1
|
Masara F, Benboudjema F, Honorio T. Cavitation, Hydrophilicity, and Sorption Hysteresis in C-S-H Pores: Coupled Effects of Relative Humidity and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27286-27298. [PMID: 39703024 DOI: 10.1021/acs.langmuir.4c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Sorption processes are critical for the drying and durability of cement-based materials, directly affecting their thermal properties. Temperature can substantially influence these processes. This work uses molecular simulations to study sorption in C-S-H pores under varying temperatures and relative humidity, considering pore sizes from the gel to the interlayer scale (between 11.6 and 106 Å). We quantify the temperature and pore-size dependence of water cavitation and sorption hysteresis in the C-S-H pores. The critical pore sizes for the disappearance of hysteresis and the reversibility of capillary condensation are identified, with the former being directly associated with cavitation. We show that cavitation occurs only in gel (meso)pores when they are above the critical pore size and below the critical temperature for cavitation. Interlayer pores, a major class of micropores in C-S-H, are not subjected to cavitation. Cavitation in C-S-H pores is homogeneous, occurring in the bulk-like zone of mesopores. The hydrophilicity of the C-S-H surface increases with the temperature, making heterogeneous cavitation less likely to occur. The results above were obtained consistently with three different force field parametrizations, building confidence in their relevance to describe C-S-H interfacial behavior. Finally, we demonstrate that macroscopic considerations for pore emptying and filling, such as the Kelvin-Cohan and equilibrium Derjaguin-Broekhoff-de Boer equations, are not valid or inaccurate when desorption occurs through cavitation in C-S-H. These results are relevant to understanding the sorption processes in other nanolayered adsorbing materials.
Collapse
Affiliation(s)
- Fatima Masara
- Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS─Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Farid Benboudjema
- Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS─Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Tulio Honorio
- Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS─Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Li X, Fan Y, Wu C, Wang L. Advances in Molecular Dynamics-Based Characterization of Water and Ion Adsorption and Transport in C-S-H Gels. Polymers (Basel) 2024; 16:3285. [PMID: 39684030 DOI: 10.3390/polym16233285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Cementitious material durability is affected by the transport and adsorption of water molecules and ions in the nanopore channels of cement hydration products. Hydrated calcium silicate (C-S-H) accounts for about 70% of the hydration product. It determines the mechanical properties of cementitious materials and their internal transport properties. The molecular dynamics method provides a complementary understanding of experimental and theoretical results. It can further reveal water molecules and ions' adsorption and transport mechanisms in C-S-H gel pores. This review article provides an overview of the current state of research on the structure of C-S-H gels and the adsorption and transport properties of water molecules and ions within C-S-H gels, as studied through molecular dynamics simulations. This paper summarizes the results of the molecular dynamics-based adsorption transport properties of water molecules and ions in C-S-H gels. The deficiencies in the current study were analyzed, and the fundamental problems to be solved and further research directions were clarified to provide scientific references for revealing the structural properties of C-S-H gels using molecular dynamics.
Collapse
Affiliation(s)
- Xinjie Li
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yingfang Fan
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| | - Chang Wu
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lei Wang
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
3
|
Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films. Nat Rev Chem 2022; 6:598-613. [PMID: 37117714 DOI: 10.1038/s41570-022-00418-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 01/02/2023]
Abstract
The calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO2 capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO2, permanently sequestering it in the form of stable metal carbonate minerals, with the CO2-H2O composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films. In the extreme of pores filled with a CO2-dominant fluid, carbonation reactions are confined to angstrom to nanometre-thick water films coating mineral surfaces, which enable metal cation release, transport, nucleation and crystallization of metal carbonate minerals. Although seemingly counterintuitive, laboratory studies have demonstrated facile carbonation rates in these low-water environments, for which a better mechanistic understanding has come to light in recent years. The overarching objective of this Review is to delineate the unique underlying molecular-scale reaction mechanisms that govern CO2 mineralization in these reactive and dynamic quasi-2D interfaces. We highlight the importance of understanding unique properties in thin water films, such as how water dielectric properties, and consequently ion solvation and hydration behaviour, can change under nanoconfinement. We conclude by identifying important frontiers for future work and opportunities to exploit these fundamental chemical insights for decarbonization technologies in the twenty-first century.
Collapse
|
4
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
5
|
Hur J, Abousleiman YN, Hull KL, Abdolhosseini Qomi MJ. Reactive force fields for modeling oxidative degradation of organic matter in geological formations. RSC Adv 2021; 11:29298-29307. [PMID: 35479567 PMCID: PMC9040638 DOI: 10.1039/d1ra04397h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
In an attempt to better explore organic matter reaction and properties, at depth, to oxidative fluid additives, we have developed a new ReaxFF potential to model and describe the oxidative decompositions of aliphatic and aromatic hydrocarbons in the presence of the oxychlorine ClO n - oxidizers. By carefully adjusting the new H/C/O/Cl parameters, we show that the potential energies in both training and validation sets correlate well with calculated density functional theory (DFT) energies. Our parametrization yields a reliable empirical reactive force field with an RMS error of ∼1.57 eV, corresponding to a 1.70% average error. At this accuracy level, the reactive force field provides a reliable atomic-level picture of thermodynamically favorable reaction pathways governing oxidative degradation of H/C/O/Cl compounds. We demonstrate this capability by studying the structural degradation of small aromatic and aliphatic hydrocarbons in the presence of oxychlorine oxidizers in aqueous environments. We envision that such reactive force fields will be critical in understanding the oxidation processes of organic matter in geological reservoirs and the design of the next generation of reactive fluids for enhanced shale gas recovery and improved carbon dioxide adsorption and sequestration.
