1
|
Sunda AP, Sharma AK. Molecular Insights into Cu/Zn Metal Response to the Amyloid β-Peptide (1-42). ACS PHYSICAL CHEMISTRY AU 2024; 4:57-66. [PMID: 38283784 PMCID: PMC10811771 DOI: 10.1021/acsphyschemau.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 01/30/2024]
Abstract
Aβ1-40 peptide and Aβ1-42 peptide are the building units of beta-amyloid plaques present in Alzheimer's disease (AD)-affected brain. The binding affinity of various divalent metal ions such as Cu and Zn present in AD-affected brain with different amino acids available in Aβ-peptide became the focus to explore their role in soluble neurotoxic oligomer formation. Cu2+ metal ions are known to enhance the neurotoxicity of the Aβ1-42 peptide by catalyzing the formation of soluble neurotoxic oligomers. The competitive preference of both Cu2+ and Zn2+ simultaneously to interact with the Aβ-peptide is unknown. The divalent Cu and Zn ions were inserted in explicit aqueous Aβ1-42 peptide configurations to get insights into the binding competence of these metal ions with peptides using classical molecular dynamics (MD) simulations. The metal-ion interactions reveal that competitive binding preferences of various peptide sites become metal-ion-specific and differ significantly. For Cu2+, interactions are found to be more significant with respect to those of Asp-7, His-6, Glu-11, and His-14. Asp-1, Glu-3, Asp-7, His-6, Glu-11, and His-13 amino acid residues show higher affinity toward Zn2+ ions. MD simulations show notable variation in the solvent-accessible surface area in the hydrophobic region of the peptide. Infinitesimal mobility was obtained for Zn2+ compared to Cu2+ in an aqueous solution and Cu2+ diffusivity deviated significantly at different time scales, proving its labile features in aqueous Aβ1-42 peptides.
Collapse
Affiliation(s)
- Anurag Prakash Sunda
- Department
of Chemistry, J. C. Bose University of Science
and Technology, YMCA, Faridabad 121006, India
| | - Anuj Kumar Sharma
- Department
of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
2
|
Nguyen PH, Derreumaux P. Insights into the Mixture of Aβ24 and Aβ42 Peptides from Atomistic Simulations. J Phys Chem B 2022; 126:10689-10696. [PMID: 36493347 DOI: 10.1021/acs.jpcb.2c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) oligomers play a central role in Alzheimer's disease (AD). Plaques of AD patients consist of Aβ40 and Aβ42 peptides and truncated Aβ peptides. The Aβ24 peptide, identified in human AD brains, was found to impair Aβ42 clearance through the brain-blood barrier. The Aβ24 peptide was also shown to reduce Aβ42 aggregation kinetics in pure buffer, but the underlying mechanism is unknown at atomistic level. In this study, we explored the conformational ensemble of the equimolar mixture of Aβ24 and Aβ42 by replica exchange molecular dynamics simulations and compared it to our previous results on the pure Aβ42 dimer. Our simulations demonstrate that the truncation at residue 24 changes the secondary, tertiary, and quaternary structures of the dimer, offering an explanation of the slower aggregation kinetics of the mixture.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
3
|
Co NT, Li MS, Krupa P. Computational Models for the Study of Protein Aggregation. Methods Mol Biol 2022; 2340:51-78. [PMID: 35167070 DOI: 10.1007/978-1-0716-1546-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation has been studied by many groups around the world for many years because it can be the cause of a number of neurodegenerative diseases that have no effective treatment. Obtaining the structure of related fibrils and toxic oligomers, as well as describing the pathways and main factors that govern the self-organization process, is of paramount importance, but it is also very difficult. To solve this problem, experimental and computational methods are often combined to get the most out of each method. The effectiveness of the computational approach largely depends on the construction of a reasonable molecular model. Here we discussed different versions of the four most popular all-atom force fields AMBER, CHARMM, GROMOS, and OPLS, which have been developed for folded and intrinsically disordered proteins, or both. Continuous and discrete coarse-grained models, which were mainly used to study the kinetics of aggregation, are also summarized.
