1
|
Windom ZW, Perera A, Bartlett RJ. An "ultimate" coupled cluster method based entirely on T2. J Chem Phys 2024; 161:184106. [PMID: 39526925 DOI: 10.1063/5.0228453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Electronic structure methods built around double-electron excitations have a rich history in quantum chemistry. However, it seems to be the case that such methods are only suitable in particular situations and are not naturally equipped to simultaneously handle the variety of electron correlations that might be present in chemical systems. To this end, the current work seeks a computationally efficient, low-rank, "ultimate" coupled cluster method based exclusively on T2 and its products that can effectively emulate more "complete" methods that explicitly consider higher-rank, T2m, operators. We introduce a hierarchy of methods designed to systematically account for higher, even order cluster operators, such as T4, T6, …, T2m, by invoking tenets of the factorization theorem of many-body perturbation theory (MBPT) and expectation-value coupled cluster theory. It is shown that each member within this methodological hierarchy is defined such that both the wavefunction and energy are correct through some order in MBPT and can be extended up to arbitrarily high orders in T2. The efficacy of such approximations are determined by studying the potential energy surface of several closed and open-shell molecules. We find that the proposed hierarchy of augmented T2 methods essentially reduces to standard CCD for problems where dynamic electron correlations dominate but offer improvements in situations where non-dynamic and static correlations become relevant. A notable highlight of this work is that the cheapest methods in this hierarchy-which are correct through fifth-order in MBPT-consistently emulate the behavior of the O(N10) CCDQ method, yet only require a O(N6) algorithm by virtue of factorized intermediates.
Collapse
Affiliation(s)
- Zachary W Windom
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
2
|
Višňák J, Brandejs J, Máté M, Visscher L, Legeza Ö, Pittner J. DMRG-Tailored Coupled Cluster Method in the 4c-Relativistic Domain: General Implementation and Application to the NUHFI and NUF 3 Molecules. J Chem Theory Comput 2024; 20:8862-8875. [PMID: 39382265 PMCID: PMC11500409 DOI: 10.1021/acs.jctc.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Heavy atom compounds represent a challenge for computational chemistry due to the need for simultaneous treatment of relativistic and correlation effects. Often such systems also exhibit strong correlation, which hampers the application of perturbation theory or single-reference coupled cluster (CC) methods. As a viable alternative, we have proposed externally correcting the CC method using the density matrix renormalization group (DMRG) wave functions, yielding the DMRG-tailored CC method. In a previous paper [J. Chem. Phys. 2020, 152, 174107], we reported a first implementation of this method in the relativistic context, which was restricted to molecules with real double group symmetry. In this work, we present a fully general implementation of the method, covering complex and quaternion double groups as well. The 4c-TCC method thus becomes applicable to polyatomic molecules, including heavy atoms. For the assessment of the method, we performed calculations of the chiral uranium compound NUHFI, which was previously studied in the context of the enhancement of parity violation effects. In particular, we performed calculations of a cut of the potential energy surface of this molecule along the stretching of the N-U bond, where the system exhibits strong multireference character. Since there are no experimental data for NUHFI, we have performed also an analogous study of the (more symmetric) NUF3 molecule, where the vibrational frequency of the N-U bond can be compared with spectroscopic data.
Collapse
Affiliation(s)
- Jakub Višňák
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech
Republic
- Middle
East Technical University, Üniversiteler
Mahallesi, Dumlupınar
Bulvarı No:1, 06800 Çankaya Ankara, Türkiye
| | - Jan Brandejs
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech
Republic
- Faculty
of Science, Humanities, and Education, Technical
University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Mihály Máté
- Strongly
Correlated Systems “Lendület” Research Group, Wigner Research Centre for Physics, Konkoly-Thege Miklós út
29-33, H-1121 Budapest, Hungary
- Department
of Mathematics, Technical University of
Munich, Boltzmannstr.