Collapse
Affiliation(s)
- Jaewoong Hur
- Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California E4130 Engineering Gateway Irvine CA 92697-2175 USA
| | - Younane N Abousleiman
- Integrated PoroMechanics Institute, School of Geosciences, The University of Oklahoma Norman Oklahoma 73019 USA
| | - Katherine L Hull
- Aramco Services Company, Aramco Research Center - Houston 16300 Park Row Houston Texas 77084 USA
| | - Mohammad Javad Abdolhosseini Qomi
- Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California E4130 Engineering Gateway Irvine CA 92697-2175 USA
| |
Collapse
|
6
|
Elucidating the constitutive relationship of calcium-silicate-hydrate gel using high throughput reactive molecular simulations and machine learning. Sci Rep 2020; 10:21336. [PMID: 33288786 PMCID: PMC7721899 DOI: 10.1038/s41598-020-78368-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/05/2022] Open
Abstract
Prediction of material behavior using machine learning (ML) requires consistent, accurate, and, representative large data for training. However, such consistent and reliable experimental datasets are not always available for materials. To address this challenge, we synergistically integrate ML with high-throughput reactive molecular dynamics (MD) simulations to elucidate the constitutive relationship of calcium–silicate–hydrate (C–S–H) gel—the primary binding phase in concrete formed via the hydration of ordinary portland cement. Specifically, a highly consistent dataset on the nine elastic constants of more than 300 compositions of C–S–H gel is developed using high-throughput reactive simulations. From a comparative analysis of various ML algorithms including neural networks (NN) and Gaussian process (GP), we observe that NN provides excellent predictions. To interpret the predicted results from NN, we employ SHapley Additive exPlanations (SHAP), which reveals that the influence of silicate network on all the elastic constants of C–S–H is significantly higher than that of water and CaO content. Additionally, the water content is found to have a more prominent influence on the shear components than the normal components along the direction of the interlayer spaces within C–S–H. This result suggests that the in-plane elastic response is controlled by water molecules whereas the transverse response is mainly governed by the silicate network. Overall, by seamlessly integrating MD simulations with ML, this paper can be used as a starting point toward accelerated optimization of C–S–H nanostructures to design efficient cementitious binders with targeted properties.
Collapse
|
7
|
Montazeri K, Abdolhosseini Qomi MJ, Won Y. Solid-like Behaviors Govern Evaporative Transport in Adsorbed Water Nanofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53416-53424. [PMID: 33191726 DOI: 10.1021/acsami.0c13647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The thermophysical attributes of water molecules confined in a sub-nanometer thickness significantly differ from those in bulk liquid where their molecular behaviors start governing interfacial physics at the nanoscale. In this study, we elucidate nanothin film evaporation by employing a computational approach from a molecular perspective. As the liquid thickness decreases, the solid-like characteristics of adsorbed water nanofilms make the resistance at solid-liquid interfaces or Kapitza resistance significant. Kapitza resistances not only show a strong correlation with the surface wettability but also dominate the overall thermal resistance during evaporation rather than the resistance at evaporating liquid-vapor interfaces. Once the liquid thickness reaches the critical value of 0.5-0.6 nm, the evaporation kinetics is suppressed due to the excessive forces between the liquid and solid atoms. The understanding of molecular-level behaviors explains how a hydrophilic surface plays a role in determining evaporation rates from an atomistic perspective.
Collapse
Affiliation(s)
- Kimia Montazeri
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California 92697, United States
| | | | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
8
|
Lyngdoh GA, Kumar R, Krishnan NMA, Das S. Dynamics of confined water and its interplay with alkali cations in sodium aluminosilicate hydrate gel: insights from reactive force field molecular dynamics. Phys Chem Chem Phys 2020; 22:23707-23724. [PMID: 33057524 DOI: 10.1039/d0cp04646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents the dynamics of confined water and its interplay with alkali cations in disordered sodium aluminosilicate hydrate (N-A-S-H) gel using reactive force field molecular dynamics. N-A-S-H gel is the primary binding phase in geopolymers formed via alkaline activation of fly ash. Despite attractive mechanical properties, geopolymers suffer from durability issues, particularly the alkali leaching problem which has motivated this study. Here, the dynamics of confined water and the mobility of alkali cations in N-A-S-H is evaluated by obtaining the evolution of mean squared displacements and Van Hove correlation function. To evaluate the influence of the composition of N-A-S-H on the water dynamics and diffusion of alkali cations, atomistic structures of N-A-S-H with Si/Al ratio ranging from 1 to 3 are constructed. It is observed that the diffusion of confined water and sodium is significantly influenced by the Si/Al ratio. The confined water molecules in N-A-S-H exhibit a multistage dynamic behavior where they can be classified as mobile and immobile water molecules. While the mobility of water molecules gets progressively restricted with an increase in Si/Al ratio, the diffusion coefficient of sodium also decreases as the Si/Al ratio increases. The diffusion coefficient of water molecules in the N-A-S-H structure exhibits a lower value than those of the calcium-silicate-hydrate (C-S-H) structure. This is mainly due to the random disordered structure of N-A-S-H as compared to the layered C-S-H structure. To further evaluate the influence of water content in N-A-S-H, atomistic structures of N-A-S-H with water contents ranging from 5-20% are constructed. Qn distribution of the structures indicates significant depolymerization of N-A-S-H structure with increasing water content. Increased conversion of Si-O-Na network to Si-O-H and Na-OH components with an increase in water content helps explain the alkali-leaching issue in fly ash-based geopolymers observed macroscopically. Overall, the results in this study can be used as a starting point towards multiscale simulation-based design and development of durable geopolymers.