Collapse
Affiliation(s)
- Nguyen Truong Co
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Jakubowski J, Orr AA, Le DA, Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:289-305. [PMID: 31809572 PMCID: PMC7732148 DOI: 10.1021/acs.jcim.9b00561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/24/2022]
Abstract
The aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids in vivo. Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive. Here, we investigated curcumin and a set of curcumin derivatives in complex with a hexamer peptide model of the Aβ1-42 fibril using nearly exhaustive docking, followed by multi-ns molecular dynamics simulations, to provide atomistic-detail insights into the molecules' binding and inhibitory properties. In the vast majority of the simulations, curcumin and its derivatives remain firmly bound in complex with the fibril through primarily three different principle binding modes, in which the molecules interact with residue domain 17LVFFA21, in line with previous experiments. In a small subset of these simulations, the molecules partly dissociate the outermost peptide of the Aβ1-42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20. A comparison between binding modes leading or not leading to partial dissociation of the outermost peptide suggests that the latter is attributed to a few subtle key structural and energetic interaction-based differences. Interestingly, partial dissociation appears to be either an outcome of high affinity interactions or a cause leading to high affinity interactions between the molecules and the fibril, which could partly serve as a compensation for the energy loss in the fibril due to partial dissociation. In conjunction with this, we suggest a potential inhibition mechanism of Αβ1-42 aggregation by the molecules, where the partially dissociated 16KLVFF20 domain of the outermost peptide could either remain unstructured or wrap around to form intramolecular interactions with the same peptide's 29GAIIG33 domain, while the molecules could additionally act as a patch against the external edge of the second outermost peptide's 16KLVFF20 domain. Thereby, individually or concurrently, these could prohibit fibril elongation.
Collapse
Affiliation(s)
| | | | - Doan A. Le
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
5
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Molecular Mechanism and Kinetics of Amyloid-β 42 Aggregate Formation: A Simulation Study. ACS Chem Neurosci 2019; 10:4643-4658. [PMID: 31660732 DOI: 10.1021/acschemneuro.9b00473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As an important neuropathological hallmark of Alzheimer's disease (AD), the oligomerization of amyloid-β (Aβ) peptides has been intensively investigated in both theoretical and experimental studies. However, the oligomerization space in terms of the kinetics, molecular mechanism, and oligomer structures remains mysterious to us. An equation that can quantitatively describe the time it takes for Aβ oligomers to appear in the human brain at a given Aβ monomer concentration is extremely vital for us to understand the development and disease progression of AD. In this study, we utilized molecular dynamics (MD) simulations to investigate the oligomerization of Aβ42 peptides at five different monomer concentrations. We have elucidated the formation pathways of Aβ tetramers, characterized the oligomer structures, estimated the oligomerization time for Aβ dimers, trimers, and tetramers, and for the first-time derived equations that could quantitatively describe the relationship between the oligomerization time and the monomer concentration. Applying these equations, our prediction of oligomerization time agrees well with the experimental and clinical findings, in spite of the limitations of our oligomerization simulations. We have found that the Aβ oligomerization time depends on the monomer concentration by a power of -2.4. The newly established equations will enable us to quantitatively estimate the risk score of AD, which is a function of age. Moreover, we have identified the most dominant pathway of forming Aβ tetramers, probably the most important and toxic Aβ oligomer. Our results have shown that the structures of Aβ42 dimer, trimer, and tetramer, which are distinguishable from each other, depend on the monomer concentration at which the oligomers form. Representative oligomer structures, which can serve as potential drug targets, have been identified by clustering analysis. The MD sampling adequacy has been validated by the excellent agreement between the calculated and measured collisional cross section (CCS) parameters (the prediction errors are within 2%). In a conclusion, this study provides the kinetics and structure basis for developing inhibitors to decelerate the Aβ oligomerization process.