3, 85748 Garching, Germany
| | - Lucas Visscher
- Department
of Chemistry and Pharmaceutical Sciences, De Boelelaan 1108, Vrije Universiteit Amsterdam, NL-1081 HZ Amsterdam, Netherlands
| | - Örs Legeza
- Strongly
Correlated Systems “Lendület” Research Group, Wigner Research Centre for Physics, Konkoly-Thege Miklós út
29-33, H-1121 Budapest, Hungary
- Institute
for Advanced Study, Technical University
of Munich, Lichtenbergstrasse
2a, 85748 Garching, Germany
| | - Jiří Pittner
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
3
|
Leszczyk A, Dome T, Tecmer P, Kedziera D, Boguslawski K. Resolving the π-assisted U-N σ f-bond formation using quantum information theory. Phys Chem Chem Phys 2022; 24:21296-21307. [PMID: 36043327 DOI: 10.1039/d2cp03377a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We model the potential energy profiles of the UO2 (NCO)Cl2- → NUOCl2- + CO2 reaction pathway [Y. Gong, V. Vallet, M. del Carmen Michelini, D. Rios and J. K. Gibson, J. Phys. Chem. A, 2014, 118, 325-330] using different pair coupled-cluster doubles (pCCD) methods. Specifically, we focus on pCCD and pCCD-tailored coupled cluster models in predicting relative energies for the various intermediates and transition states along the reaction coordinate. Furthermore, we augment our study on energetics with an orbital-pair correlation analysis of the complete reaction pathway that features two distinct paths. Our analysis of orbital correlations sheds new light on the formation and breaking of respective bonds between the uranium, oxygen, and nitrogen atoms along the reaction coordinates where the "yl" bond is broken and a nitrido compound formed. Specifically, the strengthening of the U-N σf-bond is assisted by a π-type interaction that is delocalized over the C-N-U backbone of the UO2 (NCO)Cl2- complex.
Collapse
Affiliation(s)
- Aleksandra Leszczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Tibor Dome
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland.,Institute of Astronomy, University of Cambridge, Madingley Road Cambridge, CB3 0HA, UK
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Dariusz Kedziera
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Baiardi A, Lesiuk M, Reiher M. Explicitly Correlated Electronic Structure Calculations with Transcorrelated Matrix Product Operators. J Chem Theory Comput 2022; 18:4203-4217. [PMID: 35666238 DOI: 10.1021/acs.jctc.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present the first implementation of the transcorrelated electronic Hamiltonian in an optimization procedure for matrix product states by the density matrix renormalization group (DMRG) algorithm. In the transcorrelation ansatz, the electronic Hamiltonian is similarity-transformed with a Jastrow factor to describe the cusp in the wave function at electron-electron coalescence. As a result, the wave function is easier to approximate accurately with the conventional expansion in terms of one-particle basis functions and Slater determinants. The transcorrelated Hamiltonian in first quantization comprises up to three-body interactions, which we deal with in the standard way by applying robust density fitting to two- and three-body integrals entering the second-quantized representation of this Hamiltonian. The lack of hermiticity of the transcorrelated Hamiltonian is taken care of along the lines of the first work on transcorrelated DMRG [ J. Chem. Phys. 2020, 153, 164115] by encoding it as a matrix product operator and optimizing the corresponding ground state wave function with imaginary-time time-dependent DMRG. We demonstrate our quantum chemical transcorrelated DMRG approach at the example of several atoms and first-row diatomic molecules. We show that transcorrelation improves the convergence rate to the complete basis set limit in comparison to conventional DMRG. Moreover, we study extensions of our approach that aim at reducing the cost of handling the matrix product operator representation of the transcorrelated Hamiltonian.
Collapse
Affiliation(s)
- Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Michał Lesiuk
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Vitale E, Li Manni G, Alavi A, Kats D. FCIQMC-Tailored Distinguishable Cluster Approach: Open-Shell Systems. J Chem Theory Comput 2022; 18:3427-3437. [PMID: 35522217 PMCID: PMC9202306 DOI: 10.1021/acs.jctc.2c00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A recently proposed
tailored approach based on the distinguishable
cluster method and the stochastic FCI solver, FCIQMC [J. Chem.
Theory Comput. 2020, 16, 5621], is extended to open-shell
molecular systems. The method is employed to calculate spin gaps of
various Fe(II) complexes, including a Fe(II) porphyrin model system.
Both distinguishable cluster and fully relaxed CASSCF natural orbitals
were used in this work as reference for the subsequent tailored distinguishable
cluster calculations. The distinguishable cluster natural orbitals
occupation numbers were also used as an aid to the selection of the
active space. The effect of the active space sizes and of the explicit
correlation correction (F12) onto the predicted spin gaps is investigated.