Collapse
Affiliation(s)
- Gideon A Lyngdoh
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, USA.
| | - Rajesh Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India. and Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sumanta Das
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
9
|
Morshedifard A, Moshiri A, Krakowiak KJ, Abdolhosseini Qomi MJ. Spectral attributes of sub-amorphous thermal conductivity in cross-linked organic-inorganic hybrids. NANOSCALE 2020; 12:13491-13500. [PMID: 32555900 DOI: 10.1039/d0nr02657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic hybrids have found increasing applications for thermal management across various disciplines. Such materials can achieve thermal conductivities below the so-called "amorphous limit" of their constituents' thermal conductivity. Despite their technological significance, a complete understanding of the origins of this thermal conductivity reduction remains elusive in these materials. In this paper, we develop a prototypical cross-linked organic-inorganic layered system, to investigate the spectral origins of its sub-amorphous thermal conductivity. Initially, we study the atomic structure of the model and find that besides polymer chain length, the relative drift of the layers governs the reduction in computed basal spacing, in agreement with experimental measurements. We, subsequently, find that organic cross-linking results in up to 40% reduction in thermal conductivity compared to inorganic samples. An in-depth investigation of vibrational modes reveals that this reduction is the result of reduced mode diffusivities, which in turn is a consequence of a vibrational mismatch between the organic and inorganic constituents. We also show that the contribution of propagating modes to the total thermal conductivity is not affected by organic cross-linking. Our approach paves the path toward a physics-informed analysis and design of a wide range of multifunctional hybrid nanomaterials for thermal management applications among others.
Collapse
Affiliation(s)
- Ali Morshedifard
- Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, E4130 Engineering Gateway, University of California, Irvine, CA 92697-2175, USA.
| | | | | | | |
Collapse
|
10
|
Honorio T. Monte Carlo Molecular Modeling of Temperature and Pressure Effects on the Interactions between Crystalline Calcium Silicate Hydrate Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3907-3916. [PMID: 30785761 DOI: 10.1021/acs.langmuir.8b04156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interactions of calcium silicate hydrates with water are at the heart of critical features of cement-based material behavior such as drying and autogenous shrinkage, hysteresis, creep, and thermal expansion. In this article, the interactions between nanocrystalline layers of calcium silicate hydrates are computed from grand canonical Monte Carlo molecular simulations. The effects of temperature, chemical potential, and pressure on these interactions are studied. The results are compared with simulation and experimental data found in the literature concerning surface energy, cohesive pressure, and out-of-plane elastic properties. The disjoining pressure isotherms of calcium silicate hydrates are negligibly affected by changes in water pressure under saturated conditions. The surface energy decreases with the temperature, the chemical potential of water, and the water pressure. Coarse-grained simulations are performed using the potential of mean force obtained at the molecular level. The mesostructure presents hysteresis with respect to mechanical and thermal loads. The anharmonicity of the interactions identified at the molecular scale translates to an asymmetry tension/compression and thermal expansion that are also observed at the mesoscale. These results leave room for a better understanding of the multiscale origin of physical properties of calcium silicate hydrates.
Collapse
Affiliation(s)
- Tulio Honorio
- LMT, ENS-Cachan, CNRS, Université Paris Saclay , Cachan F-94235 , France
| |
Collapse
|
11
|
Hajilar S, Shafei B. Structure, orientation, and dynamics of water-soluble ions adsorbed to basal surfaces of calcium monosulfoaluminate hydrates. Phys Chem Chem Phys 2018; 20:24681-24694. [PMID: 30187069 DOI: 10.1039/c8cp03872d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transport of water molecules and chloride ions in nanopores of hydrated cement paste (HCP) is proven to adversely affect the long-term durability of reinforced concrete structures exposed to seawater or deicing salts. The resistance against chloride attack is primarily associated with the chloride binding capacity of the main HCP constituents. Experimental tests revealed that AFm phases of HCP play a central role in binding the chloride ions. However, many aspects of AFm-solution interactions were largely unknown, especially at their interfaces. This was the motivation of the current study, in which the atomistic processes underlying the transport of water-soluble ions are investigated in detail using the classical molecular dynamics (MD) method. To this end, an aqueous layer containing various concentrations of sodium chloride solution is sandwiched between two basal surfaces of calcium monosulfoaluminate hydrate, which is the most abundant phase of AFm. The adsorption mechanisms of water molecules and diffusing ions are then characterized for inner- and outer-sphere distance ranges from the basal surfaces of monosulfoaluminate. It is found that the self-diffusion coefficient of the chloride and sodium ions present in the outer-sphere range are 83% and 47% larger than those residing in the inner-sphere range. With increasing the distance from the solid surface, an increase in the self-diffusion coefficient is captured. This increase in mobility is larger for chloride ions than sodium ions. This can be understood based on the observation that the inner- and outer-sphere complex formation are the governing adsorption mechanisms for the chloride and sodium ions, respectively.
