1
|
Jara-Toro RA, Taccone MI, Dezalay J, Noble JA, von Helden G, Pino GA. Observation of a core-excited dipole-bound state ∼1 eV above the electron detachment threshold in cryogenically cooled acetylacetonate. J Chem Phys 2024; 161:084305. [PMID: 39206831 DOI: 10.1063/5.0223957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Dipole-bound states in anions exist when a polar neutral core binds an electron in a diffuse orbital through charge-dipole interaction. Electronically excited polar neutral cores can also bind an electron in a diffuse orbital to form Core-Excited Dipole-Bound States (CE-DBSs), which are difficult to observe because they usually lie above the electron detachment threshold, leading to very short lifetimes and, thus, unstructured transitions. We report here the photodetachment spectroscopy of cryogenically cooled acetylacetonate anion (C5H7O2-) recorded by detecting the neutral radical produced upon photodetachment and the infrared spectroscopy in He-nanodroplets. Two DBSs were identified in this anion. One of them lies close to the electron detachment threshold (∼2.74 eV) and is associated with the ground state of the radical (D0-DBS). Surprisingly, the other DBS appears as resonant transitions at 3.69 eV and is assigned to the CE-DBS associated with the first excited state of the radical (D1-DBS). It is proposed that the resonant transitions of the D1-DBS are observed ∼1 eV above the detachment threshold because its lifetime is determined by the internal conversion to the D0-DBS, after which the fast electron detachment takes place.
Collapse
Affiliation(s)
- Rafael A Jara-Toro
- INFIQC: Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET - UNC) - Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas - Universidad Nacional de Córdoba - Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares - Universidad Nacional de Córdoba - Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Martín I Taccone
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Jordan Dezalay
- Physique des Interactions Ioniques et Moléculaires (PIIM): CNRS / Aix-Marseille Université UMR 7345, Avenue Escadrille Normandie-Niémen, 13013 Marseille, France
| | - Jennifer A Noble
- Physique des Interactions Ioniques et Moléculaires (PIIM): CNRS / Aix-Marseille Université UMR 7345, Avenue Escadrille Normandie-Niémen, 13013 Marseille, France
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Gustavo A Pino
- INFIQC: Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET - UNC) - Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas - Universidad Nacional de Córdoba - Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares - Universidad Nacional de Córdoba - Haya de la Torre s/n, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
2
|
An S, Kim D, Kim J, Kim SK. Excited-state chemistry of the nitromethane anion mediated by the dipole-bound states revealed by photofragment action spectroscopy. Chem Sci 2023; 14:12231-12237. [PMID: 37969601 PMCID: PMC10631229 DOI: 10.1039/d3sc04342h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
We report the first experimental observation of the excited dipole-bound state (DBS) of the cryogenically cooled nitromethane anion (CH3NO2-), where the excess electron is loosely attached to the singlet or triplet neutral-core. Photofragment and photodetachment action spectra have been employed for the dynamic exploration of Feshbach resonances located even far above the electron detachment threshold, giving excitation profiles from the ground anionic state (D0) to the DBSs which match quite well with the spectral structures of the photoelectron spectra. This indicates that the electron transfer from the nonvalence orbital (of DBS) to the valence orbital (of anion) is mainly responsible for the anionic fragmentation channels, giving strong evidence for that the DBS plays a dynamic doorway-role in the anionic fragmentation reactions. Photofragment action spectra have also been obtained for the anionic clusters of (CH3NO2)2-, (CH3NO2)3-, or (CH3NO2·H2O)-, giving the relative yields of various fragments as a function of the excitation energy for each cluster. The absorption profiles of the anionic clusters exhibit substantial blue-shifts compared to the bare nitromethane anion as their ground states are much stabilized by solvation. The anionic fragmentation pattern varies among different clusters, giving essential clues for the thorough understanding of the whole anionic dynamics such as the dynamic role of the short-lived nonvalence-bound states of the clusters.
Collapse
Affiliation(s)
- Sejun An
- Department of Chemistry, KAIST Daejeon 34141 Republic of Korea
| | - Dabin Kim
- Department of Chemistry, KAIST Daejeon 34141 Republic of Korea
| | - Junggil Kim
- Department of Chemistry, KAIST Daejeon 34141 Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST Daejeon 34141 Republic of Korea
| |
Collapse
|
3
|
Zhang YR, Yuan DF, Wang LS. Probing Dipole-Bound States Using Photodetachment Spectroscopy and Resonant Photoelectron Imaging of Cryogenically Cooled Anions. J Phys Chem Lett 2023; 14:7368-7381. [PMID: 37565830 DOI: 10.1021/acs.jpclett.3c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Molecular anions with polar neutral cores can support highly diffuse dipole-bound states below their detachment thresholds due to the long-range charge-dipole interaction. Such nonvalence states constitute a special class of excited electronic states for anions and were observed in early photodetachment experiments to measure the electron affinities of organic radicals. Recent experimental advances, in particular, the ability to create cold anions using a cryogenically cooled Paul trap, have allowed the investigation of dipole-bound excited states at a new level. For the first time, the zero-point level of dipole-bound excited states can be observed via resonant two-photon detachment, and resonant photoelectron spectroscopy can be performed via the above-threshold vibrational levels (Feshbach resonances) of the dipole-bound states. This Perspective describes recent progress in the investigation of dipole-bound states in the authors' lab using an electrospray photoelectron spectroscopy apparatus equipped with a cryogenically cooled Paul trap and high-resolution photoelectron imaging.
