1
|
Böhmer T, Pabst F, Gabriel JP, Zeißler R, Blochowicz T. On the spectral shape of the structural relaxation in supercooled liquids. J Chem Phys 2025; 162:120902. [PMID: 40135608 DOI: 10.1063/5.0254534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Structural relaxation in supercooled liquids is non-exponential. In susceptibility representation, χ″(ν), the spectral shape of the structural relaxation is observed as an asymmetrically broadened peak with a ν1 low- and ν-β high-frequency behavior. In this perspective article, we discuss common notions, recent results, and open questions regarding the spectral shape of the structural relaxation. In particular, we focus on the observation that a high-frequency behavior of ν-1/2 appears to be a generic feature in a broad range of supercooled liquids. Moreover, we review extensive evidence that contributions from orientational cross-correlations can lead to deviations from the generic spectral shape in certain substances, in particular in dielectric loss spectra. In addition, intramolecular dynamics can contribute significantly to the spectral shape in substances containing more complex and flexible molecules. Finally, we discuss the open questions regarding potential physical origins of the generic ν-1/2 behavior and the evolution of the spectral shape toward higher temperatures.
Collapse
Affiliation(s)
- Till Böhmer
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Florian Pabst
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Jan Philipp Gabriel
- Institute of Materials Physics in Space, German Aerospace Center, 51170 Cologne, Germany
| | - Rolf Zeißler
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
2
|
Fatina C, Yu J, Richert R, Yu L. Structural Evolution in a Glass-Forming Liquid Alcohol by X-Ray Scattering: Contrasting Behaviors of Main Peak and Prepeak Structures. J Phys Chem B 2025. [PMID: 40008678 DOI: 10.1021/acs.jpcb.4c06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
X-ray scattering of liquid 2-ethyl-1-hexanol (2E1H) has been measured from its liquid state to its glassy state with focus on the main scattering peak and the prepeak. The main peak, associated with the packing of the alkyl chains, shifts to higher angle and sharpens in a manner consistent with closely packed spheres, until kinetic arrest at the glass transition temperature Tg (146 K). In contrast, the prepeak, associated with the correlation of the hydroxyl groups separated by the hydrocarbon chains, shows a transition near 220 K, below which its width is nearly frozen and insensitive to the passage of Tg. This transition coincides with a similar transition in the Kirkwood factor gK which reports the orientational correlation of the OH dipoles, and with the transition reported previously as the "250 K anomaly" based on other observables. This transition arises from the increased hydrogen bonding between the hydroxyl groups and the resulting improvement of the regularity of the alcohol bilayers.
Collapse
Affiliation(s)
- Caroline Fatina
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Baptista LA, Sevilla M, Wagner M, Kremer K, Cortes-Huerto R. Chilling alcohol on the computer: isothermal compressibility and the formation of hydrogen-bond clusters in liquid propan-1-ol. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:117. [PMID: 38019330 PMCID: PMC10687148 DOI: 10.1140/epje/s10189-023-00380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Molecular dynamics simulations have been performed to compute the isothermal compressibility [Formula: see text] of liquid propan-1-ol in the temperature range [Formula: see text] K. A change in behaviour, from normal (high T) to anomalous (low T), has been identified for [Formula: see text] at [Formula: see text] K. The average number of hydrogen bonds (H-bond) per molecule turns to saturation in the same temperature interval, suggesting the formation of a relatively rigid network. Indeed, simulation results show a strong tendency to form H-bond clusters with distinct boundaries, with the average largest size and width of the size distribution growing upon decreasing temperature, in agreement with previous theoretical and experimental studies. These results also emphasise a connection between the behaviour of [Formula: see text] and the formation of nanometric structures.
Collapse
Affiliation(s)
- Luis A Baptista
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mauricio Sevilla
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | |
Collapse
|
4
|
Chen Z, Nie H, Benmore CJ, Smith PA, Du Y, Byrn S, Templeton AC, Su Y. Probing Molecular Packing of Amorphous Pharmaceutical Solids Using X-ray Atomic Pair Distribution Function and Solid-State NMR. Mol Pharm 2023; 20:5763-5777. [PMID: 37800667 DOI: 10.1021/acs.molpharmaceut.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural investigation of amorphous pharmaceuticals is of paramount importance in comprehending their physicochemical stability. However, it has remained a relatively underexplored realm primarily due to the limited availability of high-resolution analytical tools. In this study, we utilized the combined power of X-ray pair distribution functions (PDFs) and solid-state nuclear magnetic resonance (ssNMR) techniques to probe the molecular packing of amorphous posaconazole and its amorphous solid dispersion at the molecular level. Leveraging synchrotron X-ray PDF data and employing the empirical potential structure refinement (EPSR) methodology, we unraveled the existence of a rigid conformation and discerned short-range intermolecular C-F contacts within amorphous posaconazole. Encouragingly, our ssNMR 19F-13C distance measurements offered corroborative evidence supporting these findings. Furthermore, employing principal component analysis on the X-ray PDF and ssNMR data sets enabled us to gain invaluable insights into the chemical nature of the intermolecular interactions governing the drug-polymer interplay. These outcomes not only furnish crucial structural insights facilitating the comprehension of the underlying mechanisms governing the physicochemical stability but also underscore the efficacy of synergistically harnessing X-ray PDF and ssNMR techniques, complemented by robust modeling strategies, to achieve a high-resolution exploration of amorphous structures.
