Spurious violation of the Stokes-Einstein-Debye relation in supercooled water.
Sci Rep 2019;
9:8118. [PMID:
31148561 PMCID:
PMC6544661 DOI:
10.1038/s41598-019-44517-4]
[Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 11/12/2022] Open
Abstract
The theories of Brownian motion, the Debye rotational diffusion model, and hydrodynamics together provide us with the Stokes–Einstein–Debye (SED) relation between the rotational relaxation time of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{\ell }}$$\end{document}ℓ-th degree Legendre polynomials \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\tau }}}_{{\boldsymbol{\ell }}}$$\end{document}τℓ, and viscosity divided by temperature, η/T. Experiments on supercooled liquids are frequently performed to measure the SED relations, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\tau }}}_{{\boldsymbol{\ell }}}$$\end{document}τℓkBT/η and Dt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\tau }}}_{{\boldsymbol{\ell }}}$$\end{document}τℓ, where Dt is the translational diffusion constant. However, the SED relations break down, and its molecular origin remains elusive. Here, we assess the validity of the SED relations in TIP4P/2005 supercooled water using molecular dynamics simulations. Specifically, we demonstrate that the higher-order \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\tau }}}_{{\boldsymbol{\ell }}}$$\end{document}τℓ values exhibit a temperature dependence similar to that of η/T, whereas the lowest-order \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\tau }}}_{{\boldsymbol{\ell }}}$$\end{document}τℓ values are decoupled with η/T, but are coupled with the translational diffusion constant Dt. We reveal that the SED relations are so spurious that they significantly depend on the degree of Legendre polynomials.
Collapse