Collapse
Affiliation(s)
- Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
4
|
Koga M, Asplund M, Neumark DM. Electron attachment dynamics following UV excitation of iodide-2-thiouracil complexes. J Chem Phys 2022; 156:244302. [DOI: 10.1063/5.0098280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of low energy electron attachment to the thio-substituted uracil analog 2-thiouracil are investigated using time-resolved photoelectron spectroscopy (TRPES) of iodide·2-thiouracil (I -·2TU) binary clusters. In these experiments, the anions are excited at pump energies of 4.16 and 4.73 eV, and the ensuing dynamics are probed by photodetachment at 1.59 and 3.18 eV. Upon excitation near the vertical detachment energy (4.16 eV), dipole bound (DB) and valence bound (VB) anion signals appear almost instantaneously, and the DB state of the 2TU anion undergoes ultrafast decay (~50 fs). At 4.73 eV, there is no evidence for a DB state, but features attributed to two VB states are seen. The transient negative ions formed by photoexcitation decay by autodetachment and I- fragmentation. The I- dissociation rates and their dependence on excitation energy agree reasonably well with the Rice-Ramsperger-Kassel-Marcus calculations. Notable differences with respect to TRPES of the related iodide-uracil anion are observed and discussed.
Collapse
Affiliation(s)
- Masafumi Koga
- University of California Berkeley Department of Chemistry, United States of America
| | - Megan Asplund
- University of California Berkeley Department of Chemistry, United States of America
| | - Daniel M. Neumark
- Department of Chemistry, University of California Berkeley Department of Chemistry, United States of America
| |
Collapse
|
5
|
Associative detachment in anion-atom reactions involving a dipole-bound electron. Nat Commun 2022; 13:818. [PMID: 35145072 PMCID: PMC8831523 DOI: 10.1038/s41467-022-28382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Associative electronic detachment (AED) between anions and neutral atoms leads to the detachment of the anion’s electron resulting in the formation of a neutral molecule. It plays a key role in chemical reaction networks, like the interstellar medium, the Earth’s ionosphere and biochemical processes. Here, a class of AED involving a closed-shell anion (OH−) and alkali atoms (rubidium) is investigated by precisely controlling the fraction of electronically excited rubidium. Reaction with the ground state atom gives rise to a stable intermediate complex with an electron solely bound via dipolar forces. The stability of the complex is governed by the subtle interplay of diabatic and adiabatic couplings into the autodetachment manifold. The measured rate coefficients are in good agreement with ab initio calculations, revealing pronounced steric effects. For excited state rubidium, however, a lower reaction rate is observed, indicating dynamical stabilization processes suppressing the coupling into the autodetachment region. Our work provides a stringent test of ab initio calculations on anion-neutral collisions and constitutes a generic, conceptual framework for understanding electronic state dependent dynamics in AEDs. Associative electronic detachment (AED) reactions of anions play a key role in many natural processes. Here, Hassan and colleagues investigate AED reactions between hydroxyl anions and ultracold rubidium atoms in a hybrid atom-ion trap, revealing different dynamics for collisions with ground and electronically excited state rubidium.
Collapse
|
6
|
Yuan DF, Zhang YR, Qian CH, Wang LS. Resonant two-photon photoelectron imaging and adiabatic detachment processes from bound vibrational levels of dipole-bound states. Phys Chem Chem Phys 2022; 24:1380-1389. [PMID: 34981094 DOI: 10.1039/d1cp05219e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anions cannot have Rydberg states, but anions with polar neutral cores can support highly diffuse dipole-bound states (DBSs) as a class of interesting electronically excited states below the electron detachment threshold. The binding energies of DBSs are extremely small, ranging from a few to few hundred wavenumbers and generally cannot support bound vibrational levels below the detachment threshold. Thus, vibrational excitations in the DBS are usually above the electron detachment threshold and they have been used to conduct resonant photoelectron spectroscopy, which is dominated by state-specific autodetachment. Here we report an investigation of a cryogenically-cooled complex anion, the enantiopure (R)-(-)-1-(9-anthryl)-2,2,2-trifluoroethanolate (R-TFAE-). The neutral R-TFAE radical is relatively complex and highly polar with a non-planar structure (C1 symmetry). Photodetachment spectroscopy reveals a DBS 209 cm-1 below the detachment threshold of R-TFAE- and seven bound and eight above-threshold vibrational levels of the DBS. Resonant two-photon detachment (R2PD) via the bound vibrational levels of the DBS exhibits strictly adiabatic photodetachment behaviors by the second photon, in which the vibrational energies in the DBS are carried to the neutral final states, because of the parallel potential energy surfaces of the DBS and the corresponding neutral ground electronic state. Relaxation processes from the bound DBS levels to the ground and low-lying electronically excited states of R-TFAE- are also observed in the R2PD photoelectron spectra. The combination of photodetachment and resonant photoelectron spectroscopy yields frequencies for eight vibrational modes of the R-TFAE radical.