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Braidy N, Zarka M, Jugder BE, Welch J, Jayasena T, Chan DKY, Sachdev P, Bridge W. The Precursor to Glutathione (GSH), γ-Glutamylcysteine (GGC), Can Ameliorate Oxidative Damage and Neuroinflammation Induced by Aβ 40 Oligomers in Human Astrocytes. Front Aging Neurosci 2019; 11:177. [PMID: 31440155 PMCID: PMC6694290 DOI: 10.3389/fnagi.2019.00177] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Glutathione (GSH) is one of the most abundant thiol antioxidants in cells. Many chronic and age-related diseases are associated with a decline in cellular GSH levels or impairment in the catalytic activity of the GSH biosynthetic enzyme glutamate cysteine ligase (GCL). γ-glutamylcysteine (GGC), a precursor to glutathione (GSH), can replenish depleted GSH levels under oxidative stress conditions, by circumventing the regulation of GSH biosynthesis and providing the limiting substrate. Soluble amyloid-β (Aβ) oligomers have been shown to induce oxidative stress, synaptic dysfunction and memory deficits which have been reported in Alzheimer’s disease (AD). Calcium ions, which are increased with age and in AD, have been previously reported to enhance the formation of Aβ40 oligomers, which have been casually associated with the pathogenesis of the underlying neurodegenerative condition. In this study, we examined the potential beneficial effects of GGC against exogenous Aβ40 oligomers on biomarkers of apoptosis and cell death, oxidative stress, and neuroinflammation, in human astrocytes. Treatment with Aβ40 oligomers significantly reduced the cell viability and apoptosis of astrocyte brain cultures and increased oxidative modifications of DNA, lipids, and protein, enhanced pro-inflammatory cytokine release and increased the activity of the proteolytic matrix metalloproteinase enzyme, matric metalloproteinase (MMP)-2 and reduced the activity of MMP-9 after 24 h. Co-treatment of Aβ40 oligomers with GGC at 200 μM increased the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) and led to significant increases in the levels of the total antioxidant capacity (TAC) and GSH and reduced the GSSG/GSH ratio. GGC also upregulated the level of the anti-inflammatory cytokine IL-10 and reduced the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and attenuated the changes in metalloproteinase activity in oligomeric Aβ40-treated astrocytes. Our data provides renewed insight on the beneficial effects of increased GSH levels by GGC in human astrocytes, and identifies yet another potential therapeutic strategy to attenuate the cytotoxic effects of Aβ oligomers in AD.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Martin Zarka
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Jeffrey Welch
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Daniel K Y Chan
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW, Australia
| | - Perminder Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Sengupta U, Carballo-Pacheco M, Strodel B. Automated Markov state models for molecular dynamics simulations of aggregation and self-assembly. J Chem Phys 2019; 150:115101. [DOI: 10.1063/1.5083915] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ushnish Sengupta
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- AICES Graduate School, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Lu L, Deng Y, Li X, Li H, Karniadakis GE. Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. J Phys Chem B 2018; 122:11302-11310. [PMID: 30106299 DOI: 10.1021/acs.jpcb.8b07255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accumulation and aggregation of amyloid are associated with the pathogenesis of many human diseases, such as Alzheimer's disease and Type 2 diabetes mellitus. Therefore, a quantitative understanding of the molecular mechanisms causing different aggregated structures and biomechanical properties of amyloid fibrils could shed some light into the progression of these diseases. In this work, we develop coarse-grained molecular dynamics (CGMD) models to simulate the dynamic self-assembly of two types of amyloids (amylin and amyloid β (Aβ)). We investigate the structural and mechanical properties of different types of aggregated amyloid fibrils. Our simulations demonstrate that amyloid fibrils could result from longitudinal growth of protofilament bundles, confirming one of the hypotheses on the fibril formation. In addition, we find that the persistence length of amylin fibrils increases concurrently with their pitch length, suggesting that the bending stiffness of amylin fibrils becomes larger when the amylin fibrils are less twisted. Similar results are observed for Aβ fibrils. These findings quantify the connection between the structural and the biomechanical properties of the fibrils. The CGMD models developed in this work can be potentially used to examine efficacy of anti-aggregation drugs, which could help in developing new treatments.
