraining states to target expectation values of projected spin. The underlying constrained states offer a complete electronic characterization of the spin phases and spin phase transitions, as they can be analyzed using standard quantum chemical tools. Because the constrained states effectively span the entire phase space, they could provide an excellent starting point for post-Hartree-Fock methods aimed at gaining more electron correlation or regaining spin symmetry.
Collapse
Affiliation(s)
- Laurent Lemmens
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Xeno De Vriendt
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| | - Guillaume Acke
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Ghent, Belgium
| |
Collapse
|
23
|
Pausch A, Holzer C. Linear Response of Current-Dependent Density Functional Approximations in Magnetic Fields. J Phys Chem Lett 2022; 13:4335-4341. [PMID: 35536920 DOI: 10.1021/acs.jpclett.2c01082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This Letter outlines the steps and derivations that are necessary to apply density functional approximations that depend on the current and kinetic energy density rigorously within the framework of linear-response methods, including adiabatic time-dependent current density functional theory. This includes systems with a non-zero current density in the ground state. The necessary exchange-correlation kernel for these density functional approximations is derived, and the matrix elements are given explicitly. Due to the gauge variance of the kinetic energy density in an external magnetic field, having access to the proper current-dependent exchange-correlation kernel is necessary to recover gauge invariance for excited states. As a proof of principle application, the excited states of two small molecules in strong external magnetic fields are calculated using linear-response time-dependent current density functional theory. Finally, the implications of the derived current density-dependent exchange-correlation kernel for systems with strong spin-orbit coupling are discussed.
Collapse
Affiliation(s)
- Ansgar Pausch
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| |
Collapse
|
24
|
Culpitt T, Peters LDM, Tellgren EI, Helgaker T. Analytic calculation of the Berry curvature and diagonal Born–Oppenheimer correction for molecular systems in uniform magnetic fields. J Chem Phys 2022; 156:044121. [DOI: 10.1063/5.0079304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D. M. Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I. Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
25
|
Francotte R, Irons TJP, Teale AM, de Proft F, Geerlings P. Extending conceptual DFT to include external variables: the influence of magnetic fields. Chem Sci 2022; 13:5311-5324. [PMID: 35655570 PMCID: PMC9093152 DOI: 10.1039/d1sc07263c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
An extension of conceptual DFT to include the influence of an external magnetic field is proposed in the context of a program set up to cope with the ever increasing variability of reaction conditions and concomitant reactivity.
Collapse
Affiliation(s)
- Robin Francotte
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Tom J. P. Irons
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Frank de Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
26
|
Glasbrenner M, Graf D, Ochsenfeld C. Benchmarking the Accuracy of the Direct Random Phase Approximation and σ-Functionals for NMR Shieldings. J Chem Theory Comput 2021; 18:192-205. [PMID: 34898213 DOI: 10.1021/acs.jctc.1c00866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for computing NMR shieldings with the direct random phase approximation (RPA) and the closely related σ-functionals [Trushin, E.; Thierbach, A.; Görling, A. Toward chemical accuracy at low computational cost: density functional theory with σ-functionals for the correlation energy. J. Chem. Phys. 2021, 154, 014104] is presented, which is based on a finite-difference approach. The accuracy is evaluated in benchmark calculations using high-quality coupled cluster values as a reference. Our results show that the accuracy of the computed NMR shieldings using direct RPA is strongly dependent on the density functional theory reference orbitals and improves with increasing amounts of exact Hartree-Fock exchange in the functional. NMR shieldings computed with direct RPA using a Hartree-Fock reference are significantly more accurate than MP2 shieldings and comparable to CCSD shieldings. Also, the basis set convergence is analyzed and it is shown that at least triple-zeta basis sets are required for reliable results.