Collapse
Affiliation(s)
- Dao-Fu Yuan
- Department of Chemsitry, Brown University, Providence, RI 02912, USA.
| | - Yue-Rou Zhang
- Department of Chemsitry, Brown University, Providence, RI 02912, USA.
| | - Chen-Hui Qian
- Department of Chemsitry, Brown University, Providence, RI 02912, USA.
| | - Lai-Sheng Wang
- Department of Chemsitry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Bull JN, Anstöter CS, Stockett MH, Clarke CJ, Gibbard JA, Bieske EJ, Verlet JRR. Nonadiabatic Dynamics between Valence, Nonvalence, and Continuum Electronic States in a Heteropolycyclic Aromatic Hydrocarbon. J Phys Chem Lett 2021; 12:11811-11816. [PMID: 34870432 DOI: 10.1021/acs.jpclett.1c03532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Internal conversion between valence-localized and dipole-bound states is thought to be a ubiquitous process in polar molecular anions, yet there is limited direct evidence. Here, photodetachment action spectroscopy and time-resolved photoelectron imaging with a heteropolycyclic aromatic hydrocarbon (hetero-PAH) anion, deprotonated 1-pyrenol, is used to demonstrate a subpicosecond (τ1 = 160 ± 20 fs) valence to dipole-bound state internal conversion following excitation of the origin transition of the first valence-localized excited state. The internal conversion dynamics are evident in the photoelectron spectra and in the photoelectron angular distributions (β2 values) as the electronic character of the excited state population changes from valence to nonvalence. The dipole-bound state subsequently decays through mode-specific vibrational autodetachment with a lifetime τ2 = 11 ± 2 ps. These internal conversion and autodetachment dynamics are likely common in molecular anions but difficult to fingerprint due to the transient existence of the dipole-bound state. Potential implications of the present excited state dynamics for interstellar hetero-PAH anion formation are discussed.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Cate S Anstöter
- Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Mark H Stockett
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Connor J Clarke
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jemma A Gibbard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Cao W, Zhang H, Yuan Q, Zhou X, Kass SR, Wang XB. Observation and Exploitation of Spin-Orbit Excited Dipole-Bound States in Ion-Molecule Clusters. J Phys Chem Lett 2021; 12:11022-11028. [PMID: 34739238 DOI: 10.1021/acs.jpclett.1c03309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report an observation of spin-orbit excited dipole-bound states (DBSs) in arginine-iodide complexes (Arg·I-) by using temperature-dependent, wavelength-resolved "iodide-tagging" negative ion photoelectron spectroscopy. The observed DBSs are bound to the spin-orbit excited I(2P1/2) level of the neutral Arg·I complex in zwitterionic conformations and identified based on the resonant enhancement due to spin-orbit electronic autodetachment from the I(2P1/2) DBS to the I(2P3/2) neutral ground state. The observed DBS binding energies are correlated to the dipole moments of neutral Arg·I isomers and tautomers. This work thus demonstrates a new and generic spectroscopic approach to identify ion-molecule cluster conformations based on their distinguishable dipole moments.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hanhui Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Steven R Kass
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Zhang YR, Yuan DF, Qian CH, Wang LS. Observation of a dipole-bound excited state in 4-ethynylphenoxide and comparison with the quadrupole-bound excited state in the isoelectronic 4-cyanophenoxide. J Chem Phys 2021; 155:124305. [PMID: 34598564 DOI: 10.1063/5.0065510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Negative ions do not possess Rydberg states but can have Rydberg-like nonvalence excited states near the electron detachment threshold, including dipole-bound states (DBSs) and quadrupole-bound states (QBSs). While DBSs have been studied extensively, quadrupole-bound excited states have been more rarely observed. 4-cyanophenoxide (4CP-) was the first anion observed to possess a quadrupole-bound exited state 20 cm-1 below its detachment threshold. Here, we report the observation of a DBS in the isoelectronic 4-ethynylphenoxide anion (4EP-), providing a rare opportunity to compare the behaviors of a dipole-bound and a quadrupole-bound excited state in a pair of very similar anions. Photodetachment spectroscopy (PDS) of cryogenically cooled 4EP- reveals a DBS 76 cm-1 below its detachment threshold. Photoelectron spectroscopy (PES) at 266 nm shows that the electronic structure of 4EP- and 4CP- is nearly identical. The observed vibrational features in both the PDS and PES, as well as autodetachment from the nonvalence excited states, are also found to be similar for both anions. However, resonant two-photon detachment (R2PD) from the bound vibrational ground state is observed to be very different for the DBS in 4EP- and the QBS in 4CP-. The R2PD spectra reveal that decays take place from both the DBS and QBS to the respective anion ground electronic states within the 5 ns detachment laser pulse due to internal conversion followed by intramolecular vibrational redistribution and relaxation, but the decay mechanisms appear to be very different. In the R2PD spectrum of 4EP-, we observe strong threshold electron signals, which are due to detachment, by the second photon, of highly rotationally excited anions resulted from the decay of the DBS. On the other hand, in the R2PD spectrum of 4CP-, we observe well-resolved vibrational peaks due to the three lowest-frequency vibrational modes of 4CP-, which are populated from the decay of the QBS. The different behaviors of the R2PD spectra suggest unexpected differences between the relaxation mechanisms of the dipole-bound and quadrupole-bound excited states.