Collapse
Affiliation(s)
- Lu Lu
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - Yixiang Deng
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Xuejin Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - He Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - George Em Karniadakis
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
9
|
Jana AK, Batkulwar KB, Kulkarni MJ, Sengupta N. Glycation induces conformational changes in the amyloid-β peptide and enhances its aggregation propensity: molecular insights. Phys Chem Chem Phys 2018; 18:31446-31458. [PMID: 27827482 DOI: 10.1039/c6cp05041g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cytotoxicity of the amyloid beta (Aβ) peptide, implicated in the pathogenesis of Alzheimer's disease (AD), can be enhanced by its post-translational glycation, a series of non-enzymatic reactions with reducing sugars and reactive dicarbonyls. However, little is known about the underlying mechanisms that potentially enhance the cytotoxicity of the advanced glycation modified Aβ. In this work, fully atomistic molecular dynamics (MD) simulations are exploited to obtain direct molecular insights into the process of early Aβ self-assembly in the presence and absence of glycated lysine residues. Analyses of data exceeding cumulative timescales of 1 microsecond for each system reveal that glycation results in a stronger enthalpy of association between Aβ monomers and lower conformational entropy, in addition to a sharp overall increase in the beta-sheet content. Further analyses reveal that the enhanced interactions originate, in large part, due to markedly stronger, as well as new, inter-monomer salt bridging propensities in the glycated variety. Interestingly, these conformational and energetic effects are broadly reflected in preformed protofibrillar forms of Aβ small oligomers modified with glycation. Our combined results imply that glycation consolidates Aβ self-assembly regardless of its point of occurrence in the pathway. They provide a basis for further mechanistic studies and therapeutic endeavors that could potentially result in novel ways of combating AGE related AD progression.
Collapse
Affiliation(s)
- Asis K Jana
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kedar B Batkulwar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Mahesh J Kulkarni
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Neelanjana Sengupta
- Dept. of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, W. Bengal, India.
| |
Collapse
|
10
|
Man VH, Nguyen PH, Derreumaux P. High-Resolution Structures of the Amyloid-β 1-42 Dimers from the Comparison of Four Atomistic Force Fields. J Phys Chem B 2017; 121:5977-5987. [PMID: 28538095 DOI: 10.1021/acs.jpcb.7b04689] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dimer of the amyloid-β peptide Aβ of 42 residues is the smallest toxic species in Alzheimer's disease, but its equilibrium structures are unknown. Here we determined the equilibrium ensembles generated by the four atomistic OPLS-AA, CHARMM22*, AMBER99sb-ildn, and AMBERsb14 force fields with the TIP3P water model. On the basis of 144 μs replica exchange molecular dynamics simulations (with 750 ns per replica), we find that the four force fields lead to random coil ensembles with calculated cross-collision sections, hydrodynamics properties, and small-angle X-ray scattering profiles independent of the force field. There are, however, marked differences in secondary structure, with the AMBERsb14 and CHARMM22* ensembles overestimating the CD-derived helix content, and the OPLS-AA and AMBER99sb-ildn secondary structure contents in agreement with CD data. Also the intramolecular beta-hairpin content spanning residues 17-21 and 30-36 varies between 1.5% and 13%. Overall, there are significant differences in tertiary and quaternary conformations among all force fields, and the key finding, irrespective of the force field, is that the dimer is stabilized by nonspecific interactions, explaining therefore its possible transient binding to multiple cellular partners and, in part, its toxicity.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University , Raleigh, North Carolina 27695-8202, United States