Collapse
Affiliation(s)
- Zhenxuan Chen
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chris J Benmore
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pamela A Smith
- Improved Pharma, West Lafayette, Indiana 47906, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen Byrn
- Improved Pharma, West Lafayette, Indiana 47906, United States
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
5
|
Hoffmann L, Beerwerth J, Moch K, Böhmer R. Phenol, the simplest aromatic monohydroxy alcohol, displays a faint Debye-like process when mixed with a nonassociating liquid. Phys Chem Chem Phys 2023; 25:24042-24059. [PMID: 37654228 DOI: 10.1039/d3cp02774k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solvated in propylene carbonate, viscous phenol is studied using dielectric spectroscopy and shear rheology. In addition, several oxygen-17 and deuteron nuclear magnetic resonance (NMR) techniques are applied to specifically isotope labeled equimolar mixtures. Quantum chemical calculations are used to check the electrical field gradient at phenol's oxygen site. The chosen combination of NMR methods facilitates the selective examination of potentially hydrogen-bond related contributions as well as those dominated by the structural relaxation. Taken together the present results for phenol in equimolar mixtures with the van der Waals liquid propylene carbonate provide evidence for the existence of a very weak Debye-like process that originates from ringlike supramolecular associates.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
6
|
Chen Z, Huang C, Yao X, Benmore CJ, Yu L. Structures of glass-forming liquids by x-ray scattering: Glycerol, xylitol, and D-sorbitol. J Chem Phys 2021; 155:244508. [PMID: 34972382 DOI: 10.1063/5.0073986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synchrotron x-ray scattering has been used to investigate three liquid polyalcohols of different sizes (glycerol, xylitol, and D-sorbitol) from above the glass transition temperatures Tg to below. We focus on two structural orders: the association of the polar OH groups by hydrogen bonds (HBs) and the packing of the non-polar hydrocarbon groups. We find that the two structural orders evolve very differently, reflecting the different natures of bonding. Upon cooling from 400 K, the O⋯O correlation at 2.8 Å increases significantly in all three systems, indicating more HBs, until kinetic arrests at Tg; the increase is well described by an equilibrium between bonded and non-bonded OH with ΔH = 9.1 kJ/mol and ΔS = 13.4 J/mol/K. When heated above Tg, glycerol loses the fewest HBs per OH for a given temperature rise scaled by Tg, followed by xylitol and by D-sorbitol, in the same order the number of OH groups per molecule increases (3, 5, and 6). The pair correlation functions of all three liquids show exponentially damped density modulations of wavelength 4.5 Å, which are associated with the main scattering peak and with the intermolecular C⋯C correlation. In this respect, glycerol is the most ordered with the most persistent density ripples, followed by D-sorbitol and by xylitol. Heating above Tg causes faster damping of the density ripples with the rate of change being the slowest in xylitol, followed by glycerol and by D-sorbitol. Given the different dynamic fragility of the three liquids (glycerol being the strongest and D-sorbitol being the most fragile), we relate our results to the current theories of the structural origin for the difference. We find that the fragility difference is better understood on the basis of the thermal stability of HB clusters than that of the structure associated with the main scattering peak.
Collapse
Affiliation(s)
- Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chengbin Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Xin Yao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chris J Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
7
|
Alvarez F, Arbe A, Colmenero J. Unraveling the coherent dynamic structure factor of liquid water at the mesoscale by molecular dynamics simulations. J Chem Phys 2021; 155:244509. [PMID: 34972354 DOI: 10.1063/5.0074588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an investigation by molecular dynamics (MD)-simulations of the coherent dynamic structure factor, S(Q, t) (Q: momentum transfer), of liquid water at the mesoscale (0.1 Å-1 ≤ Q ≤ Qmax) [Qmax ≈ 2 Å-1: Q-value of the first maximum of the static structure factor, S(Q), of water]. The simulation cell-large enough to address the collective properties at the mesoscale-is validated by direct comparison with recent results on the dynamic structure factor in the frequency domain obtained by neutron spectroscopy with polarization analysis [Arbe et al., Phys. Rev. Res. 2, 022015 (2020)]. We have not only focused on the acoustic excitations but also on the relaxational contributions to S(Q, t). The analysis of the MD-simulation results-including the self- and distinct contributions to the diffusive part of S(Q, t)-nicely explains why the relaxation process hardly depends on Q in the low Q-range (Q ≤ 0.4 Å-1) and how it crosses over to a diffusion-driven process at Q ≈ Qmax. Our simulations also give support to the main assumptions of the model used to fit the experimental data in the above mentioned paper. The application of such a model to the simulation S(Q, t) data delivers (i) results for the relaxation component of S(Q, t) in agreement with those obtained from neutron experiments and (ii) longitudinal and transverse hydrodynamic-like components with similar features than those identified in previous simulations of the longitudinal and transverse current spectra directly. On the other hand, in general, our MD-simulations results of S(Q, t) qualitatively agree with the viscoelastic transition framework habitually used to describe inelastic x-ray scattering results.
Collapse
Affiliation(s)
- Fernando Alvarez
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
8
|
Ananiadou A, Papamokos G, Steinhart M, Floudas G. Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols. J Chem Phys 2021; 155:184504. [PMID: 34773957 DOI: 10.1063/5.0063967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the effect of confinement on the dynamics of three monohydroxy alcohols (1-propanol, 2-ethyl-1-hexanol, and 4-methyl-3-heptanol) differing in their chemical structure and, consequently, in the dielectric strength of the "Debye" process. Density functional theory calculations in bulk 1-propanol identified both linear and ring-like associations composed of up to five repeat units. The simulation results revealed that the ring structures, with a low dipole moment (∼2 D), are energetically preferred over the linear assemblies with a dipole moment of 2.18 D per repeat unit. Under confinement in nanoporous alumina (in templates with pore diameters ranging from 400 to 20 nm), all dynamic processes were found to speed up irrespective of the molecular architecture. The characteristic freezing temperatures of the α and the Debye-like processes followed the pore size dependence: Ta,D=Ta,D bulk-A/d1/2, where d is the pore diameter. The characteristic "freezing" temperatures for the Debye-like (the slow process for confined 1-propanol is non-Debye) and the α-processes decrease, respectively, by 6.5 and 13 K in confined 1-propanol, by 9.5 and 19 K in confined 2-ethyl-1-hexanol, and by 9 and 23 K in confined 4-methyl-3-heptanol within the same 25 nm pores. In 2-ethyl-1-hexanol, confinement reduced the number of linearly associated repeats from approximately heptamers in the bulk to dimers within 25 pores. In addition, the slower process in bulk 2-ethyl-1-hexanol and 4-methyl-3-heptanol, where the signal is dominated by ring-like supramolecular assemblies, is clearly non-Debye. The results suggest that the effect of confinement is dominant in the latter assemblies.
Collapse
Affiliation(s)
- Antonela Ananiadou
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - George Papamokos
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Chen Z, Gui Y, Cui K, Schmit JR, Yu L. Prolific Polymorph Generator ROY in Its Liquid and Glass: Two Conformational Populations Mirroring the Crystalline-State Distribution. J Phys Chem B 2021; 125:10304-10311. [PMID: 34464152 DOI: 10.1021/acs.jpcb.1c05834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, dubbed ROY for its numerous crystal polymorphs of red, orange, and yellow colors, has been studied in its liquid and glassy state by infrared spectroscopy. Two populations of conformers are observed, whose equilibrium is characterized by ΔH = 2.4 kJ/mol and ΔS = 8.0 J/K/mol. The two populations correspond to the global and local minima of the torsional energy surface and to the conformational preference of the 13 crystal polymorphs. The local minimum features a more coplanar arrangement of the two aromatic rings, greater π conjugation, and lower CN stretch frequency. In the gas phase, the lowest-energy path between the two minima has an energy barrier 3.9 kJ/mol above the global minimum, consistent with the rapid equilibration between the two populations. The relevance of our result for understanding the prolific polymorphism of ROY is discussed.
