1
|
Sharma A, Gupta VK, Reva I. Methoxyacetone revisited. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123651. [PMID: 38056186 DOI: 10.1016/j.saa.2023.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Conformational space of methoxyacetone (MA) was studied at the MP2/6-311++G(d,p) and DFT(B3LYP)/6-311++G(d,p) levels of theory. Computations predict MA to adopt four conformations, resulting from internal rotations around the O=C-C-O (Trans, Cis) and C-C-O-C (trans, gauche) dihedral angles. The Tt (Trans-trans) conformer is the most stable. The computed energies of two gauche (Tg and Cg) conformers fall in the 3-8 kJ mol-1 range above Tt and should account for 1/3 of the room-temperature gas-phase equilibrium. The energy of Ct form is 11 kJ mol-1 above Tt, and its expected population is negligible (below 1 %). In our earlier work, MA monomers were isolated in cryogenic argon matrices and characterized by infrared spectroscopy. In the experiment, only the most stable Tt conformer was detected in the sample. Signatures of the other conformers were not detected, either in freshly deposited samples, or in samples subjected to different UV irradiations. We rationalize those observations in terms of computed barriers for intramolecular torsions, indicating occurrence of conformational cooling during deposition. The experimental infrared spectrum of the Tt form is now assigned with the aid of anharmonic DFT computations. Exposure of MA to UV irradiation in the 300-260 nm range led to photolysis, according to the Norrish type II mechanism, resulting in dimer between enol acetone and formaldehyde observed as a cage-confined intermediate photoproduct. The subsequent photolysis resulted in the formation of carbon monoxide as the dominating photoproduct, formed in the Norrish type I photoreaction. Mechanistic interpretation of this photo decarbonylation reaction is presented.
Collapse
Affiliation(s)
- Archna Sharma
- PG Department of Physics, University of Jammu, Jammu, J&K 180006, India
| | - Vivek K Gupta
- PG Department of Physics, University of Jammu, Jammu, J&K 180006, India
| | - Igor Reva
- CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, University of Coimbra, Coimbra 3030-790, Portugal.
| |
Collapse
|
2
|
Zasimov PV, Volosatova AD, Góbi S, Keresztes B, Tyurin DA, Feldman VI, Tarczay G. Infrared spectroscopy of the α-hydroxyethyl radical isolated in cryogenic solid media. J Chem Phys 2024; 160:024308. [PMID: 38205854 DOI: 10.1063/5.0177189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The α-hydroxyethyl radical (CH3·CHOH, 2A) is a key intermediate in ethanol biochemistry, combustion, atmospheric chemistry, radiation chemistry, and astrochemistry. Experimental data on the vibrational spectrum of this radical are crucially important for reliable detection and understanding of the chemical dynamics of this species. This study represents the first detailed experimental report on the infrared absorption bands of the α-hydroxyethyl radical complemented by ab initio computations. The radical was generated in solid para-H2 and Xe matrices via the reactions of hydrogen atoms with matrix-isolated ethanol molecules and radiolysis of isolated ethanol molecules with x rays. The absorption bands with maxima at 3654.6, 3052.1, 1425.7, 1247.9, 1195.6 (1177.4), and 1048.4 cm-1, observed in para-H2 matrices appearing upon the H· atom reaction, were attributed to the OHstr, α-CHstr, CCstr, COstr + CCObend, COstr, and CCstr + CCObend vibrational modes of the CH3·CHOH radical, respectively. The absorption bands with the positions slightly red-shifted from those observed in para-H2 were detected in both the irradiated and post-irradiation annealed Xe matrices containing C2H5OH. The results of the experiments with the isotopically substituted ethanol molecules (CH3CD2OH and CD3CD2OH) and the quantum-chemical computations at the UCCSD(T)/L2a_3 level support the assignment. The photolysis with ultraviolet light (240-300 nm) results in the decay of the α-hydroxyethyl radical, yielding acetaldehyde and its isomer, vinyl alcohol. A comparison of the experimental and theoretical results suggests that the radical adopts the thermodynamically more stable anti-conformation in both matrices.