Collapse
Affiliation(s)
- Michael Glasbrenner
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany.,Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
27
|
Stauch T, Ganoe B, Wong J, Lee J, Rettig A, Liang J, Li J, Epifanovsky E, Head-Gordon T, Head-Gordon M. Molecular magnetisabilities computed via finite fields: assessing alternatives to MP2 and revisiting magnetic exaltations in aromatic and antiaromatic species. Mol Phys 2021; 119. [DOI: 10.1080/00268976.2021.1990426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tim Stauch
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Brad Ganoe
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jonathan Wong
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Joonho Lee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Adam Rettig
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jiashu Liang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jie Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
28
|
Topological Analysis of Magnetically Induced Current Densities in Strong Magnetic Fields Using Stagnation Graphs. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stagnation graphs provide a useful tool to analyze the main topological features of the often complicated vector field associated with magnetically induced currents. Previously, these graphs have been constructed using response quantities appropriate for modest applied magnetic fields. We present an implementation capable of producing these graphs in arbitrarily strong magnetic fields, using current-density-functional theory. This enables us to study how the topology of the current vector field changes with the strength and orientation of the applied magnetic field. Applications to CH4, C2H2 and C2H4 are presented. In each case, we consider molecular geometries optimized in the presence of the magnetic field. The stagnation graphs reveal subtle changes to this vector field where the symmetry of the molecule remains constant. However, when the electronic state and symmetry of the corresponding equilibrium geometry changes with increasing field strength, the changes to the stagnation graph are extensive. We expect that the approach presented here will be helpful in interpreting changes in molecular structure and bonding in the strong-field regime.
Collapse
|
29
|
Culpitt T, Peters LDM, Tellgren EI, Helgaker T. Ab initio molecular dynamics with screened Lorentz forces. I. Calculation and atomic charge interpretation of Berry curvature. J Chem Phys 2021; 155:024104. [PMID: 34266267 DOI: 10.1063/5.0055388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The dynamics of a molecule in a magnetic field is significantly different from its zero-field counterpart. One important difference in the presence of a field is the Lorentz force acting on the nuclei, which can be decomposed as the sum of the bare nuclear Lorentz force and a screening force due to the electrons. This screening force is calculated from the Berry curvature and can change the dynamics qualitatively. It is therefore important to include the contributions from the Berry curvature in molecular dynamics simulations in a magnetic field. In this work, we present a scheme for calculating the Berry curvature numerically using a finite-difference technique, addressing challenges related to the arbitrary global phase of the wave function. The Berry curvature is calculated as a function of bond distance for H2 at the restricted and unrestricted Hartree-Fock levels of theory and for CH+ as a function of the magnetic field strength at the restricted Hartree-Fock level of theory. The calculations are carried out using basis sets of contracted Gaussian functions equipped with London phase factors (London orbitals) to ensure gauge-origin invariance. In this paper, we also interpret the Berry curvature in terms of atomic charges and discuss its convergence in basis sets with and without London phase factors. The calculation of the Berry curvature allows for its inclusion in ab initio molecular dynamics simulations in a magnetic field.
Collapse
Affiliation(s)
- Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
30
|
Pagola GI, Ferraro MB, Provasi PF, Pelloni S, Lazzeretti P. Physical achirality in geometrically chiral rotamers of hydrazine and boranylborane molecules. J Comput Chem 2021; 42:1772-1782. [PMID: 34235753 DOI: 10.1002/jcc.26709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/11/2022]
Abstract
The diagonal components and the trace of tensors which account for chiroptical response of the hydrazine molecule N2 H4 , that is, static anapole magnetizability and frequency-dependent electric dipole-magnetic dipole polarisability, are a function of the ϕ ≡ ∠ H─N─N─H dihedral angle. They vanish for symmetry reasons at ϕ = 0° and ϕ = 180°, corresponding respectively to C2v and C2h point group symmetries, that is, cis and trans conformers characterized by the presence of molecular symmetry planes. Nonetheless, vanishing diagonal components have been observed also in the proximity of ∠ H─N─N─H = 90°, in which the point group symmetry is C2 and hydrazine is unquestionably chiral. In the boranylborane molecule B2 H4 , assuming the B─B bond in the y direction, the ayy component of the anapole magnetizability tensor approximately vanishes for dihedral angles ∠ H─B─B─H corresponding to chiral rotamers which belong to D2 symmetry. Such anomalous effects have been ascribed to physical achirality of these conformers, that is, to their inability to sustain electronic current densities inducing either anapole moments, or electric and magnetic dipole moments, about the chiral axis connecting heavier atoms, as well as perpendicular directions. In other terms, the structure of certain geometrically chiral rotamers may be such that neither toroidal nor helical flow, which determine chiroptical phenomenology, can take place in the presence of perturbing fields parallel or orthogonal to the chiral axis.