Collapse
Affiliation(s)
- Shahin Hajilar
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
12
|
Tsimpanogiannis IN, Moultos OA, Franco LFM, Spera MBDM, Erdős M, Economou IG. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1511903] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ioannis N. Tsimpanogiannis
- Environmental Research Laboratory, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Luís F. M. Franco
- School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Ioannis G. Economou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
13
|
Abstract
The time-dependent response of structural materials dominates our aging infrastructure's life expectancy and has important resilience implications. For calcium-silicate-hydrates, the glue of cement, nanoscale mechanisms underlying time-dependent phenomena are complex and remain poorly understood. This complexity originates in part from the inherent difficulty in studying nanoscale longtime phenomena in atomistic simulations. Herein, we propose a three-staged incremental stress-marching technique to overcome such limitations. The first stage unravels a stretched exponential relaxation, which is ubiquitous in glassy systems. When fully relaxed, the material behaves viscoelastically upon further loading, which is described by the standard solid model. By progressively increasing the interlayer water, the time-dependent response of calcium-silicate-hydrates exhibits a transition from viscoelastic to logarithmic creep. These findings bridge the gap between atomistic simulations and nanomechanical experimental measurements and pave the way for the design of reduced aging construction materials and other disordered systems such as metallic and oxide glasses.
Collapse
|
14
|
Duque-Redondo E, Kazuo Y, López-Arbeloa I, Manzano H. Cs-137 immobilization in C-S-H gel nanopores. Phys Chem Chem Phys 2018; 20:9289-9297. [PMID: 29564427 DOI: 10.1039/c8cp00654g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cementation is a widespread technique to immobilize nuclear waste due to the low leachability of cementitious materials. The capacity of calcium silicate hydrate (C-S-H), the main component of cement, to retain radionuclide Cs has been empirically studied at the macroscale, yet the specific molecular scale mechanisms that govern the retention have not been determined. In this work, we employed molecular dynamics simulations to investigate the adsorption and diffusivity of Cs into a C-S-H gel nanopore. From the simulations, it was possible to distinguish three types of Cs adsorption configurations on the C-S-H: an inner-sphere surface site where Cs is strongly bound, an outer-sphere surface site where Cs is loosely bound, and Cs free in the nanopore. For each configuration, we determined the sorption energy, and the diffusion coefficients, up to two orders of magnitude lower than in bulk water due to the effect of nanoconfinement in the worst case scenario. It has also proved that Cs cannot displace the intrinsic Ca from the C-S-H surface, and we calculated the binding strength and the residence time of the cations in the surface adsorption sites. Finally, we quantified the average number of adsorption sites per nm2 of the C-S-H surface. All these results are the first insights into Cs retention in cement at the molecular scale and will be useful to build macroscopic diffusion models and devise cement formulations to improve radionuclide Cs retention from spent nuclear fuel.
Collapse
Affiliation(s)
- Eduardo Duque-Redondo
- Molecular Spectroscopy Laboratory, Department of Physical Chemistry, University of the Basque Country UPV/EHU, Aptdo. 664, 48080, Bilbao, Spain.
| | - Yamada Kazuo
- Fukushima Branch, National Institute for Environmental Studies, Miharu, Tamura, Fukushima, 963-7700, Japan
| | - Iñigo López-Arbeloa
- Molecular Spectroscopy Laboratory, Department of Physical Chemistry, University of the Basque Country UPV/EHU, Aptdo. 664, 48080, Bilbao, Spain.
| | - Hegoi Manzano
- Department of Condensed Matter Physics, University of the Basque Country UPV/EHU, Aptdo. 664, Bilbao, Spain.
| |
Collapse
|
15
|
Molecular Dynamics Simulation of Water Confinement in Disordered Aluminosilicate Subnanopores. Sci Rep 2018; 8:3761. [PMID: 29491348 PMCID: PMC5830603 DOI: 10.1038/s41598-018-22015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022] Open
Abstract
The porous structure and mass transport characteristics of disordered silicate porous media were investigated via a geometry based analysis of water confined in the pores. Disordered silicate porous media were constructed to mimic the dissolution behavior of an alkali aluminoborosilicate glass, i.e., soluble Na and B were removed from the bulk glass, and then water molecules and Na were introduced into the pores to provide a complex porous structure filled with water. This modelling approach revealed large surface areas of disordered porous media. In addition, a number of isolated water molecules were observed in the pores, despite accessible porous connectivity. As the fraction of mobile water was approximately 1%, the main water dynamics corresponded to vibrational motion in a confined space. This significantly reduced water mobility was due to strong hydrogen-bonding water-surface interactions resulting from the large surface area. This original approach provides a method for predicting the porous structure and water transport characteristics of disordered silicate porous media.
Collapse
|
16
|
Ridi F, Tonelli M, Fratini E, Chen SH, Baglioni P. Water as a Probe of the Colloidal Properties of Cement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2205-2218. [PMID: 29035549 DOI: 10.1021/acs.langmuir.7b02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cement is produced by mixing mineral phases based on calcium silicates and aluminates with water. The hydration reaction of the mixture leads to a synthetic material with outstanding properties that can be used as a binder for construction applications. Despite the importance of cement in society, for a long time, the chemical reactions involved in its hydration remained poorly understood as a result of the complexity of hydration processes, nanostructure, and transport phenomena. This feature article reviews the recently obtained results using water as a probe to detail the essential features in the setting process. By examining the peculiar physicochemical properties of water, fundamental information on the evolving inorganic colloid matrix can be deduced, ranging from the fractal nanostructure of the inorganic silicate framework to the transport phenomena inside the developing porosity. A similar approach can be transferred to the investigation of a plethora of other complex systems, where water plays the main role in determining the final structural and transport properties (i.e., biomaterials, hydrogels, and colloids).