Collapse
Affiliation(s)
- Pavel V Zasimov
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia D Volosatova
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sándor Góbi
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Barbara Keresztes
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Daniil A Tyurin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Feldman
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - György Tarczay
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
3
|
Zasimov PV, Sanochkina EV, Tyurin DA, Feldman VI. Radiation-induced transformations of matrix-isolated ethanol molecules at cryogenic temperatures: an FTIR study. Phys Chem Chem Phys 2023; 25:21883-21896. [PMID: 37566409 DOI: 10.1039/d3cp02834h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Ethanol (C2H5OH) is one of the most common alcohol molecules observed in various space media (molecular clouds, star formation regions, and, highly likely, interstellar ices), where it is exposed to light and ionizing radiation, leading to more complex organic molecules and eventually to the biologically important species. To better understand the radiation-induced evolution of ethanol molecules in icy media, we have examined the transformations of isolated C2H5OH and C2D5OH under the action of X-rays and vacuum ultraviolet (VUV) radiation in solid inert matrices (Ne, Ar, Kr, and Xe) at 4.4 K using Fourier transform infrared (FTIR) spectroscopy. The results obtained with X-ray irradiation demonstrate the formation of a variety of radiolysis products corresponding to dehydrogenation (CH3CHOH˙, CH3CHO, CH2CHOH, CH3CO˙, H2CCO-H2, H2CCO, HCCO˙, CCO) and C-C bond rupture (H2CO, HCO˙, CO, CH4, and CH3˙). The absorptions of the CH3CHOH˙ radical related to the CCO stretching (the bands at 1249.1, 1247.0, 1246.2, and 1245.1 cm-1, in Ne, Ar, Kr, and Xe, respectively) were first tentatively characterized on the basis of comparison with available computational data. In addition, the C2H2⋯H2O complex, which corresponds to dehydrogenation, was found followed by C-O bond cleavage. The results were confirmed by experiments with isotopic substitution. It was found that dehydrogenation strongly predominated in a xenon matrix, while skeleton bond rupture is more feasible in neon and argon. The matrix effect was attributed to a significant role of "hot" reaction channels in neon and argon, which are efficiently quenched due to relaxation in more polarizable xenon. The VUV photolysis (185 nm) in Ar and Xe matrices yields a similar set of products, except for CH3CHOH˙ and CH2CHOH, which were not found (the nonobservation of the former species may be explained by its efficient secondary photolysis). The plausible mechanisms of product formation and astrochemical implications of the results are discussed.
Collapse
Affiliation(s)
- Pavel V Zasimov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | - Daniil A Tyurin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vladimir I Feldman
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
4
|
DeWitt M, Babin MC, Lau JA, Solomis T, Neumark DM. High Resolution Photoelectron Spectroscopy of the Acetyl Anion. J Phys Chem A 2022; 126:7962-7970. [PMID: 36269316 DOI: 10.1021/acs.jpca.2c06214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-resolution photoelectron spectra of cryogenically cooled acetyl anions (CH3CO-) obtained using slow photoelectron velocity-map imaging are reported. The high resolution of the photoelectron spectrum yields a refined electron affinity of 0.4352 ± 0.0012 eV for the acetyl radical as well as the observation of a new vibronic structure that is assigned based on ab initio calculations. Three vibrational frequencies of the neutral radical are measured to be 1047 ± 3 cm-1 (ν6), 834 ± 2 cm-1 (ν7), and 471 ± 1 cm-1 (ν8). This work represents the first experimental measurement of the ν6 frequency of the neutral. The measured electron affinity is used to calculate a refined value of 1641.35 ± 0.42 kJ mol-1 for the gas-phase acidity of acetaldehyde. Analysis of the photoelectron angular distributions provides insight into the character of the highest occupied molecular orbital of the anion, revealing a molecular orbital with strong d-character. Additionally, details of a new centroiding algorithm based on finite differences, which has the potential to decrease data acquisition times by an order of magnitude at no cost to accuracy, are provided.