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot , Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot , Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
11
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42). J Chem Phys 2017; 146:145101. [DOI: 10.1063/1.4979866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Universite Paris Diderot, Sorbonne Paris Cite, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
12
|
Man VH, Nguyen PH, Derreumaux P. Conformational Ensembles of the Wild-Type and S8C Aβ1-42 Dimers. J Phys Chem B 2017; 121:2434-2442. [PMID: 28245647 PMCID: PMC5944329 DOI: 10.1021/acs.jpcb.7b00267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We characterized the dimer of the amyloid-β wild-type (WT) peptide, Aβ, of 42 residues and its disulfide-bond-locked double mutant (S8C) by replica exchange molecular dynamics simulations. Aβ dimers are known to be the smallest toxic species in Alzheimer's disease, and the S8C mutant has been shown experimentally to form an exclusive homogeneous and neurotoxic dimer. Our 50 μs all-atom simulations reveal similar secondary structures and collision cross-sections but very different intramolecular and intermolecular conformations upon double S8C mutation. Both dimers are very dynamic with hundreds of free-energy minima that differ from the U-shape and S-shape conformations of the peptides in the fibrils. The only common structural feature, shared by both species with a probability of 4% in WT and 12% in S8C-S8C, is a three-stranded β-sheet spanning the 17-23, 29-36, and 39-41 residues, which does not exist in the Aβ40 WT dimers.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
13
|
Ngo ST, Hung HM, Truong DT, Nguyen MT. Replica exchange molecular dynamics study of the truncated amyloid beta (11–40) trimer in solution. Phys Chem Chem Phys 2017; 19:1909-1919. [DOI: 10.1039/c6cp05511g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the 3Aβ11–40 oligomer is determined for the first time using T-REMD simulations.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Duc Toan Truong
- Department of Theoretical Physics
- Ho Chi Minh City University of Science
- Ho Chi Minh City
- Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
14
|
Nguyen PH, Sterpone F, Pouplana R, Derreumaux P, Campanera JM. Dimerization Mechanism of Alzheimer Aβ 40 Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. J Phys Chem B 2016; 120:12111-12126. [PMID: 27933940 DOI: 10.1021/acs.jpcb.6b10722] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amyloid beta (Aβ) oligomerization is associated with the origin and progression of Alzheimer's disease (AD). While the A2V mutation enhances aggregation kinetics and toxicity, mixtures of wild-type (WT) and A2V, and also WT and A2T, peptides retard fibril formation and protect against AD. In this study, we simulate the equilibrium ensemble of WT:A2T Aβ40 dimer by means of extensive atomistic replica exchange molecular dynamics and compare our results with previous equivalent simulations of A2V:A2V, WT:WT, and WT:A2V Aβ40 dimers for a total time scale of nearly 0.1 ms. Qualitative comparison of the resulting thermodynamic properties, such as the relative binding free energies, with the reported experimental kinetic and thermodynamic data affords us important insight into the conversion from slow-pathway to fast-pathway dimer conformations. The crucial reaction coordinate or driving force of such transformation turns out to be related to hydrophobic interpeptide interactions. Analysis of the equilibrium ensembles shows that the fast-pathway conformations contain interpeptide out-of-register antiparallel β-sheet structures at short interpeptide distances. In contrast, the slow-pathway conformations are formed by the association of peptides at large interpeptide distances and high intrapeptide compactness, such as conformations containing intramolecular three-stranded β-sheets which sharply distinguish fast (A2V:A2V and WT:WT) and slow (WT:A2T and WT:A2V) amyloid-forming sequences. Also, this analysis leads us to predict that a molecule stabilizing the intramolecular three-stranded β-sheet or inhibiting the formation of an interpeptide β-sheet spanning residues 17-20 and 31-37 would further reduce fibril formation and probably the cytotoxicity of Aβ species.