Collapse
Affiliation(s)
- Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Chen-Hui Qian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
10
|
Yuan DF, Zhang YR, Qian CH, Liu Y, Wang LS. Probing the Dipole-Bound State in the 9-Phenanthrolate Anion by Photodetachment Spectroscopy, Resonant Two-Photon Photoelectron Imaging, and Resonant Photoelectron Spectroscopy. J Phys Chem A 2021; 125:2967-2976. [DOI: 10.1021/acs.jpca.1c01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chen-Hui Qian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yuan Liu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
11
|
Liu G, Ciborowski SM, Graham JD, Buytendyk AM, Bowen KH. Photoelectron spectroscopic study of dipole-bound and valence-bound nitromethane anions formed by Rydberg electron transfer. J Chem Phys 2020; 153:044307. [DOI: 10.1063/5.0018346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Sandra M. Ciborowski
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Jacob D. Graham
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Allyson M. Buytendyk
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
Verlet JRR, Anstöter CS, Bull JN, Rogers JP. Role of Nonvalence States in the Ultrafast Dynamics of Isolated Anions. J Phys Chem A 2020; 124:3507-3519. [PMID: 32233436 PMCID: PMC7212518 DOI: 10.1021/acs.jpca.0c01260] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonvalence states
of neutral molecules (Rydberg states) play important
roles in nonadiabatic dynamics of excited states. In anions, such
nonadiabatic transitions between nonvalence and valence states have
been much less explored even though they are believed to play important
roles in electron capture and excited state dynamics of anions. The
aim of this Feature Article is to provide an overview of recent experimental
observations, based on time-resolved photoelectron imaging, of valence
to nonvalence and nonvalence to valence transitions in anions and
to demonstrate that such dynamics may be commonplace in the excited
state dynamics of molecular anions and cluster anions.
Collapse
Affiliation(s)
- Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Joshua P Rogers
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
13
|
Bull JN, Anstöter CS, Verlet JRR. Ultrafast valence to non-valence excited state dynamics in a common anionic chromophore. Nat Commun 2019; 10:5820. [PMID: 31862884 PMCID: PMC6925192 DOI: 10.1038/s41467-019-13819-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
Non-valence states in neutral molecules (Rydberg states) have well-established roles and importance in photochemistry, however, considerably less is known about the role of non-valence states in photo-induced processes in anions. Here, femtosecond time-resolved photoelectron imaging is used to show that photoexcitation of the S1(ππ*) state of the methyl ester of deprotonated para-coumaric acid – a model chromophore for photoactive yellow protein (PYP) – leads to a bifurcation of the excited state wavepacket. One part remains on the S1(ππ*) state forming a twisted intermediate, whilst a second part leads to the formation of a non-valence (dipole-bound) state. Both populations eventually decay independently by vibrational autodetachment. Valence-to-non-valence internal conversion has hitherto not been observed in the intramolecular photophysics of an isolated anion, raising questions into how common such processes might be, given that many anionic chromophores have bright valence states near the detachment threshold. Photoactive biomolecules rely on chromophores whose photochemistry depends on the environment. Here, the excited state dynamics of a model for the anionic biochromophore in photoactive yellow protein is investigated by time-resolved photoelectron spectroscopy showing involvement of a non-valence state, and lack of E-Z isomerisation in the gas phase.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Cate S Anstöter
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Jan R R Verlet
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
14
|
Kunin A, McGraw VS, Lunny KG, Neumark DM. Time-resolved dynamics in iodide-uracil-water clusters upon excitation of the nucleobase. J Chem Phys 2019; 151:154304. [PMID: 31640364 DOI: 10.1063/1.5120706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of iodide-uracil-water (I-·U·H2O) clusters following π-π* excitation of the nucleobase are probed using time-resolved photoelectron spectroscopy. Photoexcitation of this cluster at 4.77 eV results in electron transfer from the iodide moiety to the uracil, creating a valence-bound anion within the cross correlation of the pump and probe laser pulses. This species can decay by a number of channels, including autodetachment and dissociation to I- or larger anion fragments. Comparison of the energetics of the photoexcited cluster and its decay dynamics with those of the bare iodide-uracil (I-·U) complex provides a sensitive probe of the effects of microhydration on these species.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Valerie S McGraw