Collapse
Affiliation(s)
- Gabriel I Pagola
- Departamento de Física, Facultad de Ciencias Exactas y Naturales and IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marta B Ferraro
- Departamento de Física, Facultad de Ciencias Exactas y Naturales and IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Patricio F Provasi
- Department of Physics, University of Northeast, IMIT - CONICET, Corrientes, Argentina
| | - Stefano Pelloni
- Istituto d'Istruzione Superiore Francesco Selmi, Modena, Italy
| | - Paolo Lazzeretti
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
31
|
Laestadius A, Penz M, Tellgren EI. Revisiting density-functional theory of the total current density. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:295504. [PMID: 33848989 DOI: 10.1088/1361-648x/abf784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Density-functional theory (DFT) requires an extra variable besides the electron density in order to properly incorporate magnetic-field effects. In a time-dependent setting, the gauge-invariant, total current density takes that role. A peculiar feature of the static ground-state setting is, however, that the gauge-dependent paramagnetic current density appears as the additional variable instead. An alternative, exact reformulation in terms of the total current density has long been sought but to date a work by Diener is the only available candidate. In that work, an unorthodox variational principle was used to establish a ground-state DFT of the total current density as well as an accompanying Hohenberg-Kohn-like result. We here reinterpret and clarify Diener's formulation based on a maximin variational principle. Using simple facts about convexity implied by the resulting variational expressions, we prove that Diener's formulation is unfortunately not capable of reproducing the correct ground-state energy and, furthermore, that the suggested construction of a Hohenberg-Kohn map contains an irreparable mistake.
Collapse
Affiliation(s)
- Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
| | - Markus Penz
- Department of Mathematics, University of Innsbruck, Technikerstraße 13/7, A-6020 Innsbruck, Austria
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
32
|
Irons TJP, David G, Teale AM. Optimizing Molecular Geometries in Strong Magnetic Fields. J Chem Theory Comput 2021; 17:2166-2185. [PMID: 33724812 PMCID: PMC8047810 DOI: 10.1021/acs.jctc.0c01297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 11/28/2022]
Abstract
An efficient implementation of geometrical derivatives at the Hartree-Fock (HF) and current-density functional theory (CDFT) levels is presented for the study of molecular structure in strong magnetic fields. The required integral derivatives are constructed using a hybrid McMurchie-Davidson and Rys quadrature approach, which combines the amenability of the former to the evaluation of derivative integrals with the efficiency of the latter for basis sets with high angular momentum. In addition to its application to evaluating derivatives of four-center integrals, this approach is also applied to gradients using the resolution-of-the-identity approximation, enabling efficient optimization of molecular structure for many-electron systems under a strong magnetic field. The CDFT contributions have been implemented for a wide range of density functionals up to and including the meta-GGA level with current-density dependent contributions and (range-separated) hybrids for the first time. Illustrative applications are presented to the OH and benzene molecules, revealing the rich and complex chemistry induced by the presence of an external magnetic field. Challenges for geometry optimization in strong fields are highlighted, along with the requirement for careful analysis of the resulting electronic structure at each stationary point. The importance of correlation effects is examined by comparison of results at the HF and CDFT levels. The present implementation of molecular gradients at the CDFT level provides a cost-effective approach to the study of molecular structure under strong magnetic fields, opening up many new possibilities for the study of chemistry in this regime.