Collapse
Affiliation(s)
- Martin DeWitt
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Mark C Babin
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Jascha A Lau
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Tonia Solomis
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
5
|
El Hadki H, Gámez VG, Dalbouha S, Marakchi K, Kabbaj OK, Komiha N, Carvajal M, Senent Diez ML. Theoretical spectroscopic study of acetyl (CH 3CO), vinoxy (CH 2CHO), and 1-methylvinoxy (CH 3COCH 2) radicals. Barrierless formation processes of acetone in the gas phase. OPEN RESEARCH EUROPE 2022; 1:116. [PMID: 37645120 PMCID: PMC10445905 DOI: 10.12688/openreseurope.14073.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 08/31/2023]
Abstract
Background: Acetone is present in the earth´s atmosphere and extra-terrestrially. The knowledge of its chemical history in these environments represents a challenge with important implications for global tropospheric chemistry and astrochemistry. The results of a search for efficient barrierless pathways producing acetone from radicals in the gas phase are described in this paper. The spectroscopic properties of radicals needed for their experimental detection are provided. Methods: The reactants were acetone fragments of low stability and small species containing C, O and H atoms. Two exergonic bimolecular addition reactions involving the radicals CH 3, CH 3CO, and CH 3COCH 2, were found to be competitive according to the kinetic rates calculated at different temperatures. An extensive spectroscopic study of the radicals CH 3COCH 2 and CH 3CO, as well as the CH 2CHO isomer, was performed. Rovibrational parameters, anharmonic vibrational transitions, and excitations to the low-lying excited states are provided. For this purpose, RCCSD(T)-F12 and MRCI/CASSCF calculations were performed. In addition, since all the species presented non-rigid properties, a variational procedure of reduced dimensionality was employed to explore the far infrared region. Results: The internal rotation barriers were determined to be V 3=143.7 cm -1 (CH 3CO), V 2=3838.7 cm -1 (CH 2CHO) and V 3=161.4 cm -1 and V 2=2727.5 cm -1 (CH 3COCH 2).The splitting of the ground vibrational state due to the torsional barrier have been computed to be 2.997 cm -1, 0.0 cm -1, and 0.320 cm -1, for CH 3CO, CH 2CHO, and CH 3COCH 2, respectively. Conclusions: Two addition reactions, H+CH 3COCH 2 and CH 3+CH 3CO, could be considered barrierless formation processes of acetone after considering all the possible formation routes, starting from 58 selected reactants, which are fragments of the molecule. The spectroscopic study of the radicals involved in the formation processes present non-rigidity. The interconversion of their equilibrium geometries has important spectroscopic effects on CH 3CO and CH 3COCH 2, but is negligible for CH 2CHO.
Collapse
Affiliation(s)
- Hamza El Hadki
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Victoria Guadalupe Gámez
- Departamento de Química y Física Teóricas, IEM-CSIC, Unidad Asociada GIFMAN, CSIC-UHU, Madrid, 28006, Spain
| | - Samira Dalbouha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
- Equipe de recherche : Matériaux et Applications Environnementales, Laboratoire de Chimie Appliquée et Environnement, Département de chimie, Faculté des Sciences d’Agadir, Université Ibn Zohr, Agadir, B.P 8106, Morocco
| | - Khadija Marakchi
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Oum Keltoum Kabbaj
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Najia Komiha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Miguel Carvajal
- Departamento de Ciencias Integradas, Centro de Estudios Avanzados en Física, Matemática y Computación; Unidad Asociada GIFMAN, CSIC-UHU, Universidad de Huelva, Huelva, 21071, Spain
- Instituto Universitario Carlos I de Física Teórica y Computacional, University of Granada, Granada, Spain
| | - Maria Luisa Senent Diez
- Departamento de Química y Física Teóricas, IEM-CSIC, Unidad Asociada GIFMAN, CSIC-UHU, Madrid, 28006, Spain