The tailored distinguishable cluster with singles and doubles yields
consistently more accurate results compared to the tailored coupled
cluster with singles and doubles.
Collapse
Affiliation(s)
- Eugenio Vitale
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Leszczyk A, Máté M, Legeza Ö, Boguslawski K. Assessing the Accuracy of Tailored Coupled Cluster Methods Corrected by Electronic Wave Functions of Polynomial Cost. J Chem Theory Comput 2021; 18:96-117. [PMID: 34965121 DOI: 10.1021/acs.jctc.1c00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tailored coupled cluster theory represents a computationally inexpensive way to describe static and dynamical electron correlation effects. In this work, we scrutinize the performance of various coupled cluster methods tailored by electronic wave functions of polynomial cost. Specifically, we focus on frozen-pair coupled cluster (fpCC) methods, which are tailored by pair-coupled cluster doubles (pCCD), and coupled cluster theory tailored by matrix product state wave functions optimized by the density matrix renormalization group (DMRG) algorithm. As test system, we selected a set of various small- and medium-sized molecules containing diatomics (N2, F2, C2, CN+, CO, BN, BO+, and Cr2) and molecules (ammonia, ethylene, cyclobutadiene, benzene, hydrogen chains, rings, and cuboids) for which the conventional single-reference coupled cluster singles and doubles (CCSD) method is not able to produce accurate results for spectroscopic constants, potential energy surfaces, and barrier heights. Most importantly, DMRG-tailored and pCCD-tailored approaches yield similar errors in spectroscopic constants and potential energy surfaces compared to accurate theoretical and/or experimental reference data. Although fpCC methods provide a reliable description for the dissociation pathway of molecules featuring single and quadruple bonds, they fail in the description of triple or hextuple bond-breaking processes or avoided crossing regions.
Collapse
Affiliation(s)
- Aleksandra Leszczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Mihály Máté
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary.,Department of Physics of Complex Systems, Eötvös Loránd University, Pf. 32, H-1518 Budapest, Hungary
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary.,Institute for Advanced Study, Technical University of Munich, 80333 Munich, Germany
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Mörchen M, Freitag L, Reiher M. Tailored coupled cluster theory in varying correlation regimes. J Chem Phys 2020; 153:244113. [PMID: 33380106 DOI: 10.1063/5.0032661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The tailored coupled cluster (TCC) approach is a promising ansatz that preserves the simplicity of single-reference coupled cluster theory while incorporating a multi-reference wave function through amplitudes obtained from a preceding multi-configurational calculation. Here, we present a detailed analysis of the TCC wave function based on model systems, which require an accurate description of both static and dynamic correlation. We investigate the reliability of the TCC approach with respect to the exact wave function. In addition to the error in the electronic energy and standard coupled cluster diagnostics, we exploit the overlap of TCC and full configuration interaction wave functions as a quality measure. We critically review issues, such as the required size of the active space, size-consistency, symmetry breaking in the wave function, and the dependence of TCC on the reference wave function. We observe that possible errors caused by symmetry breaking can be mitigated by employing the determinant with the largest weight in the active space as reference for the TCC calculation. We find the TCC model to be promising in calculations with active orbital spaces which include all orbitals with a large single-orbital entropy, even if the active spaces become very large and then may require modern active-space approaches that are not restricted to comparatively small numbers of orbitals. Furthermore, utilizing large active spaces can improve on the TCC wave function approximation and reduce the size-consistency error because the presence of highly excited determinants affects the accuracy of the coefficients of low-excited determinants in the active space.