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Katharine G Lunny
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Zhu GZ, Wang LS. High-resolution photoelectron imaging and resonant photoelectron spectroscopy via noncovalently bound excited states of cryogenically cooled anions. Chem Sci 2019; 10:9409-9423. [PMID: 32055317 PMCID: PMC6984392 DOI: 10.1039/c9sc03861b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023] Open
Abstract
Valence-bound anions with polar neutral cores (μ > ∼2.5 D) can support dipole-bound excited states below the detachment threshold. These dipole-bound states (DBSs) are highly diffuse and the weakly bound electron in the DBS can be readily autodetached via vibronic coupling. Excited DBSs can be observed in photodetachment spectroscopy using a tunable laser. Tuning the detachment laser to above-threshold vibrational resonances yields vibrationally enhanced resonant photoelectron spectra, which are highly non-Franck-Condon with much richer vibrational information. This perspective describes recent advances in the studies of excited DBSs of cryogenically cooled anions using high-resolution photoelectron imaging (PEI) and resonant photoelectron spectroscopy (rPES). The basic features of dipole-bound excited states and highly non-Franck-Condon resonant photoelectron spectra will be discussed. The power of rPES to yield rich vibrational information beyond conventional PES will be highlighted, especially for low-frequency and Franck-Condon-inactive vibrational modes, which are otherwise not accessible from non-resonant conventional PES. Mode-selectivity and intra-molecular rescattering have been observed during the vibrationally induced autodetachment. Conformer-specific rPES is possible due to the different dipole-bound excited states of molecular conformers with polar neutral cores. For molecules with μ ≪ 2.5 D or without dipole moments, but large quadrupole moments, excited quadrupole-bound states can exist, which can also be used to conduct rPES.
Collapse
Affiliation(s)
- Guo-Zhu Zhu
- Department of Chemistry , Brown University , Providence , RI 02912 , USA .
| | - Lai-Sheng Wang
- Department of Chemistry , Brown University , Providence , RI 02912 , USA .
| |
Collapse
|
16
|
Adams CL, Hansen K, Weber JM. Vibrational Autodetachment from Anionic Nitroalkane Chains: From Molecular Signatures to Thermionic Emission. J Phys Chem A 2019; 123:8562-8570. [PMID: 31532673 DOI: 10.1021/acs.jpca.9b07780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the kinetic energy distributions in electron autodetachment from nitroethane, 1-nitropropane, and 1-nitrobutane anions upon laser excitation of CH stretching modes measured using velocity map electron imaging. In striking contrast to the case of nitromethane, the kinetic energy distributions show almost no distinct vibrational features, and they can be described by thermionic emission, relating the shape of the distributions to the electron capture cross section of the neutral molecule. The data suggest that a classical description is warranted above ca. 20 meV electron kinetic energy. At lower energies, quantum effects suppress the attachment cross section.
Collapse
Affiliation(s)
- Christopher L Adams
- JILA and Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0440 , United States
| | - Klavs Hansen
- Center for Joint Quantum Studies and Department of Physics, School of Science , Tianjin University , 300072 Tianjin , P. R. China.,Department of Physics , Gothenburg University , SE-405 30 Gothenburg , Sweden
| | - J Mathias Weber
- JILA and Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0440 , United States
| |
Collapse
|
17
|
Zhu GZ, Cheung LF, Liu Y, Qian CH, Wang LS. Resonant Two-Photon Photoelectron Imaging and Intersystem Crossing from Excited Dipole-Bound States of Cold Anions. J Phys Chem Lett 2019; 10:4339-4344. [PMID: 31314535 DOI: 10.1021/acs.jpclett.9b01743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the observation of a dipole-bound state (DBS) 659 cm-1 below the electron detachment threshold of cryogenically cooled deprotonated 4,4'-biphenol anion (bPh-) and 19 of its lowest vibrational levels. Resonant two-photon photoelectron imaging (R2P-PEI) via the vibrational levels of the DBS displays a sharp peak with a constant binding energy. This observation indicates vertical detachment from the vibrational levels of the DBS to the corresponding neutral levels with the conservation of the vibrational energy, suggesting that the highly diffuse electron in the DBS has little effect on the neutral core. The R2P-PEI spectra also exhibit two features at lower binding energies, which come from intersystem crossings from the DBS to two lower-lying valence-bound triplet excited states of bPh-. The current study discloses the first R2P-PEI spectra from vibrational excited states of a DBS and direct spectroscopic evidence of transitions from a DBS to valence-bound states of anions.