Collapse
Affiliation(s)
- Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence , via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence, Italy
| | - Monica Tonelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence , via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence , via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence, Italy
| | - Sow-Hsin Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence , via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence, Italy
| |
Collapse
|
17
|
Hou D, Yang T, Tang J, Li S. Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: functional group de-protonation, interfacial bonding and strengthening mechanism. Phys Chem Chem Phys 2018. [PMID: 29542793 DOI: 10.1039/c8cp00006a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxyl deprotonation contributes to COO–Ca connection, which reinforces the interfacial cohesive strength between GO and C–S–H.
Collapse
Affiliation(s)
| | - Tiejun Yang
- Qingdao University of Technology
- Qingdao
- China
| | - Jinhui Tang
- School of Materials Science and Engineering
- Southeast University
- Nanjing 211189
- China
| | - Shaochun Li
- Qingdao University of Technology
- Qingdao
- China
| |
Collapse
|
18
|
Hou D, Yu J, Jin Z, Hanif A. Molecular dynamics study on calcium silicate hydrate subjected to tension loading and water attack: structural evolution, dynamics degradation and reactivity mechanism. Phys Chem Chem Phys 2018; 20:11130-11144. [DOI: 10.1039/c7cp08634b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water invasion and hydrolytic reaction further weakens the tensioned C–S–H structure.
Collapse
Affiliation(s)
- Dongshuai Hou
- Department of Civil Engineering, Qingdao University of Technology
- Qingdao
- China
| | - Jiao Yu
- Department of Civil Engineering, Qingdao University of Technology
- Qingdao
- China
| | - Zuquan Jin
- Department of Civil Engineering, Qingdao University of Technology
- Qingdao
- China
| | - Asad Hanif
- Department of Civil Engineering, Mirpur University of Science and Technology (MUST)
- Mirpur
- Pakistan
| |
Collapse
|
19
|
Abdolhosseini Qomi MJ, Ebrahimi D, Bauchy M, Pellenq R, Ulm FJ. Methodology for Estimation of Nanoscale Hardness via Atomistic Simulations. JOURNAL OF NANOMECHANICS AND MICROMECHANICS 2017. [DOI: 10.1061/(asce)nm.2153-5477.0000127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
20
|
Zhou Y, Hou D, Manzano H, Orozco CA, Geng G, Monteiro PJM, Liu J. Interfacial Connection Mechanisms in Calcium-Silicate-Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41014-41025. [PMID: 29076343 DOI: 10.1021/acsami.7b12795] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Properties of organic/inorganic composites can be highly dependent on the interfacial connections. In this work, molecular dynamics, using pair-potential-based force fields, was employed to investigate the structure, dynamics, and stability of interfacial connections between calcium-silicate-hydrates (C-S-H) and organic functional groups of three different polymer species. The calculation results suggest that the affinity between C-S-H and polymers is influenced by the polarity of the functional groups and the diffusivity and aggregation tendency of the polymers. In the interfaces, the calcium counterions from C-S-H act as the coordination atoms in bridging the double-bonded oxygen atoms in the carboxyl groups (-COOH), and the Ca-O connection plays a dominant role in binding poly(acrylic acid) (PAA) due to the high bond strength defined by time-correlated function. The defective calcium-silicate chains provide significant numbers of nonbridging oxygen sites to accept H-bonds from -COOH groups. As compared with PAA, the interfacial interactions are much weaker between C-S-H and poly(vinyl alcohol) (PVA) or poly(ethylene glycol) (PEG). Predominate percentage of the -OH groups in the PVA form H-bonds with inter- and intramolecule, which results in the polymer intertwining and reduces the probability of H-bond connections between PVA and C-S-H. On the other hand, the inert functional groups (C-O-C) in poly(ethylene glycol) (PEG) make this polymer exhibit unfolded configurations and move freely with little restrictions. The interaction mechanisms interpreted in this organic-inorganic interface can give fundamental insights into the polymer modification of C-S-H and further implications to improving cement-based materials from the genetic level.
Collapse
Affiliation(s)
- Yang Zhou
- School of Materials Science and Engineering, Southeast University , Nanjing 211189, China
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science Co. , Nanjing 211103, China
| | - Dongshuai Hou
- School of Civil Engineering, Qingdao Technological University , Qingdao 266033, China
| | - Hegoi Manzano
- Department of Condensed Matter Physics, University of the Basque Country UPV/EHU , Barrio Sarriena s/n, 48960 Leioa, Spain
| | - Carlos A Orozco
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Guoqing Geng
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Paulo J M Monteiro
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jiaping Liu
- School of Materials Science and Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
21
|
Krishnan NMA, Wang B, Sant G, Phillips JC, Bauchy M. Revealing the Effect of Irradiation on Cement Hydrates: Evidence of a Topological Self-Organization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32377-32385. [PMID: 28870068 DOI: 10.1021/acsami.7b09405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the crucial role of concrete in the construction of nuclear power plants, the effects of radiation exposure (i.e., in the form of neutrons) on the calcium-silicate-hydrate (C-S-H, i.e., the glue of concrete) remain largely unknown. Using molecular dynamics simulations, we systematically investigate the effects of irradiation on the structure of C-S-H across a range of compositions. Expectedly, although C-S-H is more resistant to irradiation than typical crystalline silicates, such as quartz, we observe that radiation exposure affects C-S-H's structural order, silicate mean chain length, and the amount of molecular water that is present in the atomic network. By topological analysis, we show that these "structural effects" arise from a self-organization of the atomic network of C-S-H upon irradiation. This topological self-organization is driven by the (initial) presence of atomic eigenstress in the C-S-H network and is facilitated by the presence of water in the network. Overall, we show that C-S-H exhibits an optimal resistance to radiation damage when its atomic network is isostatic (at Ca/Si = 1.5). Such an improved understanding of the response of C-S-H to irradiation can pave the way to the design of durable concrete for radiation applications.