Collapse
Affiliation(s)
- Maximilian Mörchen
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Leon Freitag
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Bartlett RJ, Park YC, Bauman NP, Melnichuk A, Ranasinghe D, Ravi M, Perera A. Index of multi-determinantal and multi-reference character in coupled-cluster theory. J Chem Phys 2020; 153:234103. [PMID: 33353328 DOI: 10.1063/5.0029339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A full configuration interaction calculation (FCI) ultimately defines the innate molecular orbital description of a molecule. Its density matrix and the natural orbitals obtained from it quantify the difference between having N-dominantly occupied orbitals in a reference determinant for a wavefunction to describe N-correlated electrons and how many of those N-electrons are left to the remaining virtual orbitals. The latter provides a measure of the multi-determinantal character (MDC) required to be in a wavefunction. MDC is further split into a weak correlation part and a part that indicates stronger correlation often called multi-reference character (MRC). If several virtual orbitals have high occupation numbers, then one might argue that these additional orbitals should be allowed to have a larger role in the calculation, as in MR methods, such as MCSCF, MR-CI, or MR-coupled-cluster (MR-CC), to provide adequate approximations toward the FCI. However, there are problems with any of these MR methods that complicate the calculations compared to the uniformity and ease of application of single-reference CC calculations (SR-CC) and their operationally single-reference equation-of-motion (EOM-CC) extensions. As SR-CC theory is used in most of today's "predictive" calculations, an assessment of the accuracy of SR-CC at some truncation of the cluster operator would help to quantify how large an issue MRC actually is in a calculation, and how it might be alleviated while retaining the convenient SR computational character of CC/EOM-CC. This paper defines indices that identify MRC situations and help assess how reliable a given calculation is.
Collapse
Affiliation(s)
- Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA
| | - Young Choon Park
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA
| | - Nicholas P Bauman
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA
| | - Ann Melnichuk
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA
| | - Duminda Ranasinghe
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Moneesha Ravi
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA
| |
Collapse
|
9
|
Vitale E, Alavi A, Kats D. FCIQMC-Tailored Distinguishable Cluster Approach. J Chem Theory Comput 2020; 16:5621-5634. [PMID: 32786911 PMCID: PMC7482318 DOI: 10.1021/acs.jctc.0c00470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 11/28/2022]
Abstract
The tailored approach is applied to the distinguishable cluster method together with a stochastic FCI solver (FCIQMC). It is demonstrated that the new method is more accurate than the corresponding tailored coupled cluster and the pure distinguishable cluster methods. An F12 correction for tailored methods and FCIQMC is introduced, which drastically improves the basis set convergence. A new black-box approach to define the active space using the natural orbitals from the distinguishable cluster is evaluated and found to be a convenient alternative to the usual CASSCF approach.
Collapse
Affiliation(s)
- Eugenio Vitale
- Max Planck Institute for
Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for
Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max Planck Institute for
Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Mališ M, Luber S. Trajectory Surface Hopping Nonadiabatic Molecular Dynamics with Kohn–Sham ΔSCF for Condensed-Phase Systems. J Chem Theory Comput 2020; 16:4071-4086. [DOI: 10.1021/acs.jctc.0c00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Momir Mališ
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
11
|
Perera A, Bartlett RJ, Sanders BA, Lotrich VF, Byrd JN. Advanced concepts in electronic structure (ACES) software programs. J Chem Phys 2020; 152:184105. [DOI: 10.1063/5.0002581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ajith Perera
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32605, USA
| | - Rodney J. Bartlett
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32605, USA
| | - Beverly A. Sanders
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32605, USA
| | | | | |
Collapse
|
12
|
Lang J, Antalík A, Veis L, Brandejs J, Brabec J, Legeza Ö, Pittner J. Near-Linear Scaling in DMRG-Based Tailored Coupled Clusters: An Implementation of DLPNO-TCCSD and DLPNO-TCCSD(T). J Chem Theory Comput 2020; 16:3028-3040. [PMID: 32275424 DOI: 10.1021/acs.jctc.0c00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present a new implementation of density matrix renormalization group based tailored coupled clusters method (TCCSD), which employs the domain-based local pair natural orbital approach (DLPNO). Compared to the previous local pair natural orbital (LPNO) version of the method, the new implementation is more accurate, offers more favorable scaling, and provides more consistent behavior across the variety of systems. On top of the singles and doubles, we include the perturbative triples correction (T), which is able to retrieve even more dynamic correlation. The methods were tested on three systems: tetramethyleneethane, oxo-Mn(Salen), and iron(II)-porphyrin model. The first two were revisited to assess the performance with respect to LPNO-TCCSD. For oxo-Mn(Salen), we retrieved between 99.8 and 99.9% of the total canonical correlation energy which is an improvement of 0.2% over the LPNO version in less than 63% of the total LPNO runtime. Similar results were obtained for iron(II)-porphyrin. When the perturbative triples correction was employed, irrespective of the active space size or system, the obtained energy differences between two spin states were within the chemical accuracy of 1 kcal/mol using the default DLPNO settings.