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ramon Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France.,IUF (Institut Universitaire de France) , 103 Boulevard Michel, 75005 Paris, France
| | - Josep M Campanera
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Chamachi NG, Chakrabarty S. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization. J Phys Chem B 2016; 120:7332-45. [DOI: 10.1021/acs.jpcb.6b03690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Neharika G. Chamachi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
16
|
Nguyen PH, Sterpone F, Campanera JM, Nasica-Labouze J, Derreumaux P. Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1-40 Dimer Structures from Atomistic Simulations. ACS Chem Neurosci 2016; 7:823-32. [PMID: 27007027 DOI: 10.1021/acschemneuro.6b00053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The A2V mutation was reported to protect from Alzheimer's disease in its heterozygous form and cause an early Alzheimer's disease type dementia in its homozygous form. Experiments showed that the aggregation rate follows the order A2V > WT (wild-type) > A2V-WT. To understand the impact of this mutation, we carried out replica exchange molecular dynamics simulations of Aβ1-40 WT-A2V and A2V-A2V dimers and compared to the WT dimer. Our atomistic simulations reveal that the mean secondary structure remains constant, but there are substantial differences in the intramolecular and intermolecular conformations upon single and double A2V mutation. Upon single mutation, the intrinsic disorder is reduced, the intermolecular potential energies are reduced, the population of intramolecular three-stranded β-sheets is increased, and the number of all α dimer topologies is decreased. Taken together, these results offer an explanation for the reduced aggregation rate of the Aβ1-40 A2V-WT peptides and the protective effect of A2V in heterozygotes.
Collapse
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Josep M. Campanera
- Departament
de Fisicoquimica, Facultat de Farmacia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Jessica Nasica-Labouze
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
17
|
Tarus B, Tran TT, Nasica-Labouze J, Sterpone F, Nguyen PH, Derreumaux P. Structures of the Alzheimer's Wild-Type Aβ1-40 Dimer from Atomistic Simulations. J Phys Chem B 2015; 119:10478-87. [PMID: 26228450 DOI: 10.1021/acs.jpcb.5b05593] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the dimer of amyloid beta peptide Aβ of 40 residues by means of all-atom replica exchange molecular dynamics. The Aβ-dimers have been found to be the smallest toxic species in Alzheimer's disease, but their inherent flexibilities have precluded structural characterization by experimental methods. Though the 24-μs-scale simulation reveals a mean secondary structure of 18% β-strand and 10% α helix, we find transient configurations with an unstructured N-terminus and multiple β-hairpins spanning residues 17-21 and 30-36, but the antiparallel and perpendicular peptide orientations are preferred over the parallel organization. Short-lived conformational states also consist of all α topologies, and one compact peptide with β-sheet structure stabilized by a rather extended peptide with α-helical content. Overall, this first all-atom study provides insights into the equilibrium structure of the Aβ1-40 dimer in aqueous solution, opening a new avenue for a comprehensive understanding of the impact of pathogenic and protective mutations in early-stage Alzheimer's disease on a molecular level.