Collapse
Affiliation(s)
- Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yue Gui
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kai Cui
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J R Schmit
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
10
|
Ngai KL. Microscopic understanding of the Johari-Goldstein β relaxation gained from nuclear γ-resonance time-domain-interferometry experiments. Phys Rev E 2021; 104:015103. [PMID: 34412284 DOI: 10.1103/physreve.104.015103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 11/07/2022]
Abstract
Traditionally the study of dynamics of glass-forming materials has been focused on the structural α relaxation. However, in recent years experimental evidence has revealed that a secondary β relaxation belonging to a special class, called the Johari-Goldstein (JG) β relaxation, has properties strongly linked to the primary α relaxation. By invoking the principle of causality, the relation implies the JG β relaxation is fundamental and indispensable for generating the α relaxation, and the properties of the latter are inherited from the former. The JG β relaxation is observed together with the α relaxation mostly by dielectric spectroscopy. The macroscopic nature of the data allows the use of arbitrary or unproven procedures to analyze the data. Thus the results characterizing the JG β relaxation and the relation of its relaxation time τ_{β} to the α-relaxation time τ_{α} obtained can be equivocal and controversial. Coming to the rescue is the nuclear resonance time-domain-interferometry (TDI) technique covering a wide time range (10^{-9}-10^{-5}s) and a scattering vector q range (9.6-40nm^{-1}). TDI experiments have been carried out on four glass formers, ortho-terphenyl [M. Saito et al., Phys. Rev. Lett. 109, 115705 (2012)10.1103/PhysRevLett.109.115705], polybutadiene [T. Kanaya et al., J. Chem. Phys. 140, 144906 (2014)10.1063/1.4869541], 5-methyl-2-hexanol [F. Caporaletti et al., Sci. Rep. 9, 14319 (2019)10.1038/s41598-019-50824-7], and 1-propanol [F. Caporaletti et al., Nat. Commun. 12, 1867 (2021)10.1038/s41467-021-22154-8]. In this paper the TDI data are reexamined in conjunction with dielectric and neutron scattering data. The results show the JG β relaxation observed by dielectric spectroscopy is heterogeneous and comprises processes with different length scales. A process with a longer length scale has a longer relaxation time. TDI data also prove the primitive relaxation time τ_{0} of the coupling model falls within the distribution of the TDI q-dependent JG β-relaxation times. This important finding explains why the experimental dielectric JG β-relaxation times τ_{β}(T,P) is approximately equal to τ_{0}(T,P) as found in many glass formers at various temperature T and pressure P. The result, τ_{β}(T,P)≈τ_{0}(T,P), in turn explains why the ratio τ_{α}(T,P)/τ_{β}(T,P) is invariant to changes of T and pressure P at constant τ_{α}(T,P), the α-relaxation time.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
11
|
Zhai Y, Luo P, Nagao M, Nakajima K, Kikuchi T, Kawakita Y, Kienzle PA, Z Y, Faraone A. Relevance of hydrogen bonded associates to the transport properties and nanoscale dynamics of liquid and supercooled 2-propanol. Phys Chem Chem Phys 2021; 23:7220-7232. [PMID: 33876082 DOI: 10.1039/d0cp05481j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Propanol was investigated, in both the liquid and supercooled states, as a model system to study how hydrogen bonds affect the structural relaxation and the dynamics of mesoscale structures, of approximately several Ångstroms, employing static and quasi-elastic neutron scattering and molecular dynamics simulation. Dynamic neutron scattering measurements were performed over an exchanged wave-vector range encompassing the pre-peak, indicative of the presence of H-bonding associates, and the main peak. The dynamics observed at the pre-peak is associated with the formation and disaggregation of the H-bonded associates and is measured to be at least one order of magnitude slower than the dynamics at the main peak, which is identified as the structural relaxation. The measurements indicate that the macroscopic shear viscosity has a similar temperature dependence as the dynamics of the H-bonded associates, which highlights the important role played by these structures, together with the structural relaxation, in defining the macroscopic rheological properties of the system. Importantly, the characteristic relaxation time at the pre-peak follows an Arrhenius temperature dependence whereas at the main peak it exhibits a non-Arrhenius behavior on approaching the supercooled state. The origin of this differing behavior is attributed to an increased structuring of the hydrophobic domains of 2-propanol accommodating a more and more encompassing H-bond network, and a consequent set in of dynamic cooperativity.
Collapse
Affiliation(s)
- Yanqin Zhai
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Caporaletti F, Capaccioli S, Valenti S, Mikolasek M, Chumakov AI, Monaco G. Experimental evidence of mosaic structure in strongly supercooled molecular liquids. Nat Commun 2021; 12:1867. [PMID: 33767148 PMCID: PMC7994800 DOI: 10.1038/s41467-021-22154-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/25/2021] [Indexed: 11/25/2022] Open
Abstract
When a liquid is cooled to produce a glass its dynamics, dominated by the structural relaxation, become very slow, and at the glass-transition temperature Tg its characteristic relaxation time is about 100 s. At slightly elevated temperatures (~1.2 Tg) however, a second process known as the Johari-Goldstein relaxation, βJG, decouples from the structural one and remains much faster than it down to Tg. While it is known that the βJG-process is strongly coupled to the structural relaxation, its dedicated role in the glass-transition remains under debate. Here we use an experimental technique that permits us to investigate the spatial and temporal properties of the βJG relaxation, and give evidence that the molecules participating in it are highly mobile and spatially connected in a system-spanning, percolating cluster. This correlation of structural and dynamical properties provides strong experimental support for a picture, drawn from theoretical studies, of an intermittent mosaic structure in the deeply supercooled liquid phase. The Johari-Goldstein relaxation is a precursor of the glass transition in liquids. Caporaletti et al. use time-dependent interferometry data to substantiate its suggested structural appearance as a globally percolating, fluctuating mosaic.
Collapse
Affiliation(s)
- F Caporaletti
- Dipartimento di Fisica, Università di Trento, Povo (Trento), Italy. .,Van der Waals-Zeeman Institute, Institute of Physics/Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - S Capaccioli
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy
| | - S Valenti
- Department of Physics, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - M Mikolasek
- ESRF-The European Synchrotron, CS40220, Grenoble Cedex 9, France
| | - A I Chumakov
- ESRF-The European Synchrotron, CS40220, Grenoble Cedex 9, France.,National Research Center 'Kurchatov Institute', Moscow, Russia
| | - G Monaco
- Dipartimento di Fisica, Università di Trento, Povo (Trento), Italy. .,Dipartimento di Fisica ed Astronomia, Università di Padova, Padova, Italy.