Collapse
Affiliation(s)
- Guo-Zhu Zhu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Ling Fung Cheung
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Yuan Liu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Chen-Hui Qian
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Lai-Sheng Wang
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
18
|
Kunin A, Neumark DM. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide-nucleobase clusters. Phys Chem Chem Phys 2019; 21:7239-7255. [PMID: 30855623 DOI: 10.1039/c8cp07831a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iodide-nucleobase (I-·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I-·N clusters, including iodide-uracil (I-·U), iodide-thymine (I-·T), iodide-uracil-water (I-·U·H2O), and iodide-adenine (I-·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
19
|
Albeck Y, Lunny KG, Benitez Y, Shin AJ, Strasser D, Continetti RE. Resonance‐Mediated Below‐Threshold Delayed Photoemission and Non‐Franck–Condon Photodissociation of Cold Oxyallyl Anions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yishai Albeck
- Institute of Chemistry The Hebrew University of Jerusalem 91904 Jerusalem Israel
| | - Katharine G. Lunny
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| | - Yanice Benitez
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| | - Ashley J. Shin
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| | - Daniel Strasser
- Institute of Chemistry The Hebrew University of Jerusalem 91904 Jerusalem Israel
| | - Robert E. Continetti
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| |
Collapse
|
20
|
Albeck Y, Lunny KG, Benitez Y, Shin AJ, Strasser D, Continetti RE. Resonance‐Mediated Below‐Threshold Delayed Photoemission and Non‐Franck–Condon Photodissociation of Cold Oxyallyl Anions. Angew Chem Int Ed Engl 2019; 58:5312-5315. [DOI: 10.1002/anie.201900386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Yishai Albeck
- Institute of Chemistry The Hebrew University of Jerusalem 91904 Jerusalem Israel
| | - Katharine G. Lunny
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| | - Yanice Benitez
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| | - Ashley J. Shin
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| | - Daniel Strasser
- Institute of Chemistry The Hebrew University of Jerusalem 91904 Jerusalem Israel
| | - Robert E. Continetti
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla CA 92093-0340 USA
| |
Collapse
|
21
|
Matthews E, Dessent CEH. Observation of Near-Threshold Resonances in the Flavin Chromophore Anions Alloxazine and Lumichrome. J Phys Chem Lett 2018; 9:6124-6130. [PMID: 30277786 DOI: 10.1021/acs.jpclett.8b02529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lumichrome (LC) is the chromophore of the flavin family of photoactive biomolecules, where key biochemical activity involves interplay between redox and photophysical events. Questions remain about the relationship between the redox status of the ground and excited states and demand an improved understanding of the intrinsic photochemistry. Using anion photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (564-220 nm) and accompanying photodegradation pathways of the deprotonated anionic form of LC. Experiments were also performed on alloxazine (AL), which is equivalent to LC minus two methyl groups. We observe a resonance state close to 3.8 eV for both anions for the first time, which we tentatively assign to dipole-bound excited states. For AL this state is sufficiently long-lived to facilitate dissociative electron attachment. Our results suggest that the presence of methyl group rotors at key positions along the molecular dipole may reduce the lifetime of the resonance state and hence provide a structural barrier to valence electron capture, and ensuing molecular dissociation.