Collapse
Affiliation(s)
- Tom J. P. Irons
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, United Kingdom
| | - Grégoire David
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, United Kingdom
| | - Andrew M. Teale
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, United Kingdom
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.
O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
33
|
Sen S, Tellgren EI. Benchmarking Density Functional Approximations for Diamagnetic and Paramagnetic Molecules in Nonuniform Magnetic Fields. J Chem Theory Comput 2021; 17:1480-1496. [PMID: 33576625 PMCID: PMC7948255 DOI: 10.1021/acs.jctc.0c01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 11/28/2022]
Abstract
In this article, correlated studies on a test set of 36 small molecules are carried out with both wavefunction (HF, MP2, CCSD) and density functional (LDA, KT3, cTPSS, cM06-L) methods. The effect of correlation on exotic response properties such as molecular electronic anapole susceptibilities is studied and the performance of the various density functional approximations are benchmarked against CCSD and/or MP2. Atoms and molecules are traditionally classified into "diamagnetic" and "paramagnetic" based on their isotropic response to uniform magnetic fields. However, in this article, we propose a more fine-grained classification of molecular systems on the basis of their response to generally nonuniform magnetic fields. The relation of orientation to different qualitative responses is also considered.
Collapse
Affiliation(s)
- Sangita Sen
- Department
of Chemical Sciences, Indian Institute of
Science, Education and Research, Kolkata 741246, India
| | - Erik I. Tellgren
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
34
|
Kvaal S, Laestadius A, Tellgren E, Helgaker T. Lower Semicontinuity of the Universal Functional in Paramagnetic Current-Density Functional Theory. J Phys Chem Lett 2021; 12:1421-1425. [PMID: 33522817 PMCID: PMC7883387 DOI: 10.1021/acs.jpclett.0c03422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
A cornerstone of current-density functional theory (CDFT) in its paramagnetic formulation is proven. After a brief outline of the mathematical structure of CDFT, the lower semicontinuity and expectation-valuedness of the CDFT constrained-search functional is proven, meaning that there is always a minimizing density matrix in the CDFT constrained-search universal density functional. These results place the mathematical framework of CDFT on the same footing as that of standard DFT.
Collapse
|
35
|
Lazzeretti P. Cubic magnetic response of diamagnetic molecules via third-order electronic current density. J Chem Phys 2020; 153:234112. [PMID: 33353312 DOI: 10.1063/5.0029595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An approach to nonlinear magnetic properties of a diamagnetic molecule in the presence of a strong homogeneous magnetic field B is proposed, introducing the notion of third-order electronic current density and associated fourth-rank current density tensors via a perturbation expansion. It is shown that cubic magnetic response properties, e.g., fourth-rank magnetizability and fourth-rank nuclear magnetic shielding, can be expressed by relationships alternative to those arrived through perturbation theory by means of third-order current density. A sum rule, providing a condition in integral form for electron charge conservation to the third order in B, has been obtained.