Collapse
Affiliation(s)
- Bogdan Tarus
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Thanh T Tran
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Jessica Nasica-Labouze
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
18
|
Berthoumieu O, Nguyen PH, Castillo-Frias MPD, Ferre S, Tarus B, Nasica-Labouze J, Noël S, Saurel O, Rampon C, Doig AJ, Derreumaux P, Faller P. Combined experimental and simulation studies suggest a revised mode of action of the anti-Alzheimer disease drug NQ-Trp. Chemistry 2015; 21:12657-66. [PMID: 26179053 DOI: 10.1002/chem.201500888] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/09/2022]
Abstract
Inhibition of the aggregation of the monomeric peptide β-amyloid (Aβ) into oligomers is a widely studied therapeutic approach in Alzheimer's disease (AD). Many small molecules have been reported to work in this way, including 1,4-naphthoquinon-2-yl-L-tryptophan (NQ-Trp). NQ-Trp has been reported to inhibit aggregation, to rescue cells from Aβ toxicity, and showed complete phenotypic recovery in an in vivo AD model. In this work we investigated its molecular mechanism by using a combined approach of experimental and theoretical studies, and obtained converging results. NQ-Trp is a relatively weak inhibitor and the fluorescence data obtained by employing the fluorophore widely used to monitor aggregation into fibrils can be misinterpreted due to the inner filter effect. Simulations and NMR experiments showed that NQ-Trp has no specific "binding site"-type interaction with mono- and dimeric Aβ, which could explain its low inhibitory efficiency. This suggests that the reported anti-AD activity of NQ-Trp-type molecules in in vivo models has to involve another mechanism. This study has revealed the potential pitfalls in the development of aggregation inhibitors for amyloidogenic peptides, which are of general interest for all the molecules studied in the context of inhibiting the formation of toxic aggregates.
Collapse
Affiliation(s)
- Olivia Berthoumieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Maria P Del Castillo-Frias
- Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK)
| | - Sabrina Ferre
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Bogdan Tarus
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Jessica Nasica-Labouze
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Sabrina Noël
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Olivier Saurel
- IPBS Institute of Pharmacology and Structural Biology, Université de Toulouse, UPS, 205 route de Narbonne, 31077 Toulouse (France).,IPBS, UMR 5089, CNRS, 205 route de Narbonne, BP 64182, 31077 Toulouse (France)
| | - Claire Rampon
- Université de Toulouse, UPS, CNRS, Centre de Recherches sur la Cognition, Animale, 118 route de Narbonne, 31062 Toulouse Cedex 4 (France)
| | - Andrew J Doig
- Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK).
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France). .,Institut Universitaire de France, IUF, 103 Boulevard Saint-Michel, 75005 Paris (France).
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France).
| |
Collapse
|
19
|
Effect of pH on the Aggregation of α-syn12 Dimer in Explicit Water by Replica-Exchange Molecular Dynamics Simulation. Int J Mol Sci 2015; 16:14291-304. [PMID: 26114384 PMCID: PMC4519842 DOI: 10.3390/ijms160714291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023] Open
Abstract
The dimeric structure of the N-terminal 12 residues drives the interaction of α-synuclein protein with membranes. Moreover, experimental studies indicated that the aggregation of α-synuclein is faster at low pH than neutral pH. Nevertheless, the effects of different pH on the structural characteristics of the α-syn12 dimer remain poorly understood. We performed 500 ns temperature replica exchange molecular dynamics (T-REMD) simulations of two α-syn12 peptides in explicit solvent. The free energy surfaces contain ten highly populated regions at physiological pH, while there are only three highly populated regions contained at acidic pH. The anti-parallel β-sheet conformations were found as the lowest free energy state. Additionally, these states are nearly flat with a very small barrier which indicates that these states can easily transit between themselves. The dimer undergoes a disorder to order transition from physiological pH to acidic pH and the α-syn12 dimer at acidic pH involves a faster dimerization process. Further, the Lys6–Asp2 contact may prevent the dimerization.