Collapse
Affiliation(s)
| | | | | | - James C Phillips
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854-8019, United States
| | | |
Collapse
|
22
|
Masoumi S, Valipour H, Abdolhosseini Qomi MJ. Interparticle Interactions in Colloidal Systems: Toward a Comprehensive Mesoscale Model. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27338-27349. [PMID: 28707879 DOI: 10.1021/acsami.7b08465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermolecular interactions control the collective behavior of colloidal clusters. The overwhelming majority of literature focuses on cohesive attributes of intermolecular forces as they govern the jamming process. However, the overlooked sliding component plays a critical role in the slow relaxation dynamics of colloidal aggregates and the emergence of discontinuous shear thickening in dense suspensions. Here, we use crystalline calcium-silicate-hydrate (C-S-H) as a model system to explore synergistic cohesive and sliding interactions. We use the free energy perturbation approach to reconstruct potential of mean force profile between two finite-sized nanolayers in an aqueous environment. We show that sliding free energy barriers decay exponentially as the separation distance increases. The characteristic length scale of the decay is related to the interface corrugation. We introduce a simple yet effective mechanism to capture the sliding behavior of colloids with surface roughness. Moreover, we develop a global free energy landscape model by juxtaposing cohesive and sliding interactions. This model enables us to measure the height of energy barriers, which is essential to elucidate deformation mechanism and dynamics of colloidal aggregates. For cohesive colloids, our approach predicts a sublinear relation between applied normal and shear stress at the onset of sliding that is in contrast to Amontons' laws of friction. We demonstrate that the sublinear trend is due to the adhesion and nature of soft contact at the nanoscale. The proposed framework provides a new route to draw a more realistic picture of intermolecular interactions in nanoparticulate systems such as geomaterials, cementitious systems, complex colloidal assemblies, and dense suspensions.
Collapse
Affiliation(s)
- Saeed Masoumi
- Centre for Infrastructure Engineering and Safety (CIES), School of Civil and Environmental Engineering, UNSW Australia, UNSW Sydney , Sydney, New South Wales 2052, Australia
| | - Hamid Valipour
- Centre for Infrastructure Engineering and Safety (CIES), School of Civil and Environmental Engineering, UNSW Australia, UNSW Sydney , Sydney, New South Wales 2052, Australia
| | - Mohammad Javad Abdolhosseini Qomi
- Advanced Infrastructure Materials for Sustainability Laboratory (AIMS Lab), Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, E4130 Engineering Gateway, University of California, Irvine , Irvine, California 92697-2175, United States
| |
Collapse
|
23
|
Dynamics of nano-confined water in Portland cement - comparison with synthetic C-S-H gel and other silicate materials. Sci Rep 2017; 7:8258. [PMID: 28811588 PMCID: PMC5557859 DOI: 10.1038/s41598-017-08645-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/12/2017] [Indexed: 11/30/2022] Open
Abstract
The dynamics of water confined in cement materials is still a matter of debate in spite of the fact that water has a major influence on properties such as durability and performance. In this study, we have investigated the dynamics of water confined in Portland cement (OPC) at different curing ages (3 weeks and 4 years after preparation) and at three water-to-cement ratios (w/c, 0.3, 0.4 and 0.5). Using broadband dielectric spectroscopy, we distinguish four different dynamics due to water molecules confined in the pores of different sizes of cements. Here we show how water dynamics is modified by the evolution in the microstructure (maturity) and the w/c ratio. The fastest dynamics (processes 1 and 2, representing very local water dynamics) are independent of water content and the degree of maturity whereas the slowest dynamics (processes 3 and 4) are dependent on the microstructure developed during curing. Additionally, we analyze the differences regarding the water dynamics when confined in synthetic C-S-H gel and in the C-S-H of Portland cement.
Collapse
|
24
|
Hou D, Hu C, Li Z. Molecular Simulation of the Ions Ultraconfined in the Nanometer-Channel of Calcium Silicate Hydrate: Hydration Mechanism, Dynamic Properties, and Influence on the Cohesive Strength. Inorg Chem 2017; 56:1881-1896. [PMID: 28151682 DOI: 10.1021/acs.inorgchem.6b02456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive force field molecular dynamics was utilized to investigate the structure, dynamics, and mechanical nature of different cations solvated in the nanometer-channel of highly disordered calcium silicate hydrate. The local structures of different cations bonded with hydroxyl groups are characterized by the long spatial correlation, bond angel distribution preference, and featured coordinated number, resembling those of the tetra-/penta-/octahedron for cation-oxygen structure in the defective region of the silicate glass. Al atoms in the interlayer region play a role in bridging the defective silicate chains and enhance the connectivity of the silicate skeleton. Dynamically, the mobility of ultraconfined water molecules and cations is significantly influenced by the ionic chemistry: the residence time for water molecules in the hydration shell of Al and Mg ions is longer than that in the environment of Na and Ca ions. Furthermore, uniaxial tension simulation provides insight that while both the stiffness and cohesive strength of the C-S-H gels are significantly improved due to the silicate-aluminate branch structure formation, sodium ions with unstable Na-O connection weaken the loading resistance of the C-S-H gels. During the tensile process, the hydrolytic reaction is also affected by the cationic type: water molecules coordinated with Al and Mg cations at high stress state are likely to decompose, but those aggregated with sodium ions are hard to be stretched broken due to the low failure stress.