Collapse
Affiliation(s)
- Paolo Lazzeretti
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| |
Collapse
|
36
|
Dittmer A, Stoychev GL, Maganas D, Auer AA, Neese F. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2. J Chem Theory Comput 2020; 16:6950-6967. [PMID: 32966067 PMCID: PMC7659039 DOI: 10.1021/acs.jctc.0c00067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In
this work, we explore the accuracy of post-Hartree–Fock
(HF) methods and double-hybrid density functional theory (DFT) for
the computation of solid-state NMR chemical shifts. We apply an embedded
cluster approach and investigate the convergence with cluster size
and embedding for a series of inorganic solids with long-range electrostatic
interactions. In a systematic study, we discuss the cluster design,
the embedding procedure, and basis set convergence using gauge-including
atomic orbital (GIAO) NMR calculations at the DFT and MP2 levels of
theory. We demonstrate that the accuracy obtained for the prediction
of NMR chemical shifts, which can be achieved for molecular systems,
can be carried over to solid systems. An appropriate embedded cluster
approach allows one to apply methods beyond standard DFT even for
systems for which long-range electrostatic effects are important. We find that an embedded
cluster should include at least one sphere of explicit neighbors around
the nuclei of interest, given that a sufficiently large point charge
and boundary effective potential embedding is applied. Using the pcSseg-3
basis set and GIAOs for the computation of nuclear shielding constants,
accuracies of 1.6 ppm for 7Li, 1.5 ppm for 23Na, and 5.1 ppm for 39K as well as 9.3 ppm for 19F, 6.5 ppm for 35Cl, 7.4 ppm for 79Br, and
7.5 ppm for 25Mg as well as 3.8 ppm for 67Zn
can be achieved with MP2. Comparing various DFT functionals with HF
and MP2, we report the superior quality of results for methods that
include post-HF correlation like MP2 and double-hybrid DFT.
Collapse
Affiliation(s)
- Anneke Dittmer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Georgi L Stoychev
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Lazzeretti P. Static and optical anapole magnetizabilities and polarizabilities. J Chem Phys 2020; 153:074102. [DOI: 10.1063/5.0019937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Paolo Lazzeretti
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| |
Collapse
|
38
|
Li X, Govind N, Isborn C, DePrince AE, Lopata K. Real-Time Time-Dependent Electronic Structure Theory. Chem Rev 2020; 120:9951-9993. [DOI: 10.1021/acs.chemrev.0c00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christine Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
39
|
Sun S, Li X. Relativistic Effects in Magnetic Circular Dichroism: Restricted Magnetic Balance and Temperature Dependence. J Chem Theory Comput 2020; 16:4533-4542. [DOI: 10.1021/acs.jctc.0c00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
40
|
Irons TJP, Spence L, David G, Speake BT, Helgaker T, Teale AM. Analyzing Magnetically Induced Currents in Molecular Systems Using Current-Density-Functional Theory. J Phys Chem A 2020; 124:1321-1333. [DOI: 10.1021/acs.jpca.9b10833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tom J. P. Irons
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Lucy Spence
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Grégoire David
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
| | | | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, N-0315 Oslo, Norway
- Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, NG7 2RD Nottingham, U.K
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, N-0315 Oslo, Norway
- Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
| |
Collapse
|
41
|
Austad J, Borgoo A, Tellgren EI, Helgaker T. Bonding in the helium dimer in strong magnetic fields: the role of spin and angular momentum. Phys Chem Chem Phys 2020; 22:23502-23521. [DOI: 10.1039/d0cp03259j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of the electronic spectra and novel bonding mechanisms in helium dimers in strong magnetic fields.