| |
Collapse
|
6
|
Spectroscopic characterization of two peroxyl radicals during the O 2-oxidation of the methylthio radical. Commun Chem 2022; 5:19. [PMID: 36697894 PMCID: PMC9814412 DOI: 10.1038/s42004-022-00637-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/26/2022] [Indexed: 01/28/2023] Open
Abstract
The atmospheric oxidation of dimethyl sulfide (DMS) yields sulfuric acid and methane sulfonic acid (MSA), which are key precursors to new particles formed via homogeneous nucleation and further cluster growth in air masses. Comprehensive experimental and theoretical studies have suggested that the oxidation of DMS involves the formation of the methylthio radical (CH3S•), followed by its O2-oxidation reaction via the intermediacy of free radicals CH3SOx• (x = 1-4). Therefore, capturing these transient radicals and disclosing their reactivity are of vital importance in understanding the complex mechanism. Here, we report an optimized method for efficient gas-phase generation of CH3S• through flash pyrolysis of S-nitrosothiol CH3SNO, enabling us to study the O2-oxidation of CH3S• by combining matrix-isolation spectroscopy (IR and UV-vis) with quantum chemical computations at the CCSD(T)/aug-cc-pV(X + d)Z (X = D and T) level of theory. As the key intermediate for the initial oxidation of CH3S•, the peroxyl radical CH3SOO• forms by reacting with O2. Upon irradiation at 830 nm, CH3SOO• undergoes isomerization to the sulfonyl radical CH3SO2• in cryogenic matrixes (Ar, Ne, and N2), and the latter can further combine with O2 to yield another peroxyl radical CH3S(O)2OO• upon further irradiation at 440 nm. Subsequent UV-light irradiation (266 nm) causes dissociation of CH3S(O)2OO• to CH3SO2•, CH2O, SO2, and SO3. The IR spectroscopic identification of the two peroxyl radicals CH3SOO• and CH3S(O)2OO• is also supported by 18O- and 13C-isotope labeling experiments.
Collapse
|
7
|
Zasimov PV, Sanochkina EV, Feldman VI. Radiation-induced transformations of acetaldehyde molecules at cryogenic temperatures: a matrix isolation study. Phys Chem Chem Phys 2021; 24:419-432. [PMID: 34897322 DOI: 10.1039/d1cp03999g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acetaldehyde is one of the key small organic molecules involved in astrochemical and atmospheric processes occurring under the action of ionizing and UV radiation. While the UV photochemistry of acetaldehyde is well studied, little is known about the mechanism of processes induced by high-energy radiation. This paper reports the first systematic study on the chemical transformations of CH3CHO molecules resulting from X-ray irradiation under the conditions of matrix isolation in different solid noble gases (Ne, Ar, Kr, and Xe) at 5 K. CO, CH4, H2CCO, H2CCO-H2, C2H2⋯H2O, CH2CHOH, CH3CO˙, CH3˙, HCCO˙, and CCO were identified as the main radiolysis products. The dominant pathway of acetaldehyde degradation involves C-C bond cleavage leading to the formation of carbon monoxide and methane. The second important channel is dehydrogenation resulting in the formation of ketene, a potentially highly reactive species. It was found that the matrix significantly affected both the decomposition efficiency and distribution of the reaction channels. Based on these observations, it was suggested that the formation of the methyl radical as well as vinyl alcohol and the C2H2⋯H2O complex presumably included a significant contribution of ionic pathways. The decomposition of acetyl radicals under photolysis with visible light leading to the CH3˙-CO radical-molecule pair was observed in all matrices, while the recovery of CH3CO˙ in the dark at 5 K was found only in Xe. This finding represents a prominent example of matrix-dependent chemical dynamics (probably, involving tunnelling), which deserves further theoretical studies. Probable mechanisms of acetaldehyde radiolysis and their implications for astrochemistry, atmospheric chemistry and low-temperature chemistry are discussed.