| |
Collapse
|
13
|
Zhai Y, Martys NS, George WL, Curtis JE, Nayem J, Z Y, Liu Y. Intermediate scattering functions of a rigid body monoclonal antibody protein in solution studied by dissipative particle dynamic simulation. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:024102. [PMID: 33869662 PMCID: PMC8034984 DOI: 10.1063/4.0000086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In the past decade, there was increased research interest in studying internal motions of flexible proteins in solution using Neutron Spin Echo (NSE) as NSE can simultaneously probe the dynamics at the length and time scales comparable to protein domain motions. However, the collective intermediate scattering function (ISF) measured by NSE has the contributions from translational, rotational, and internal motions, which are rather complicated to be separated. Widely used NSE theories to interpret experimental data usually assume that the translational and rotational motions of a rigid particle are decoupled and independent to each other. To evaluate the accuracy of this approximation for monoclonal antibody (mAb) proteins in solution, dissipative particle dynamic computer simulation is used here to simulate a rigid-body mAb for up to about 200 ns. The total ISF together with the ISFs due to only the translational and rotational motions as well as their corresponding effective diffusion coefficients is calculated. The aforementioned approximation introduces appreciable errors to the calculated effective diffusion coefficients and the ISFs. For the effective diffusion coefficient, the error introduced by this approximation can be as large as about 10% even though the overall agreement is considered reasonable. Thus, we need to be cautious when interpreting the data with a small signal change. In addition, the accuracy of the calculated ISFs due to the finite computer simulation time is also discussed.
Collapse
Affiliation(s)
| | - Nicos S. Martys
- Materials and Construction Research Division of Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - William L. George
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Joseph E. Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | | | | | - Yun Liu
- Author to whom correspondence should be addressed: and
| |
Collapse
|
14
|
Artemov VG, Ryzhov A, Carlsen E, Kapralov PO, Ouerdane H. Nonrotational Mechanism of Polarization in Alcohols. J Phys Chem B 2020; 124:11022-11029. [PMID: 33225700 DOI: 10.1021/acs.jpcb.0c09380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical polarity governs various mechanical, chemical, and thermodynamic properties of dielectrics. Polar liquids have been amply studied, yet the basic mechanisms underpinning their dielectric properties remain not fully understood, as standard models following Debye's phenomenological approach do not account for quantum effects and cannot aptly reproduce the full dc-up-to-THz spectral range. Here, using the illustrative case of monohydric alcohols, we show that deep tunneling and the consequent intermolecular separation of excess protons and "proton-holes" in the polar liquids govern their static and dynamic dielectric properties on the same footing. We performed systematic ultrabroadband (0-10 THz) spectroscopy experiments with monohydric alcohols of different (0.4-1.6 nm) molecular lengths and show that the finite lifetime of molecular species and the proton-hole correlation length are the two principle parameters responsible for the dielectric response of all the studied alcohols across the entire frequency range. Our results demonstrate that a quantum nonrotational intermolecular mechanism drives the polarization in alcohols while the rotational mechanism of molecular polarization plays a secondary role, manifesting itself in the sub-terahertz region only.
Collapse
Affiliation(s)
- Vasily G Artemov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexander Ryzhov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Emma Carlsen
- Department of Chemistry and Biochemistry, Brigham Young University, 84602 Provo, Utah, United States
| | | | - Henni Ouerdane
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
15
|
Interplay between structural static and dynamical parameters as a key factor to understand peculiar behaviour of associated liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Lunkenheimer P, Humann F, Loidl A, Samwer K. Universal correlations between the fragility and interparticle repulsion of glass-forming liquids. J Chem Phys 2020; 153:124507. [PMID: 33003757 DOI: 10.1063/5.0014457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recently published analytical model describing and predicting elasticity, viscosity, and fragility of metallic melts is applied for the analysis of about 30 nonmetallic glassy systems, ranging from oxide network glasses to alcohols, low-molecular-weight liquids, polymers, plastic crystals, and even ionic glass formers. The model is based on the power-law exponent λ representing the steepness parameter of the repulsive part of the inter-atomic or inter-molecular potential and the thermal-expansion parameter αT determined by the attractive anharmonic part of the effective interaction. It allows fitting the typical super-Arrhenius temperature variation of the viscosity or dielectric relaxation time for various classes of glass-forming matter, over many decades. We discuss the relation of the model parameters found for all these different glass-forming systems to the fragility parameter m and detect a correlation of λ and m for the non-metallic glass formers, in accord with the model predictions. Within the framework of this model, the fragility of glass formers can be traced back to microscopic model parameters characterizing the intermolecular interactions.
Collapse
Affiliation(s)
- Peter Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Felix Humann
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Alois Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Konrad Samwer
- I. Physikalisches Institut, Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Yamaguchi T. Coupling between Structural and Dielectric Relaxations of Methanol and Ethanol Studied by Molecular Dynamics Simulation. J Phys Chem B 2020; 124:7027-7036. [PMID: 32696646 DOI: 10.1021/acs.jpcb.0c05685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The microscopic origin of the fast dielectric relaxation modes and the integrated dielectric relaxation times of methanol and ethanol was investigated by means of cross-correlation analysis of molecular dynamics simulation. Random force on the fluctuation of collective dipole moment was correlated with the two-body density mode in both real and reciprocal spaces. A strong coupling was observed with the OH alternation mode at 30 nm-1, suggesting that alternating switching of the hydrogen bond within a hydrogen-bonding chain is the principal origin of the retarded friction on the collective dipole moment. The relaxation of the coupling was much slower than that of the partial intermediate scattering functions at the corresponding wavenumber, which suggests the breakdown of the factorization approximation employed in the mode-coupling theory. Although the prepeak structure is strongly coupled to the viscoelastic relaxation, its coupling with the dielectric relaxation is relatively weak. The difference between the viscoelastic and the dielectric relaxations was discussed in terms of the different symmetries of the shear stress tensor and the collective dipole moment.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
18
|
Xu D, Feng S, Wang JQ, Wang LM, Richert R. Entropic Nature of the Debye Relaxation in Glass-Forming Monoalcohols. J Phys Chem Lett 2020; 11:5792-5797. [PMID: 32608239 DOI: 10.1021/acs.jpclett.0c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and thermodynamics of the Debye and structural (α) relaxations in isomeric monoalcohols near the glass transition temperature Tg are explored using dielectric and calorimetric techniques. The α relaxation strength at Tg is found to correlate with the heat capacity increment, but no thermal signals can be detected to link to the Debye relaxation. We also observed that the activation energy of the Debye relaxation in monoalcohols is quantitatively correlated with that of the α relaxation at the kinetic Tg, sharing the dynamic behavior of the Rouse modes found in polymers. The experimental results together with the analogy to the Rouse modes in polymers suggest that the Debye process in monoalcohols is an entropic process manifested by the total dipole fluctuation of the supramolecular structures, which is triggered and driven by the α relaxation.