Collapse
Affiliation(s)
- Dongshuai Hou
- Department of Civil Engineering, Qingdao Technological University , Qingdao, China 266000
| | - Chuanlin Hu
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology , Wuhan, China 430000
| | - Zongjin Li
- The Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong, China 999077
| |
Collapse
|
25
|
Tian Y, Du J, Han W, Zu X, Yuan X, Zheng W. Thermal conductivity of vitreous silica from molecular dynamics simulations: The effects of force field, heat flux and system size. J Chem Phys 2017; 146:054504. [DOI: 10.1063/1.4975162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ye Tian
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Wei Han
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaotao Zu
- Institute for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaodong Yuan
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Wanguo Zheng
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
26
|
Krishnan NMA, Wang B, Falzone G, Le Pape Y, Neithalath N, Pilon L, Bauchy M, Sant G. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35621-35627. [PMID: 27977137 DOI: 10.1021/acsami.6b11587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.
Collapse
Affiliation(s)
- N M Anoop Krishnan
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
- Laboratory for the Physics of Amorphous and Inorganic Solids (PARISlab), Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Bu Wang
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
- Laboratory for the Physics of Amorphous and Inorganic Solids (PARISlab), Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Gabriel Falzone
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Yann Le Pape
- Oak Ridge National Laboratory , P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Narayanan Neithalath
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85281, United States
| | - Laurent Pilon
- Department of Mechanical and Aerospace Engineering, University of California , Los Angeles, California 90095, United States
| | - Mathieu Bauchy
- Laboratory for the Physics of Amorphous and Inorganic Solids (PARISlab), Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
- California Nanosystems Institute (CNSI), University of California , Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Sadat MR, Bringuier S, Asaduzzaman A, Muralidharan K, Zhang L. A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders. J Chem Phys 2016; 145:134706. [DOI: 10.1063/1.4964301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Pignatelli I, Kumar A, Alizadeh R, Le Pape Y, Bauchy M, Sant G. A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments. J Chem Phys 2016; 145:054701. [DOI: 10.1063/1.4955429] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Isabella Pignatelli
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Aditya Kumar
- Materials Science and Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | | | - Yann Le Pape
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
- California Nanosystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| |
Collapse
|
29
|
Hou D, Li D, Zhao T, Li Z. Confined Water Dissociation in Disordered Silicate Nanometer-Channels at Elevated Temperatures: Mechanism, Dynamics and Impact on Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4153-4168. [PMID: 27077726 DOI: 10.1021/acs.langmuir.6b00444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of elevated temperature on the physical and chemical properties of water molecules filled in the nanometer-channels of calcium silicate hydrate have been investigated by performing reactive molecular dynamics simulation on C-S-H gel subjected to high temperature from 500 to 1500 K. The mobility of interlayer water molecules is temperature-dependent: with the elevation of temperature, the self-diffusivity of water molecules increases, and the glassy dynamic nature of interlayer water at low temperature transforms to bulk water characteristic at high temperature. In addition, the high temperature contributes to the water dissociation and hydroxyl group formation, and proton exchange between neighboring water molecules and calcium silicate substrate frequently happens. The hydrolytic reaction of water molecules results in breakage of the silicate chains and weakens the connectivity of the ionic-covalent bonds in the C-S-H skeleton. However, the broken silicate chains can repolymerize together to form branch structures to resist thermal attacking.
Collapse
Affiliation(s)
- Dongshuai Hou
- Department of Civil Engineering, Qingdao Technological University , Qingdao 266033, China
| | - Dengke Li
- Department of Civil Engineering, Qingdao Technological University , Qingdao 266033, China
| | - Tiejun Zhao
- Department of Civil Engineering, Qingdao Technological University , Qingdao 266033, China
| | - Zongjin Li
- The Hong Kong University of Science and Technology , Hong Kong, China
| |
Collapse
|
30
|
Dezerald L, Kohanoff JJ, Correa AA, Caro A, Pellenq RJM, Ulm FJ, Saúl A. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13676-13683. [PMID: 26513644 DOI: 10.1021/acs.est.5b02609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.
Collapse
Affiliation(s)
- Lucile Dezerald
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- MultiScale Material Science for Energy and Environment, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jorge J Kohanoff
- Atomistic Simulation Centre, Queen's University Belfast , Belfast BT7 1NN, United Kingdom
| | - Alfredo A Correa
- Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Alfredo Caro
- Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Roland J-M Pellenq
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- MultiScale Material Science for Energy and Environment, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Aix-Marseille University, CINaM-CNRS UMR 7325 Campus de Luminy, 13288 Marseille cedex 9, France
| | - Franz J Ulm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- MultiScale Material Science for Energy and Environment, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrés Saúl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- MultiScale Material Science for Energy and Environment, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Aix-Marseille University, CINaM-CNRS UMR 7325 Campus de Luminy, 13288 Marseille cedex 9, France
| |
Collapse
|
31
|
Yu Y, Wang M, Zhang D, Wang B, Sant G, Bauchy M. Stretched Exponential Relaxation of Glasses at Low Temperature. PHYSICAL REVIEW LETTERS 2015; 115:165901. [PMID: 26550886 DOI: 10.1103/physrevlett.115.165901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 06/05/2023]
Abstract
The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β=3/5, as predicted by Phillips's diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but it is rather a manifestation of the mixed alkali effect.