Collapse
Affiliation(s)
- Jon Austad
- Hylleraas Centre for Quantum Molecular Sciences
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Alex Borgoo
- Hylleraas Centre for Quantum Molecular Sciences
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Erik I. Tellgren
- Hylleraas Centre for Quantum Molecular Sciences
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| |
Collapse
|
42
|
Sun S, Beck RA, Williams-Young D, Li X. Simulating Magnetic Circular Dichroism Spectra with Real-Time Time-Dependent Density Functional Theory in Gauge Including Atomic Orbitals. J Chem Theory Comput 2019; 15:6824-6831. [DOI: 10.1021/acs.jctc.9b00632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan A. Beck
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David Williams-Young
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
43
|
Williams‐Young DB, Petrone A, Sun S, Stetina TF, Lestrange P, Hoyer CE, Nascimento DR, Koulias L, Wildman A, Kasper J, Goings JJ, Ding F, DePrince AE, Valeev EF, Li X. The Chronus Quantum software package. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1436] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David B. Williams‐Young
- Computational Research Division Lawrence Berkeley National Laboratory Berkeley California
- Department of Chemistry University of Washington Seattle Washington
| | - Alessio Petrone
- Dipartimento di Scienze Chimiche Università di Napoli “Federico II”, Complesso Universitario di M.S. Angelo Naples Italy
| | - Shichao Sun
- Department of Chemistry University of Washington Seattle Washington
| | - Torin F. Stetina
- Department of Chemistry University of Washington Seattle Washington
| | | | - Chad E. Hoyer
- Department of Chemistry University of Washington Seattle Washington
| | - Daniel R. Nascimento
- Department of Chemistry and Biochemistry Florida State University Tallahassee Florida
| | - Lauren Koulias
- Department of Chemistry University of Washington Seattle Washington
| | - Andrew Wildman
- Department of Chemistry University of Washington Seattle Washington
| | - Joseph Kasper
- Department of Chemistry University of Washington Seattle Washington
| | | | - Feizhi Ding
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry Florida State University Tallahassee Florida
| | | | - Xiaosong Li
- Department of Chemistry University of Washington Seattle Washington
| |
Collapse
|
44
|
Laestadius A, Tellgren EI, Penz M, Ruggenthaler M, Kvaal S, Helgaker T. Kohn–Sham Theory with Paramagnetic Currents: Compatibility and Functional Differentiability. J Chem Theory Comput 2019; 15:4003-4020. [DOI: 10.1021/acs.jctc.9b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I. Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Markus Penz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
45
|
Pagola GI, Ferraro MB, Provasi PF, Pelloni S, Lazzeretti P. Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study. J Chem Theory Comput 2019; 15:961-971. [DOI: 10.1021/acs.jctc.8b01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- G. I. Pagola
- Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, and IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires, Argentina
| | - M. B. Ferraro
- Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, and IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires, Argentina
| | - P. F. Provasi
- Department of Physics−IMIT, Northeastern University−CONICET, Corrientes, Argentina
| | - S. Pelloni
- Istituto d’istruzione superiore Francesco Selmi, via Leonardo da Vinci, 300, 41126 Modena, Italy
| | - P. Lazzeretti
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| |
Collapse
|
46
|
Sun S, Williams-Young DB, Stetina TF, Li X. Generalized Hartree–Fock with Nonperturbative Treatment of Strong Magnetic Fields: Application to Molecular Spin Phase Transitions. J Chem Theory Comput 2018; 15:348-356. [DOI: 10.1021/acs.jctc.8b01140] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Torin F. Stetina
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
47
|
Sen S, Tellgren EI. A local tensor that unifies kinetic energy density and vorticity in density functional theory. J Chem Phys 2018; 149:144109. [DOI: 10.1063/1.5041931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sangita Sen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I. Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
48
|
Stoychev GL, Auer AA, Neese F. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. J Chem Theory Comput 2018; 14:4756-4771. [DOI: 10.1021/acs.jctc.8b00624] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgi L. Stoychev
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
49
|
Reimann S, Borgoo A, Austad J, Tellgren EI, Teale AM, Helgaker T, Stopkowicz S. Kohn–Sham energy decomposition for molecules in a magnetic field. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1495849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sarah Reimann
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Alex Borgoo
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Jon Austad
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Erik I. Tellgren
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Andrew M. Teale
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
- Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Trygve Helgaker
- Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Stella Stopkowicz
- Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
50
|
Kumar C, Fliegl H, Sundholm D. Relation Between Ring Currents and Hydrogenation Enthalpies for Assessing the Degree of Aromaticity. J Phys Chem A 2017; 121:7282-7289. [DOI: 10.1021/acs.jpca.7b07607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandan Kumar
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.
O. Box 1033, N-1315 Blindern, Norway
| | - Heike Fliegl
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.
O. Box 1033, N-1315 Blindern, Norway
| | - Dage Sundholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtanens Plats
1, FIN-00014 Helsinki, Finland
| |
Collapse
|