Collapse
Affiliation(s)
- Di Xu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shidong Feng
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
19
|
Bartoš J, Arrese-Igor S, Švajdlenková H, Kleinová A, Alegría A. Dynamics of Confined Short-Chain alkanol in MCM-41 by Dielectric Spectroscopy: Effects of matrix and system Treatments and Filling Factor. Polymers (Basel) 2020; 12:E610. [PMID: 32156023 PMCID: PMC7182830 DOI: 10.3390/polym12030610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
The dynamics of n-propanol confined in regular MCM-41 matrix with the pore size Dpore = 40 Å, under various matrix conditioning and sample confining conditions, using broadband dielectric spectroscopy (BDS), is reported. First, various drying procedures with the capacitor filling under air or N2 influence the BDS spectra of the empty MCM-41 and the confined n-PrOH/MCM-41 systems, but have a little effect on the maximum relaxation time of the main process. Finally, various filling factors of n-PrOH medium in the optimally treated MCM-41 system lead to unimodal or bimodal spectra interpreted in terms of the two distinct dynamic phases in the confined states.
Collapse
Affiliation(s)
- Josef Bartoš
- Polymer Institute of SAS, Dúbravská cesta, 9 845 41 Bratislava, Slovakia; (H.Š.); (A.K.)
| | - Silvia Arrese-Igor
- Centro de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; (S.A.-I.); (A.A.)
| | - Helena Švajdlenková
- Polymer Institute of SAS, Dúbravská cesta, 9 845 41 Bratislava, Slovakia; (H.Š.); (A.K.)
| | - Angela Kleinová
- Polymer Institute of SAS, Dúbravská cesta, 9 845 41 Bratislava, Slovakia; (H.Š.); (A.K.)
| | - Angel Alegría
- Centro de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; (S.A.-I.); (A.A.)
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| |
Collapse
|
20
|
Ngai K, Pawlus S, Paluch M. Explanation of the difference in temperature and pressure dependences of the Debye relaxation and the structural α-relaxation near T of monohydroxy alcohols. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Zhao XY, Wang LN, He YF, Zhou HW, Huang YN. Measurements and analyses of the conductivities of probe ions in monohydroxy alcohol liquids. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Böhmer T, Gabriel JP, Richter T, Pabst F, Blochowicz T. Influence of Molecular Architecture on the Dynamics of H-Bonded Supramolecular Structures in Phenyl-Propanols. J Phys Chem B 2019; 123:10959-10966. [DOI: 10.1021/acs.jpcb.9b07768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Till Böhmer
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jan Philipp Gabriel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Timo Richter
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Florian Pabst
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
23
|
Russina M, Günther G, Grzimek V, Schlegel MC, Veziri CM, Karanikolos GN, Yamada T, Mezei F. Nanoscale Dynamics and Transport in Highly Ordered Low-Dimensional Water. J Phys Chem Lett 2019; 10:6339-6344. [PMID: 31577146 DOI: 10.1021/acs.jpclett.9b02303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Highly ordered and highly cooperative water with properties of both solid and liquid states has been observed by means of neutron scattering in hydrophobic one-dimensional channels with van der Waals diameter of 0.78 nm. We have found that in the initial stages of adsorption water molecules occupy niches close to pore walls, followed later by the filling of the central pore area. Intensified by confinement, intermolecular water interactions lead to the formation of well-ordered hydrogen-bonded water chains and to the onset of cooperative vibrations. On the other hand, the same intermolecular interactions lead to two relaxation processes, the faster of which is the spontaneous position exchange between two water molecules placed 3.2-4 Å from each other. Self-diffusion in an axial pore direction is the result of those spontaneous random exchanges and is substantially slower than the self-diffusion in bulk water.
Collapse
Affiliation(s)
- Margarita Russina
- Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , 14109 Berlin , Germany
| | - Gerrit Günther
- Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , 14109 Berlin , Germany
| | - Veronika Grzimek
- Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , 14109 Berlin , Germany
| | - Moritz C Schlegel
- Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , 14109 Berlin , Germany
- Federal Institute for Materials Research and Testing , Rudower Chaussee 11 , 12489 Berlin , Germany
| | - Charitomeni M Veziri
- Institute of Nanoscience and Nanotechnology (INN) , Demokritos National Research Center , Athens , 153 10 , Greece
| | - Georgios N Karanikolos
- Department of Chemical Engineering , Khalifa University , P.O. Box 127788, Abu Dhabi , UAE
- Center for Membranes and Advanced Water Technology (CMAT) , Khalifa University , P.O. Box 127788, Abu Dhabi , UAE
| | - Takeshi Yamada
- CROSS Neutron Science and Technology Center , IQBRC Building, 162-1 Shirakata , Tokai, Naka , Ibaraki 319-1106 , Japan
| | - Ferenc Mezei
- Wigner Research Center , Pf. 49 , 1525 Budapest , Hungary
| |
Collapse
|
24
|
Caporaletti F, Capaccioli S, Valenti S, Mikolasek M, Chumakov AI, Monaco G. A microscopic look at the Johari-Goldstein relaxation in a hydrogen-bonded glass-former. Sci Rep 2019; 9:14319. [PMID: 31586113 PMCID: PMC6778113 DOI: 10.1038/s41598-019-50824-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the glass transition requires getting the picture of the dynamical processes that intervene in it. Glass-forming liquids show a characteristic decoupling of relaxation processes when they are cooled down towards the glassy state. The faster (βJG) process is still under scrutiny, and its full explanation necessitates information at the microscopic scale. To this aim, nuclear γ-resonance time-domain interferometry (TDI) has been utilized to investigate 5-methyl-2-hexanol, a hydrogen-bonded liquid with a pronounced βJG process as measured by dielectric spectroscopy. TDI probes in fact the center-of-mass, molecular dynamics at scattering-vectors corresponding to both inter- and intra-molecular distances. Our measurements demonstrate that, in the undercooled liquid phase, the βJG relaxation can be visualized as a spatially-restricted rearrangement of molecules within the cage of their closest neighbours accompanied by larger excursions which reach out at least the inter-molecular scale and are related to cage-breaking events. In-cage rattling and cage-breaking processes therefore coexist in the βJG relaxation.