Collapse
Affiliation(s)
- Pavel V Zasimov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | - Vladimir I Feldman
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Ji YT, Lee YP. Dynamics of Reaction CH 3CHI + O 2 Investigated via Infrared Emission of Products CO, CO 2, and OH. J Phys Chem A 2021; 125:8373-8385. [PMID: 34524829 DOI: 10.1021/acs.jpca.1c05610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction CH3CHI + O2 has been commonly employed in laboratories to produce a methyl-substituted Criegee intermediate CH3CHOO, but the detailed dynamics of this reaction remain unexplored. We carried out this reaction by irradiating a flowing mixture of CH3CHI2 (∼70 mTorr) and O2 (∼4 and 8 Torr) at 308 or 248 nm and observed infrared emission of the products with a step-scan Fourier-transform spectrometer. Upon irradiation at 248 nm with O2 ∼4 Torr, a Boltzmann distribution of CO (v ≤ 4, J ≤ 25) with average vibrational energy (12 ± 2) kJ mol-1 and of OH (v = 1, J ≤ 5.5) were observed and assigned to be produced from the decomposition of CH3C(O)OH* to form CO + CH3OH and OH + CH3CO, respectively. The observed broadband emission of CO2 was simulated with two vibrational distributions of average energies (42 ± 3) and (114 ± 6) kJ mol-1 and assigned to be produced from the decomposition of CH3C(O)OH* and (methyl dioxirane)*, respectively. The results upon irradiation of the sample at 308 nm are similar, likely indicating a small fraction of energy partition into these products and rapid thermalization of CH3CHI*. Compared with reaction CH2I + O2, the title reaction yielded products with much less internal excitation, consistent with the expectation that these observed products receive much less fraction of available energy upon fragmentation when an additional methyl moiety was present in the parent. The large-v component of CO observed in experiments of CH2I + O2 at 248 nm, produced from secondary reaction HCO + O2, was absent in this work because the corresponding secondary reaction CH3CO + O2 in decomposition of CH3CHOO* produces α-lactone + OH or H2CO + CO + OH.
Collapse
Affiliation(s)
- Ya-Tsang Ji
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
9
|
Wu Z, Wang L, Lu B, Eckhardt AK, Schreiner PR, Zeng X. Spectroscopic characterization and photochemistry of the vinylsulfinyl radical. Phys Chem Chem Phys 2021; 23:16307-16315. [PMID: 34313279 DOI: 10.1039/d1cp02584h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simplest α,β-unsaturated sulfinyl radical CH2[double bond, length as m-dash]C(H)SO˙ has been generated in the gas phase by high-vacuum flash pyrolysis (HVFP) of sulfoxide CH2[double bond, length as m-dash]C(H)S(O)CF3 at ca. 800 °C. Two planar cis and trans conformers of CH2[double bond, length as m-dash]C(H)SO˙ were isolated in cryogenic matrixes (N2, Ne, and Ar) and characterized with IR and UV/Vis spectroscopy. In addition to the photo-induced cis ⇋ trans conformational interconversion, CH2[double bond, length as m-dash]C(H)SO˙ displays complex photochemistry. Upon irradiation with a purple light LED (400 nm), CH2[double bond, length as m-dash]C(H)SO˙ isomerizes to novel radicals CH3SCO˙, ˙CH2SC(O)H, and ˙CH2C(O)SH with concomitant dissociation to a caged molecular complex CH3S˙CO. Subsequent UV-laser (266 nm) irradiation causes fragmentation to ˙CH3/OCS and additional formation of an elusive carbonyl radical CH3C(O)S˙, which rearranges to ˙CH2C(O)SH upon further UV-light irradiation (365 nm). The vibrational data and bonding analysis of the two conformers of CH2[double bond, length as m-dash]C(H)SO˙ suggest that both are floppy radicals in which the unpaired electron conjugates with the vicinal π(C[double bond, length as m-dash]C) bond, leading to significant contribution of the canonical resonance form of ˙CH2-C(H)SO. The mechanism for the isomerization of CH2[double bond, length as m-dash]C(H)SO˙ is discussed based on the observed intermediates along with a computed potential energy profile at the CCSD(T)-F12a/aug-cc-pVTZ//B3LYP/6-311++G(3df,3pd) level of theory.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Sosulin IS, Tyurin DA, Feldman VI. Radiation-Induced Transformation of CHF3···CO to the CF3···CO Complex: Matrix Isolation and Ab Initio Study. J Phys Chem A 2020; 124:1954-1958. [DOI: 10.1021/acs.jpca.9b09240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ilya S. Sosulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daniil A. Tyurin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir I. Feldman