Collapse
Affiliation(s)
- Edward Matthews
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| | | |
Collapse
|
22
|
Kunin A, Li WL, Neumark DM. Dynamics of electron attachment and photodissociation in iodide-uracil-water clusters via time-resolved photoelectron imaging. J Chem Phys 2018; 149:084301. [PMID: 30193511 DOI: 10.1063/1.5040673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The dynamics of low energy electron attachment to monohydrated uracil are investigated using time-resolved photoelectron imaging to excite and probe iodide-uracil-water (I-·U·H2O) clusters. Upon photoexcitation of I-·U·H2O at 4.38 eV, near the measured cluster vertical detachment energy of 4.40 eV ± 0.05 eV, formation of both the dipole bound (DB) anion and valence bound (VB) anion of I-·U·H2O is observed and characterized using a probe photon energy of 1.58 eV. The measured binding energies for both anions are larger than those of the non-hydrated iodide-uracil (I-·U) counterparts, indicating that the presence of water stabilizes the transient negative ions. The VB anion exhibits a somewhat delayed 400 fs rise when compared to I-·U, suggesting that partial conversion of the DB anion to form the VB anion at early times is promoted by the water molecule. At a higher probe photon energy, 3.14 eV, I- re-formation is measured to be the major photodissociation channel. This product exhibits a bi-exponential rise; it is likely that the fast component arises from DB anion decay by internal conversion to the anion ground state followed by dissociation to I-, and the slow component arises from internal conversion of the VB anion.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Lyle J, Chandramoulee SR, Hart CA, Mabbs R. Photoelectron Imaging of Anions Illustrated by 310 Nm Detachment of F. J Vis Exp 2018:57989. [PMID: 30102284 PMCID: PMC6126567 DOI: 10.3791/57989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Anion photoelectron imaging is a very efficient method for the study of energy states of bound negative ions, neutral species and interactions of unbound electrons with neutral molecules/atoms. State-of-the-art in vacuo anion generation techniques allow application to a broad range of atomic, molecular, and cluster anion systems. These are separated and selected using time-of-flight mass spectrometry. Electrons are removed by linearly polarized photons (photo detachment) using table-top laser sources which provide ready access to excitation energies from the infra-red to the near ultraviolet. Detecting the photoelectrons with a velocity mapped imaging lens and position sensitive detector means that, in principle, every photoelectron reaches the detector and the detection efficiency is uniform for all kinetic energies. Photoelectron spectra extracted from the images via mathematical reconstruction using an inverse Abel transformation reveal details of the anion internal energy state distribution and the resultant neutral energy states. At low electron kinetic energy, typical resolution is sufficient to reveal energy level differences on the order of a few millielectron-volts, i.e., different vibrational levels for molecular species or spin-orbit splitting in atoms. Photoelectron angular distributions extracted from the inverse Abel transformation represent the signatures of the bound electron orbital, allowing more detailed probing of electronic structure. The spectra and angular distributions also encode details of the interactions between the outgoing electron and the residual neutral species subsequent to excitation. The technique is illustrated by the application to an atomic anion (F-), but it can also be applied to the measurement of molecular anion spectroscopy, the study of low lying anion resonances (as an alternative to scattering experiments) and femtosecond (fs) time resolved studies of the dynamic evolution of anions.
Collapse
Affiliation(s)
- Justin Lyle
- Department of Chemistry, Washington University in St. Louis
| | | | - C Annie Hart
- Department of Chemistry, Washington University in St. Louis
| | - Richard Mabbs
- Department of Chemistry, Washington University in St. Louis;
| |
Collapse
|
24
|
Li WL, Kunin A, Matthews E, Yoshikawa N, Dessent CEH, Neumark DM. Photodissociation dynamics of the iodide-uracil (I(-)U) complex. J Chem Phys 2017; 145:044319. [PMID: 27475373 DOI: 10.1063/1.4959858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I(-) ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I(-) and weak [U-H](-) ion signal upon photoexcitation. The action spectra show two bands for I(-) and [U-H](-) production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I(-) production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I(-) exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I(-)U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π(∗) excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I(-) production suggest that this channel results from internal conversion to the I(-) ⋅ U ground state followed by evaporation of I(-). This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations.
Collapse
Affiliation(s)
- Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Edward Matthews
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Naruo Yoshikawa
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Caroline E H Dessent
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
25
|
Stephansen AB, King SB, Yokoi Y, Minoshima Y, Li WL, Kunin A, Takayanagi T, Neumark DM. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation. J Chem Phys 2016; 143:104308. [PMID: 26374036 DOI: 10.1063/1.4929995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.
Collapse
Affiliation(s)
- Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yuki Yokoi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Yusuke Minoshima
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
26
|
Minoshima Y, Seki Y, Takayanagi T, Shiga M. Effects of temperature and isotopic substitution on electron attachment dynamics of guanine–cytosine base pair: Ring-polymer and classical molecular dynamics simulations. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
King SB, Stephansen AB, Yokoi Y, Yandell MA, Kunin A, Takayanagi T, Neumark DM. Electron accommodation dynamics in the DNA base thymine. J Chem Phys 2016; 143:024312. [PMID: 26178110 DOI: 10.1063/1.4923343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I(-)T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I(-)T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I(-)T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.