Collapse
Affiliation(s)
- Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Andrej Antalík
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jan Brandejs
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
13
|
Brandejs J, Višňák J, Veis L, Maté M, Legeza Ö, Pittner J. Toward DMRG-tailored coupled cluster method in the 4c-relativistic domain. J Chem Phys 2020; 152:174107. [DOI: 10.1063/1.5144974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jan Brandejs
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Jakub Višňák
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
- Czech Academic City in Erbil, Yassin Najar Street, Kurani Ankawa, Erbil, Kurdistan, Region of Iraq
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Mihály Maté
- Strongly Correlated Systems “Lendület” Research Group, Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
- Department of Physics of Complex Systems, Eötvös Loránd University, Pf. 32, H-1518 Budapest, Hungary
| | - Örs Legeza
- Strongly Correlated Systems “Lendület” Research Group, Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
14
|
Antalík A, Veis L, Brabec J, Demel O, Legeza Ö, Pittner J. Toward the efficient local tailored coupled cluster approximation and the peculiar case of oxo-Mn(Salen). J Chem Phys 2019; 151:084112. [PMID: 31470730 DOI: 10.1063/1.5110477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We introduce a new implementation of the coupled cluster method with single and double excitations tailored by the matrix product state wave functions (DMRG-TCCSD), which employs the local pair natural orbital (LPNO) approach. By exploiting locality in the coupled cluster stage of the calculation, we were able to remove some of the limitations that hindered the application of the canonical version of the method to larger systems and/or with larger basis sets. We assessed the accuracy of the approximation using two systems: tetramethyleneethane (TME) and oxo-Mn(Salen). Using the default cut-off parameters, we were able to recover over 99.7% and 99.8% of the canonical correlation energy for the triplet and singlet state of TME, respectively. In the case of oxo-Mn(Salen), we found that the amount of retrieved canonical correlation energy depends on the size of the complete active space (CAS)-we retrieved over 99.6% for the larger 27 orbital CAS and over 99.8% for the smaller 22 orbital CAS. The use of LPNO-TCCSD allowed us to perform these calculations up to quadruple-ζ basis set, amounting to 1178 basis functions. Moreover, we examined dependence of the ground state of oxo-Mn(Salen) on the CAS composition. We found that the inclusion of 4dxy orbital plays an important role in stabilizing the singlet state at the DMRG-CASSCF level via double-shell effect. However, by including dynamic correlation, the ground state was found to be triplet regardless of the size of the basis set or the composition of CAS, which is in agreement with previous findings by canonical DMRG-TCCSD in smaller basis.
Collapse
Affiliation(s)
- Andrej Antalík
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Ondřej Demel
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
15
|
Manna S, Ray SS, Chattopadhyay S, Chaudhuri RK. A simplified account of the correlation effects to bond breaking processes: The Brillouin-Wigner perturbation theory using a multireference formulation. J Chem Phys 2019. [DOI: 10.1063/1.5097657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shovan Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Suvonil Sinha Ray
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | | |
Collapse
|
16
|
Bao JJ, Truhlar DG. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree–Fock Orbitals. J Chem Theory Comput 2019; 15:5308-5318. [DOI: 10.1021/acs.jctc.9b00535] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-043, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-043, United States
| |
Collapse
|
17
|
Bauman NP, Bylaska EJ, Krishnamoorthy S, Low GH, Wiebe N, Granade CE, Roetteler M, Troyer M, Kowalski K. Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms. J Chem Phys 2019; 151:014107. [PMID: 31272173 DOI: 10.1063/1.5094643] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we discuss the extension of the recently introduced subsystem embedding subalgebra coupled cluster (SES-CC) formalism to unitary CC formalisms. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced complete active space (CAS) effective Hamiltonian. In contrast to the standard single-reference SES-CC theory, the unitary CC approach results in a Hermitian form of the effective Hamiltonian. Additionally, for the double unitary CC (DUCC) formalism, the corresponding CAS eigenvalue problem provides a rigorous separation of external cluster amplitudes that describe dynamical correlation effects-used to define the effective Hamiltonian-from those corresponding to the internal (inside the active space) excitations that define the components of eigenvectors associated with the energy of the entire system. The proposed formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS. In principle, this technique can be extended to any type of CAS representing an arbitrary energy window of a quantum system. The Hermitian character of low-dimensional effective Hamiltonians makes them an ideal target for several types of full configuration interaction type eigensolvers. As an example, we also discuss the algebraic form of the perturbative expansions of the effective DUCC Hamiltonians corresponding to composite unitary CC theories and discuss possible algorithms for hybrid classical and quantum computing. Given growing interest in quantum computing, we provide energies for H2 and Be systems obtained with the quantum phase estimator algorithm available in the Quantum Development Kit for the approximate DUCC Hamiltonians.