Collapse
Affiliation(s)
- F Caporaletti
- Dipartimento di Fisica, Università di Trento, I-38123, Povo, Trento, Italy.
| | - S Capaccioli
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - S Valenti
- Grup de Caracterització de Materials, Department of Physics, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019, Barcelona, Spain
| | - M Mikolasek
- ESRF-The European Synchrotron, CS40 220, 38043, Grenoble, Cedex 9, France
| | - A I Chumakov
- ESRF-The European Synchrotron, CS40 220, 38043, Grenoble, Cedex 9, France
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - G Monaco
- Dipartimento di Fisica, Università di Trento, I-38123, Povo, Trento, Italy.
| |
Collapse
|
25
|
Ozawa M, Scalliet C, Ninarello A, Berthier L. Does the Adam-Gibbs relation hold in simulated supercooled liquids? J Chem Phys 2019; 151:084504. [DOI: 10.1063/1.5113477] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Misaki Ozawa
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Camille Scalliet
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | | | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
26
|
Seydel T, Edkins RM, Edkins K. Picosecond self-diffusion in ethanol-water mixtures. Phys Chem Chem Phys 2019; 21:9547-9552. [PMID: 31020975 DOI: 10.1039/c9cp01982k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the self-diffusion in ethanol-water mixtures as a function of the water-ethanol ratio measured at different temperatures using quasi-elastic neutron spectroscopy (QENS). For our protiated samples, QENS is mainly sensitive to the dominant ensemble-averaged incoherent scattering from the hydrogen atoms of the liquid mixtures. The energy range and resolution render our experiment sensitive to the picosecond time scale and nanometer length scale. These observation scales complement different scales accessible by nuclear magnetic resonance techniques. Subsequent to testing different models, we find that a simple jump-diffusion model averaging over both types of molecules, water and ethanol, best fits our data.
Collapse
Affiliation(s)
- Tilo Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France
| | | | | |
Collapse
|
27
|
Bierwirth SP, Honorio G, Gainaru C, Böhmer R. Linear and nonlinear shear studies reveal supramolecular responses in supercooled monohydroxy alcohols with faint dielectric signatures. J Chem Phys 2019; 150:104501. [DOI: 10.1063/1.5086529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- S. Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Gabriel Honorio
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
28
|
Gromnitskaya EL, Danilov IV, Lyapin AG, Brazhkin VV. Elastic properties of liquid and glassy propane-based alcohols under high pressure: the increasing role of hydrogen bonds in a homologous family. Phys Chem Chem Phys 2019; 21:2665-2672. [PMID: 30657511 DOI: 10.1039/c8cp07588c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have measured the elastic moduli of liquid and glassy n-propanol and propylene glycol (PG) under pressure by ultrasonic techniques and have recalculated similar characteristics for glycerol from the previous experiment. All three substances form a ternary homologous family with the common formula C3H8-n(OH)n (n = 1, 2, 3), where the number of hydrogen bonds per molecule increases with the number of oxygen atoms approximately as ≈2n. In turn, the enhancement of hydrogen bonding results in an increase in elastic moduli (bulk modulus for liquids or bulk and shear moduli for glasses) from n-propanol to glycerol at all pressures, while the volume per molecule Vm shows the opposite trend at atmospheric pressure in spite of an increase in the molecular size. Nevertheless, the ratios between the Vm values at pressure P > 0.05 GPa are inverted in liquids and tend to the ratios of molecule volumes which indicates a decrease of the relative contribution of hydrogen bonds to the repulsive intermolecular forces with increasing pressure regardless of increase or decrease in the number of hydrogen bonds and their strength. A similar volume behavior is observed for glasses at T = 77 K. We have also established that the relative difference between corresponding moduli of liquid or glassy n-propanol and PG is remarkably less than that between corresponding values for PG and glycerol. We explain this property by the formation of a three-dimensional network of hydrogen bonds in glycerol, where the number of hydrogen bonds per molecule is close to six.
Collapse
Affiliation(s)
- E L Gromnitskaya
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia.
| | | | | | | |
Collapse
|
29
|
Ngai KL, Wang LM. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol. J Phys Chem B 2019; 123:714-719. [PMID: 30601008 DOI: 10.1021/acs.jpcb.8b11453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrogen-bonded monohydroxyl alcohols form a large class of glass formers studied more than one hundred years, and still the structure and dynamics have continued to be a research problem. Recent advance suggests a hydrogen-bonded transient supramolecular structure, which is the origin of the Debye relaxation dominating the dielectric loss spectra of many monohydroxyl alcohols. Obscured by the slower Debye relaxation, the structural α-relaxation is either not resolved or showing up as a shoulder and the supposedly universal Johari-Goldstein (JG) β-relaxation is not always observed. Thus, properties of the α-relaxation and the JG β-relaxation as well as the strong connection between the two relaxations generally observed in other classes of glass formers are not commonly known in the monohydroxyl alcohols. Notwithstanding, extremely broadband dielectric relaxation and high-precision light scattering experiments published recently have resolved the α-relaxation and a secondary relaxation in two archetypal monohydroxyl alcohols, 1-propanol and 5-methyl-2-hexanol (5M2H) by Gabriel et al. We analyzed their experimental data and applied the Coupling Model to show that the secondary relaxations in 1-propanol and 5M2H are JG β-relaxations with strong connection to the α-relaxation. The result is novel because it is not known before whether the secondary relaxations of these two monohydroxyl alcohols are JG β-relaxation involving the entire molecule or are intramolecular relaxations. On the basis of this conclusion, we predict that the secondary relaxation is pressure-dependent and the ratio τβ( T, P)/τα( T, P) is invariant to variations of P and T, whereas τα( T, P) is maintained constant and provided that the frequency dispersion of the α-relaxation is also constant. The prediction is compared with the dielectric data of 5M2H at elevated pressures. On the basis of the identification of monohydroxyl alcohols as short-chain polymeric liquids by others, an explanation of the stronger T and P dependences of τα( T, P) than the Debye relaxation time τD( T, P) is given.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Università di Pisa , Largo B. Pontecorvo 3 , I-56127 Pisa , Italy.,State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering , Yanshan University , Qinhuangdao , Hebei 066004 , China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering , Yanshan University , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
30
|
Yamaguchi T, Faraone A, Nagao M. Collective Mesoscale Dynamics of Liquid 1-Dodecanol Studied by Neutron Spin-Echo Spectroscopy with Isotopic Substitution and Molecular Dynamics Simulation. J Phys Chem B 2019; 123:239-246. [PMID: 30511874 PMCID: PMC11168703 DOI: 10.1021/acs.jpcb.8b10299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The collective dynamics of liquid 1-dodecanol was investigated at a length scale matching the mesoscale structure arising from the segregation of hydrophilic and hydrophobic domains. To this end, neutron spin-echo experiments were performed on a series of partially deuterated samples and the relevant collective dynamics of the hydroxyl groups with respect to the alkyl chains was extracted from the linear combination of the intermediate scattering functions of these samples. The resulting collective dynamics is slower than the single particle dynamics as determined by the measurement on the nondeuterated sample. The experimental results are in excellent agreement with molecular dynamics simulation, which allows further insight into the mechanism of the molecular motions. The results indicate that two factors are responsible for the slower collective dynamics. The first one is the slower dynamics of the hydroxyl group, with respect to the alkyl chains, owing to hydrogen bonding, and the second one is the presence of mesoscale structuring.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
- Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408-1398, United States
| |
Collapse
|
31
|
Weigl P, Koestel D, Pabst F, Gabriel JP, Walther T, Blochowicz T. Local dielectric response in 1-propanol: α-relaxation versus relaxation of mesoscale structures. Phys Chem Chem Phys 2019; 21:24778-24786. [DOI: 10.1039/c9cp05035c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding how the local dielectric response is affected by the supramolecular Debye process in 1-propanol.