Collapse
|
20
|
Ning L, Pan D, Zhang Y, Wang S, Liu H, Yao X. Effects of the Pathogenic Mutation A117V and the Protective Mutation H111S on the Folding and Aggregation of PrP106-126: Insights from Replica Exchange Molecular Dynamics Simulations. PLoS One 2015; 10:e0125899. [PMID: 25993001 PMCID: PMC4439087 DOI: 10.1371/journal.pone.0125899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
Abstract
The fragment 106-126 of prion protein exhibits similar properties to full-length prion. Experiments have shown that the A117V mutation enhances the aggregation of PrP106-126, while the H111S mutation abolishes the assembly. However, the mechanism of the change in the aggregation behavior of PrP106-126 upon the two mutations is not fully understood. In this study, replica exchange molecular dynamics simulations were performed to investigate the conformational ensemble of the WT PrP106-126 and its two mutants A117V and H111S. The obtained results indicate that the three species are all intrinsically disordered but they have distinct morphological differences. The A117V mutant has a higher propensity to form β-hairpin structures than the WT, while the H111S mutant has a higher population of helical structures. Furthermore, the A117V mutation increases the hydrophobic solvent accessible surface areas of PrP106-126 and the H111S mutation reduces the exposure of hydrophobic residues. It can be concluded that the difference in populations of β-hairpin structures and the change of hydrophobic solvent accessible areas may induce the different aggregation behaviors of the A117V and the H111S mutated PrP106-126. Understanding why the two mutations have contrary effects on the aggregation of PrP106-126 is very meaningful for further elucidation of the mechanism underlying aggregation and design of inhibitor against aggregation process.
Collapse
Affiliation(s)
- Lulu Ning
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Dabo Pan
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- School of pharmaceutical technology, Qiandongnan National Polytechnic, Kaili, China
| | - Yan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shaopeng Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- * E-mail: (HL); (XY)
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- * E-mail: (HL); (XY)
| |
Collapse
|
21
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
22
|
Jose JC, Chatterjee P, Sengupta N. Cross dimerization of amyloid-β and αsynuclein proteins in aqueous environment: a molecular dynamics simulations study. PLoS One 2014; 9:e106883. [PMID: 25210774 PMCID: PMC4161357 DOI: 10.1371/journal.pone.0106883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Self-assembly of the intrinsically unstructured proteins, amyloid beta (Aβ) and alpha synclein (αSyn), are associated with Alzheimer's Disease, and Parkinson's and Lewy Body Diseases, respectively. Importantly, pathological overlaps between these neurodegenerative diseases, and the possibilities of interactions between Aβ and αSyn in biological milieu emerge from several recent clinical reports and in vitro studies. Nevertheless, there are very few molecular level studies that have probed the nature of spontaneous interactions between these two sequentially dissimilar proteins and key characteristics of the resulting cross complexes. In this study, we have used atomistic molecular dynamics simulations to probe the possibility of cross dimerization between αSyn1-95 and Aβ1-42, and thereby gain insights into their plausible early assembly pathways in aqueous environment. Our analyses indicate a strong probability of association between the two sequences, with inter-protein attractive electrostatic interactions playing dominant roles. Principal component analysis revealed significant heterogeneity in the strength and nature of the associations in the key interaction modes. In most, the interactions of repeating Lys residues, mainly in the imperfect repeats 'KTKEGV' present in αSyn1-95 were found to be essential for cross interactions and formation of inter-protein salt bridges. Additionally, a hydrophobicity driven interaction mode devoid of salt bridges, where the non-amyloid component (NAC) region of αSyn1-95 came in contact with the hydrophobic core of Aβ1-42 was observed. The existence of such hetero complexes, and therefore hetero assembly pathways may lead to polymorphic aggregates with variations in pathological attributes. Our results provide a perspective on development of therapeutic strategies for preventing pathogenic interactions between these proteins.
Collapse
Affiliation(s)
- Jaya C. Jose
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
23
|
Xu L, Chen Y, Wang X. Assembly of Amyloid β Peptides in the Presence of Fibril Seeds: One-Pot Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2014; 118:9238-46. [DOI: 10.1021/jp505551m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Liang Xu
- School of Chemistry, ‡Network and Information Center, and §School of Chemical Machinery, Dalian University of Technology, Dalian, China
| | - Yonggang Chen
- School of Chemistry, ‡Network and Information Center, and §School of Chemical Machinery, Dalian University of Technology, Dalian, China
| | - Xiaojuan Wang
- School of Chemistry, ‡Network and Information Center, and §School of Chemical Machinery, Dalian University of Technology, Dalian, China
| |
Collapse
|