Collapse
Affiliation(s)
- Yingtian Yu
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Mengyi Wang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Dawei Zhang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Bu Wang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
- California Nanosystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
32
|
Li H, Zhang LL, Yi Z, Fratini E, Baglioni P, Chen SH. Translational and rotational dynamics of water contained in aged Portland cement pastes studied by quasi-elastic neutron scattering. J Colloid Interface Sci 2015; 452:2-7. [PMID: 25898172 DOI: 10.1016/j.jcis.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
33
|
Bauchy M. Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J Chem Phys 2015; 141:024507. [PMID: 25028027 DOI: 10.1063/1.4886421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We study a calcium aluminosilicate glass of composition (SiO2)0.60(Al2O3)0.10(CaO)0.30 by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.
Collapse
Affiliation(s)
- M Bauchy
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA and Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Bauchy M, Qomi MJA, Ulm FJ, Pellenq RJM. Order and disorder in calcium-silicate-hydrate. J Chem Phys 2015; 140:214503. [PMID: 24908022 DOI: 10.1063/1.4878656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite advances in the characterization and modeling of cement hydrates, the atomic order in Calcium-Silicate-Hydrate (C-S-H), the binding phase of cement, remains an open question. Indeed, in contrast to the former crystalline model, recent molecular models suggest that the nanoscale structure of C-S-H is amorphous. To elucidate this issue, we analyzed the structure of a realistic simulated model of C-S-H, and compared the latter to crystalline tobermorite, a natural analogue of C-S-H, and to an artificial ideal glass. The results clearly indicate that C-S-H appears as amorphous, when averaged on all atoms. However, an analysis of the order around each atomic species reveals that its structure shows an intermediate degree of order, retaining some characteristics of the crystal while acquiring an overall glass-like disorder. Thanks to a detailed quantification of order and disorder, we show that, while C-S-H retains some signatures of a tobermorite-like layered structure, hydrated species are completely amorphous.
Collapse
Affiliation(s)
- M Bauchy
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - M J Abdolhosseini Qomi
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - F-J Ulm
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - R J-M Pellenq
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
35
|
Bauchy M, Qomi MJA, Bichara C, Ulm FJ, Pellenq RJM. Rigidity transition in materials: hardness is driven by weak atomic constraints. PHYSICAL REVIEW LETTERS 2015; 114:125502. [PMID: 25860757 DOI: 10.1103/physrevlett.114.125502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 06/04/2023]
Abstract
Understanding the composition dependence of the hardness in materials is of primary importance for infrastructures and handled devices. Stimulated by the need for stronger protective screens, topological constraint theory has recently been used to predict the hardness in glasses. Herein, we report that the concept of rigidity transition can be extended to a broader range of materials than just glass. We show that hardness depends linearly on the number of angular constraints, which, compared to radial interactions, constitute the weaker ones acting between the atoms. This leads to a predictive model for hardness, generally applicable to any crystalline or glassy material.
Collapse
Affiliation(s)
- Mathieu Bauchy
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Mohammad Javad Abdolhosseini Qomi
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Christophe Bichara
- Centre Interdisciplinaire des Nanosciences de Marseille, CNRS and Aix-Marseille University, Campus de Luminy, Marseille, 13288 Cedex 09, France
| | - Franz-Josef Ulm
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- MIT-CNRS joint laboratory at Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Roland J-M Pellenq
- Concrete Sustainability Hub, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Centre Interdisciplinaire des Nanosciences de Marseille, CNRS and Aix-Marseille University, Campus de Luminy, Marseille, 13288 Cedex 09, France
- MIT-CNRS joint laboratory at Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
36
|
Hou D, Li Z, Zhao T, Zhang P. Water transport in the nano-pore of the calcium silicate phase: reactivity, structure and dynamics. Phys Chem Chem Phys 2015; 17:1411-23. [DOI: 10.1039/c4cp04137b] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and dynamic properties of surface water molecules.
Collapse
Affiliation(s)
- Dongshuai Hou
- Qingdao Technological University (Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone)
- Qingdao
- China
| | - Zongjin Li
- Qingdao Technological University (Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone)
- Qingdao
- China
| | - Tiejun Zhao
- Qingdao Technological University (Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone)
- Qingdao
- China
| | - Peng Zhang
- Qingdao Technological University (Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone)
- Qingdao
- China
| |
Collapse
|
37
|
Combinatorial molecular optimization of cement hydrates. Nat Commun 2014; 5:4960. [PMID: 25248305 PMCID: PMC4200522 DOI: 10.1038/ncomms5960] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 08/12/2014] [Indexed: 12/24/2022] Open
Abstract
Despite its ubiquitous presence in the built environment, concrete’s molecular-level properties are only recently being explored using experimental and simulation studies. Increasing societal concerns about concrete’s environmental footprint have provided strong motivation to develop new concrete with greater specific stiffness or strength (for structures with less material). Herein, a combinatorial approach is described to optimize properties of cement hydrates. The method entails screening a computationally generated database of atomic structures of calcium-silicate-hydrate, the binding phase of concrete, against a set of three defect attributes: calcium-to-silicon ratio as compositional index and two correlation distances describing medium-range silicon-oxygen and calcium-oxygen environments. Although structural and mechanical properties correlate well with calcium-to-silicon ratio, the cross-correlation between all three defect attributes reveals an indentation modulus-to-hardness ratio extremum, analogous to identifying optimum network connectivity in glass rheology. We also comment on implications of the present findings for a novel route to optimize the nanoscale mechanical properties of cement hydrate. Concrete is a vital material in meeting present day construction demands. Here, the authors report a computational combinatorial approach to understand how molecular level characteristics influence the mechanical properties of cement hydrates, via screening against distinct defect types.
Collapse
|
38
|
Ebrahimi D, Whittle AJ, Pellenq RJM. Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets. J Chem Phys 2014. [DOI: 10.1063/1.4870932] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|