Collapse
Affiliation(s)
- Peter Weigl
- Institut für Festkörperphysik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | - Daniel Koestel
- Institut für angewandte Physik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | - Florian Pabst
- Institut für Festkörperphysik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | | | - Thomas Walther
- Institut für angewandte Physik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | | |
Collapse
|
32
|
Yamaguchi T, Faraone A. Analysis of shear viscosity and viscoelastic relaxation of liquid methanol based on molecular dynamics simulation and mode-coupling theory. J Chem Phys 2018; 146:244506. [PMID: 28668041 DOI: 10.1063/1.4990408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of the prepeak structure of liquid methanol in determining its shear viscosity was studied by means of molecular dynamics (MD) simulation and mode-coupling theory (MCT). The autocorrelation function of the shear stress and the intermediate scattering functions at both the prepeak and the main peak were calculated from the MD trajectories. Their comparison based on MCT suggests that the viscoelastic relaxation in the ps regime is affected by the slow structural dynamics at the prepeak. On the other hand, the MCT for molecular liquids based on the interaction-site model (site-site MCT) fails to describe the coupling between the prepeak dynamics and shear stress. The direct evaluation of the coupling between the two-body density and the shear stress reveals that the viscoelastic relaxation is actually affected by the prepeak dynamics, although the coupling is not captured by the site-site MCT. The site-site MCT works well for a model methanol without partial charges, suggesting that the failure of the site-site MCT originates from the existence of a hydrogen-bonding network structure.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Furo-cho B2-3 (611), Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
33
|
Büning T, Lueg J, Bolle J, Sternemann C, Gainaru C, Tolan M, Böhmer R. Connecting structurally and dynamically detected signatures of supramolecular Debye liquids. J Chem Phys 2018; 147:234501. [PMID: 29272922 DOI: 10.1063/1.4986866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The monohydroxy alcohol 2-ethyl-1-hexanol mixed with the halogen-substituted alkyl halides 2-ethyl-1-hexyl chloride and 2-ethyl-1-hexyl bromide was studied using synchrotron-based x-ray scattering. In the diffraction patterns, an oxygen-related prepeak appears. The concentration dependence of its intensity, shape, and position indicates that the formation of the hydrogen-bonded associates of monohydroxy alcohols is largely hindered by the halogen alkane admixture. Using dielectric spectroscopy and high-resolution rheology on the same liquid mixtures, it is shown that these structural features are correlated with the relaxation mechanisms giving rise to supramolecular low-frequency dynamics.
Collapse
Affiliation(s)
- T Büning
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Lueg
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - J Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - M Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
34
|
Interpretation of the GHz to THz dielectric relaxation dynamics of water in the framework of the Coupling Model. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Yamaguchi T, Saito M, Yoshida K, Yamaguchi T, Yoda Y, Seto M. Structural Relaxation and Viscoelasticity of a Higher Alcohol with Mesoscopic Structure. J Phys Chem Lett 2018; 9:298-301. [PMID: 29290123 DOI: 10.1021/acs.jpclett.7b02907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work studied the slow dynamics of liquids with mesoscopic structure and its relation to shear viscosity. Quasielastic scattering measurements were made on a liquid higher alcohol, 3,7-dimethyl-1-octanol, using γ-ray time-domain interferometry at a synchrotron radiation facility, SPring-8. The quasielastic scattering spectra were measured to determine the structural relaxation at two wavenumbers of the prepeak and the main peak of the static structure factor. It was found that relaxation at the prepeak is more than 10 times slower than that at the main peak. Compared with the viscoelastic spectrum, which exhibits bimodal relaxation, the relaxations at the prepeak and the main peak were shown to correspond to the slower and faster modes of the viscoelastic relaxation, respectively. This indicates that the dynamics of the mesoscopic structure represented as the prepeak contributes to the shear viscosity through the slowest mode of the viscoelastic relaxation.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University , Furo-cho B2-3 (611), Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Makina Saito
- Research Reactor Institute, Kyoto University , Kumatori, Osaka 590-0494, Japan
| | - Koji Yoshida
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma, Jonan, Fukuoka 814-0180, Japan
| | - Toshio Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma, Jonan, Fukuoka 814-0180, Japan
| | - Yoshitaka Yoda
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute , Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University , Kumatori, Osaka 590-0494, Japan
| |
Collapse
|
36
|
Lunkenheimer P, Emmert S, Gulich R, Köhler M, Wolf M, Schwab M, Loidl A. Electromagnetic-radiation absorption by water. Phys Rev E 2017; 96:062607. [PMID: 29347319 DOI: 10.1103/physreve.96.062607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.
Collapse
Affiliation(s)
- P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - S Emmert
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Gulich
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - M Köhler
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - M Wolf
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - M Schwab
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
37
|
Yamaguchi T, Yoshida K, Yamaguchi T, Nagao M, Faraone A, Seki S. Decoupling between the Temperature-Dependent Structural Relaxation and Shear Viscosity of Concentrated Lithium Electrolyte. J Phys Chem B 2017; 121:8767-8773. [PMID: 28841313 DOI: 10.1021/acs.jpcb.7b04633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermediate scattering functions of concentrated solutions of LiPF6 in propylene carbonate (PC) were measured at various temperatures, two different wavenumbers, and three different concentrations using neutron spin echo (NSE) spectroscopy. The temperature dependence of the relaxation time was larger than that of the steady-state shear viscosity in all cases. The shear relaxation spectra were also determined at different temperatures. The normalized spectra reduced to a master curve when the frequency was multiplied by the steady-state shear viscosity, indicating that the temperature dependence of the steady-state shear viscosity can be explained by that of the relaxation time of the shear stress. It is thus suggested that the dynamics of the shear stress is decoupled from the structural dynamics on the molecular scale.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Koji Yoshida
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma, Jonan, Fukuoka 814-0180, Japan
| | - Toshio Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma, Jonan, Fukuoka 814-0180, Japan
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology , Gaithersburg, Maryland 20899-6102, United States.,Center for Exploration of Energy and Matter, Indiana University , Bloomington, Indiana 47408-1398, United States
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology , Gaithersburg, Maryland 20899-6102, United States
| | - Shiro Seki
- Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI) , 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
38
|
Gabriel J, Pabst F, Blochowicz T. Debye Process and β-Relaxation in 1-Propanol Probed by Dielectric Spectroscopy and Depolarized Dynamic Light Scattering. J Phys Chem B 2017; 121:8847-8853. [PMID: 28872311 DOI: 10.1021/acs.jpcb.7b06134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We revisit the reorientational dynamics of 1-propanol as a prototype of a monohydroxy alcohol and H-bonding system by dielectric spectroscopy (DS) and depolarized dynamic light scattering (DDLS). In particular, we address the question of whether the Debye relaxation, which is seen as a dominant process in DS, is visible in light scattering and discuss how the Johari-Goldstein (JG) β-process, which is also a prominent feature of the dielectric spectrum, appears in photon correlation spectroscopy. For that purpose we performed depolarized photon correlation experiments with an improved setup and performed additional time domain dielectric experiments which gives us the possibility to compare dielectric and light scattering data in a broad temperature range. It turns out that the improved setup allows to unambiguously identify the JG β-process, which shows almost identical properties in DDLS as in the dielectric spectra, but a Debye relaxation is not present in the DDLS data and can be excluded down to a level of 2.5% of the α-process amplitude.