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
12
|
Estep ML, Morgan WJ, Winkles AT, Abbott AS, Villegas-Escobar N, Mullinax JW, Turner WE, Wang X, Turney JM, Schaefer HF. Radicals derived from acetaldehyde and vinyl alcohol. Phys Chem Chem Phys 2017; 19:27275-27287. [PMID: 28868538 DOI: 10.1039/c7cp04671e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinyl alcohol and acetaldehyde are isoelectronic products of incomplete butanol combustion. Along with the radicals resulting from the removal of atomic hydrogen or the hydroxyl radical, these species are studied here using ab initio methods as complete as coupled cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], with basis sets as large as cc-pV5Z. The relative energies provided herein are further refined by including corrections for relativistic effects, the frozen core approximation, and the Born-Oppenheimer approximation. The effects of anharmonic zero-point vibrational energies are also treated. The syn conformer of vinyl alcohol is predicted to be lower in energy than the anti conformer by 1.1 kcal mol-1. The alcoholic hydrogen of syn-vinyl alcohol is found to be the easiest to remove, requiring 84.4 kcal mol-1. Five other radicals are also carefully considered, with four conformers investigated for the 1-hydroxyvinyl radical. Beyond energetics, we have conducted an overhaul of the spectroscopic literature for these species. Our results also provide predictions for fundamental modes yet to be reported experimentally. To our knowledge, the ν3 (3076 cm-1) and ν4 (2999 cm-1) C-H stretches for syn-vinyl alcohol and all but one of the vibrational modes for anti-vinyl alcohol (ν1-ν14) are yet to be observed experimentally. For the acetyl radical, ν6 (1035 cm-1), ν11 (944 cm-1), ν12 (97 cm-1), and accounting for our changes to the assignment of the 1419.9 cm-1 experimental mode, ν10 (1441 cm-1), are yet to be observed. We have predicted these unobserved fundamentals and reassigned the experimental 1419.9 cm-1 frequency in the acetyl radical to ν4 rather than to ν10. Our work also strongly supports reassignment of the ν10 and ν11 fundamentals of the vinoxy radical. We suggest that the bands assigned to the overtones of these fundamentals were in fact combination bands. Our findings may be useful in constructing improved combustion models of butanol and in spectroscopically characterizing these molecules further.
Collapse
Affiliation(s)
- Marissa L Estep
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kawasaki H, Mizoguchi A, Kanamori H. Alignment of CH3F in para-H2 crystal studied by IR quantum cascade laser polarization spectroscopy. J Chem Phys 2016; 144:184306. [PMID: 27179483 DOI: 10.1063/1.4948633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to investigate the alignment of CH3F in para-H2 crystals, high resolution polarization spectroscopy of the ν3 vibrational band is studied using a quantum cascade laser at 1040 cm(-1). It is found that the main and satellite series of peaks in the ν3 vibrational band of CH3F have the same polarization dependence. This result supports the previously proposed cluster model with ortho-H2 in first and second nearest neighbor sites. The observed polarization dependence function is well described by a simple six-axis void model in which CH3F is not aligned along the c-axis of the crystal but tilted to 64.9(3)° from it.
Collapse
Affiliation(s)
- Hiroyuki Kawasaki
- Department of Physics, Tokyo Institute of Technology, Ohokayama 2-12-1, Tokyo 152-8551, Japan
| | - Asao Mizoguchi
- Department of Physics, Tokyo Institute of Technology, Ohokayama 2-12-1, Tokyo 152-8551, Japan
| | - Hideto Kanamori
- Department of Physics, Tokyo Institute of Technology, Ohokayama 2-12-1, Tokyo 152-8551, Japan
| |
Collapse
|