Collapse
Affiliation(s)
- Nicholas P Bauman
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Eric J Bylaska
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Sriram Krishnamoorthy
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Guang Hao Low
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Nathan Wiebe
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Christopher E Granade
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Martin Roetteler
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Matthias Troyer
- Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
18
|
Kowalski K. Properties of coupled-cluster equations originating in excitation sub-algebras. J Chem Phys 2018. [DOI: 10.1063/1.5010693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
19
|
Combined complete active space configuration interaction and perturbation theory applied to conformational energy prototypes: Rotation and inversion barriers. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Bauman NP, Shen J, Piecuch P. Combining active-space coupled-cluster approaches with moment energy corrections via the CC(P;Q) methodology: connected quadruple excitations. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1350291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nicholas P. Bauman
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Veis L, Antalík A, Brabec J, Neese F, Legeza Ö, Pittner J. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. J Phys Chem Lett 2016; 7:4072-4078. [PMID: 27682626 DOI: 10.1021/acs.jpclett.6b01908] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the past decade, the quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as the method of choice for calculations of strongly correlated molecular systems. Despite its favorable scaling, it is in practice not suitable for computations of dynamic correlation. We present a novel method for accurate "post-DMRG" treatment of dynamic correlation based on the tailored coupled cluster (CC) theory in which the DMRG method is responsible for the proper description of nondynamic correlation, whereas dynamic correlation is incorporated through the framework of the CC theory. We illustrate the potential of this method on prominent multireference systems, in particular, N2 and Cr2 molecules and also oxo-Mn(Salen), for which we have performed the first post-DMRG computations in order to shed light on the energy ordering of the lowest spin states.
Collapse
Affiliation(s)
- Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Andrej Antalík
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion , Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics , H-1525 Budapest, Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
22
|
Kats D, Kreplin D, Werner HJ, Manby FR. Accurate thermochemistry from explicitly correlated distinguishable cluster approximation. J Chem Phys 2015; 142:064111. [DOI: 10.1063/1.4907591] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Daniel Kats
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - David Kreplin
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Frederick R. Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS,United Kingdom
| |
Collapse
|
23
|
Bertels LW, Mazziotti DA. Accurate prediction of diradical chemistry from a single-reference density-matrix method: Model application to the bicyclobutane to gauche-1,3-butadiene isomerization. J Chem Phys 2014; 141:044305. [PMID: 25084908 DOI: 10.1063/1.4890117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multireference correlation in diradical molecules can be captured by a single-reference 2-electron reduced-density-matrix (2-RDM) calculation with only single and double excitations in the 2-RDM parametrization. The 2-RDM parametrization is determined by N-representability conditions that are non-perturbative in their treatment of the electron correlation. Conventional single-reference wave function methods cannot describe the entanglement within diradical molecules without employing triple- and potentially even higher-order excitations of the mean-field determinant. In the isomerization of bicyclobutane to gauche-1,3-butadiene the parametric 2-RDM (p2-RDM) method predicts that the diradical disrotatory transition state is 58.9 kcal/mol above bicyclobutane. This barrier is in agreement with previous multireference calculations as well as recent Monte Carlo and higher-order coupled cluster calculations. The p2-RDM method predicts the Nth natural-orbital occupation number of the transition state to be 0.635, revealing its diradical character. The optimized geometry from the p2-RDM method differs in important details from the complete-active-space self-consistent-field geometry used in many previous studies including the Monte Carlo calculation.
Collapse
Affiliation(s)
- Luke W Bertels
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|