Collapse
Affiliation(s)
- Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Yuki Yokoi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Margaret A Yandell
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Bull JN, West CW, Verlet JRR. Ultrafast dynamics of formation and autodetachment of a dipole-bound state in an open-shell π-stacked dimer anion. Chem Sci 2016; 7:5352-5361. [PMID: 30155188 PMCID: PMC6020752 DOI: 10.1039/c6sc01062h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/23/2016] [Indexed: 12/15/2022] Open
Abstract
Isolated π-stacked dimer radical anions present the simplest model of an excess electron in a π-stacked environment. Here, frequency-, angle-, and time-resolved photoelectron imaging together with electronic structure calculations have been used to characterise the π-stacked coenzyme Q0 dimer radical anion and its exited state dynamics. In the ground electronic state, the excess electron is localised on one monomer with a planar para-quinone ring, which is solvated by the second monomer in which carbonyl groups are bent out of the para-quinone ring plane. Through the π-stacking interaction, the dimer anion exhibits a number of charge-transfer (intermolecular) valence-localised resonances situated in the detachment continuum that undergo efficient internal conversion to a cluster dipole-bound state (DBS) on a ∼60 fs timescale. In turn, the DBS undergoes vibration-mediated autodetachment on a 2.0 ± 0.2 ps timescale. Experimental vibrational structure and supporting calculations assign the intermolecular dynamics to be facilitated by vibrational wagging modes of the carbonyl groups on the non-planar monomer. At photon energies ∼0.6-1.0 eV above the detachment threshold, a competition between photoexcitation of an intermolecular resonance leading to the DBS, and photoexcitation of an intramolecular resonance leading to monomer-like dynamics further illustrates the π-stacking specific dynamics. Overall, this study provides the first direct observation of both internal conversion of resonances into a DBS, and characterisation of a vibration-mediated autodetachment in real-time.
Collapse
Affiliation(s)
- James N Bull
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , UK .
| | - Christopher W West
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , UK .
| | - Jan R R Verlet
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , UK .
| |
Collapse
|
29
|
Kunin A, Li WL, Neumark DM. Time-resolved photoelectron imaging of iodide–nitromethane (I−·CH3NO2) photodissociation dynamics. Phys Chem Chem Phys 2016; 18:33226-33232. [DOI: 10.1039/c6cp06646a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dissociation to reform iodide was found to be non-statistical and is predicted to be limited by intramolecular vibrational energy redistribution.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Wei-Li Li
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Daniel M. Neumark
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
30
|
Harvey AJA, Yoshikawa N, Wang JG, Dessent CEH. Communication: Evidence for dipole-bound excited states in gas-phase I− ⋅ MI (M = Na, K, Cs) anionic salt microclusters. J Chem Phys 2015; 143:101103. [DOI: 10.1063/1.4930919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew J. A. Harvey
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Naruo Yoshikawa
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jin-Guo Wang
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | |
Collapse
|
31
|
King SB, Yandell MA, Stephansen AB, Neumark DM. Time-resolved radiation chemistry: dynamics of electron attachment to uracil following UV excitation of iodide-uracil complexes. J Chem Phys 2015; 141:224310. [PMID: 25494752 DOI: 10.1063/1.4903197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Electron attachment to uracil was investigated by applying time-resolved photoelectron imaging to iodide-uracil (I(-)U) complexes. In these studies, an ultraviolet pump pulse initiated charge transfer from the iodide to the uracil, and the resulting dynamics of the uracil temporary negative ion were probed. Five different excitation energies were used, 4.00 eV, 4.07 eV, 4.14 eV, 4.21 eV, and 4.66 eV. At the four lowest excitation energies, which lie near the vertical detachment energy of the I(-)U complex (4.11 eV), signatures of both the dipole bound (DB) as well as the valence bound (VB) anion of uracil were observed. In contrast, only the VB anion was observed at 4.66 eV, in agreement with previous experiments in this higher energy range. The early-time dynamics of both states were highly excitation energy dependent. The rise time of the DB anion signal was ∼250 fs at 4.00 eV and 4.07 eV, ∼120 fs at 4.14 eV and cross-correlation limited at 4.21 eV. The VB anion rise time also changed with excitation energy, ranging from 200 to 300 fs for excitation energies 4.00-4.21 eV, to a cross-correlation limited time at 4.66 eV. The results suggest that the DB state acts as a "doorway" state to the VB anion at 4.00-4.21 eV, while direct attachment to the VB anion occurs at 4.66 eV.
Collapse
Affiliation(s)
- Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Margaret A Yandell
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
32
|
Thompson MC, Baraban JH, Matthews DA, Stanton JF, Weber JM. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions. J Chem Phys 2015; 142:234304. [DOI: 10.1063/1.4922609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael C. Thompson
- JILA, University of Colorado at Boulder, 440 UCB, Boulder, Colorado 80309-0440, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215, USA
| | - Joshua H. Baraban
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215, USA
| | - Devin A. Matthews
- Institute for Computational Engineering and Science, University of Texas at Austin, 201 E. 24th St., Austin, Texas 78712, USA
| | - John F. Stanton
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165, USA
| | - J. Mathias Weber
- JILA, University of Colorado at Boulder, 440 UCB, Boulder, Colorado 80309-0440, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
33
|
Mak CC, Peslherbe GH. New developments in first-principles excited-state dynamics simulations: unveiling the solvent specificity of excited anionic cluster relaxation and electron solvation. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.945083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|