Collapse
Affiliation(s)
- Jan Gabriel
- Institut für Festkörperphysik, Technische Universität Darmstadt , 64289 Darmstadt, Germany
| | - Florian Pabst
- Institut für Festkörperphysik, Technische Universität Darmstadt , 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt , 64289 Darmstadt, Germany
| |
Collapse
|
39
|
Chen Y, Zhu M, Laventure A, Lebel O, Ediger MD, Yu L. Influence of Hydrogen Bonding on the Surface Diffusion of Molecular Glasses: Comparison of Three Triazines. J Phys Chem B 2017. [PMID: 28651429 DOI: 10.1021/acs.jpcb.7b05333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C2H5, OCH3, and NHCH3, and referred to as "Et", "OMe", and "NHMe", respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow as the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. This result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.
Collapse
Affiliation(s)
- Yinshan Chen
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Men Zhu
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Audrey Laventure
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada , Kingston, Ontario K7K 7B4, Canada
| | - Olivier Lebel
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada , Kingston, Ontario K7K 7B4, Canada
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Affiliation(s)
- Men Zhu
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Lian Yu
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
41
|
Bertrand CE, Self JL, Copley JRD, Faraone A. Nanoscopic length scale dependence of hydrogen bonded molecular associates' dynamics in methanol. J Chem Phys 2017; 146:194501. [PMID: 28527447 PMCID: PMC5648548 DOI: 10.1063/1.4983179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 11/14/2022] Open
Abstract
In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding.
Collapse
Affiliation(s)
- C E Bertrand
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J L Self
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
| | - J R D Copley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - A Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
42
|
Arrese-Igor S, Alegría A, Colmenero J. On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols. J Chem Phys 2017; 146:114502. [DOI: 10.1063/1.4978585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. Arrese-Igor
- Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center (MPC), Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
| | - A. Alegría
- Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center (MPC), Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - J. Colmenero
- Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center (MPC), Paseo Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center DIPC, Paseo Manuel Lardizabal 4, 20018 San Sebastián, Spain
| |
Collapse
|
43
|
|
44
|
Yamaguchi T. Mode-coupling theoretical study on the roles of heterogeneous structure in rheology of ionic liquids. J Chem Phys 2016; 144:124514. [PMID: 27036468 DOI: 10.1063/1.4944679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Theoretical calculations of the rheological properties of coarse-grained model ionic liquids were performed using mode-coupling theory. The nonpolar part of the cation was systematically increased in order to clarify the effects of the heterogeneous structure on shear viscosity. The shear viscosity showed a minimum as the function of the size of the nonpolar part, as had been reported in literatures. The minimum was ascribed to the interplay between the increase in the shear relaxation time and the decrease in the high-frequency shear modulus with increasing the size of the nonpolar part of the cation. The ionic liquids with symmetric charge distribution of cations were less viscous than those with asymmetric cations, which is also in harmony with experiments. The theoretical analysis demonstrated that there are two mechanisms for the higher viscosity of the asymmetric model. The first one is the direct coupling between the domain dynamics and the shear stress. The second one is that the microscopic dynamics within the polar domain is retarded due to the nonlinear coupling with the heterogeneous structure.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Molecular Design and Engineering, Graduate School of Engineering, Furo-cho B2-3 (611), Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
45
|
Chen Y, Zhang W, Yu L. Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses. J Phys Chem B 2016; 120:8007-15. [DOI: 10.1021/acs.jpcb.6b05658] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yinshan Chen
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Wei Zhang
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
46
|
Mariani A, Ballirano P, Angiolari F, Caminiti R, Gontrani L. Does High Pressure Induce Structural Reorganization in Linear Alcohols? A Computational Answer. Chemphyschem 2016; 17:3023-3029. [DOI: 10.1002/cphc.201600268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Alessandro Mariani
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Paolo Ballirano
- Dipartimento di Scienze della Terra; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
- Centro di Ricerca per le Nanotecnologie Applicate all'Ingegneria; Laboratorio per le Nanotecnologie e le Nanoscienze; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Federica Angiolari
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Ruggero Caminiti
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
- Centro di Ricerca per le Nanotecnologie Applicate all'Ingegneria; Laboratorio per le Nanotecnologie e le Nanoscienze; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| | - Lorenzo Gontrani
- Dipartimento di Chimica; “La Sapienza” Università di Roma; Piazzale Aldo Moro, 5 - 00185 Roma Italy
| |
Collapse
|
47
|
Novikov V. Connection between the glass transition temperature T and the Arrhenius temperature T in supercooled liquids. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Bertrand CE, Self JL, Copley JRD, Faraone A. Dynamic signature of molecular association in methanol. J Chem Phys 2016; 145:014502. [DOI: 10.1063/1.4954964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- C. E. Bertrand
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J. L. Self
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
| | - J. R. D. Copley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - A. Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
49
|
Wikarek M, Pawlus S, Tripathy SN, Szulc A, Paluch M. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols. J Phys Chem B 2016; 120:5744-52. [DOI: 10.1021/acs.jpcb.6b01458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Wikarek
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - S. Pawlus
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Satya N. Tripathy
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - A. Szulc
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Paluch
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
50
|
Hansen JS, Kisliuk A, Sokolov AP, Gainaru C. Identification of Structural Relaxation in the Dielectric Response of Water. PHYSICAL REVIEW LETTERS 2016; 116:237601. [PMID: 27341258 DOI: 10.1103/physrevlett.116.237601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 06/06/2023]
Abstract
One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.
Collapse
Affiliation(s)
- Jesper S Hansen
- DNRF Centre "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Alexander Kisliuk
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Alexei P Sokolov
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Catalin Gainaru
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
- Faculty of Physics, Technical University of Dortmund, 44221 Dortmund, Germany
| |
Collapse
|