1
|
Zhang Y, Wang B, Cai J, Yang Y, Tang C, Zheng X, Li H, Xu F. Enrichment and separation technology for evaluation of circulating tumor cells. Talanta 2025; 282:127025. [PMID: 39406084 DOI: 10.1016/j.talanta.2024.127025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Circulating tumor cells (CTCs) are tumor cells that exist in human peripheral blood, which could spread to other tissues or organs via the blood circulation system and develop into metastatic foci, leading to tumor recurrence or metastasis in postoperative patients and thereby increasing the mortality of malignant tumor patients. Evaluation of CTC levels can be used for tumor metastasis prediction, prognosis evaluation, drug exploitation, individualized treatment, liquid biopsy, etc., which exhibit outstanding clinical application prospects. In recent years, accurately capturing and analyzing CTCs has become a research hotspot in the early diagnosis and precise treatment of tumors. This review summarized various enrichment and isolation technologies for evaluating CTCs based on the design principle and discussed the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Yanjun Zhang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Wang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junwen Cai
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen Tang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoqun Zheng
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, 110000, China
| | - Feng Xu
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Rane A, Jarmoshti J, Siddique AB, Adair S, Torres-Castro K, Honrado C, Bauer TW, Swami NS. Dielectrophoretic enrichment of live chemo-resistant circulating-like pancreatic cancer cells from media of drug-treated adherent cultures of solid tumors. LAB ON A CHIP 2024; 24:561-571. [PMID: 38174422 PMCID: PMC10826460 DOI: 10.1039/d3lc00804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Due to low numbers of circulating tumor cells (CTCs) in liquid biopsies, there is much interest in enrichment of alternative circulating-like mesenchymal cancer cell subpopulations from in vitro tumor cultures for utilization within molecular profiling and drug screening. Viable cancer cells that are released into the media of drug-treated adherent cancer cell cultures exhibit anoikis resistance or anchorage-independent survival away from their extracellular matrix with nutrient sources and waste sinks, which serves as a pre-requisite for metastasis. The enrichment of these cell subpopulations from tumor cultures can potentially serve as an in vitro source of circulating-like cancer cells with greater potential for scale-up in comparison with CTCs. However, these live circulating-like cancer cell subpopulations exhibit size overlaps with necrotic and apoptotic cells in the culture media, which makes it challenging to selectively enrich them, while maintaining them in their suspended state. We present optimization of a flowthrough high frequency (1 MHz) positive dielectrophoresis (pDEP) device with sequential 3D field non-uniformities that enables enrichment of the live chemo-resistant circulating cancer cell subpopulation from an in vitro culture of metastatic patient-derived pancreatic tumor cells. Central to this strategy is the utilization of single-cell impedance cytometry with gates set by supervised machine learning, to optimize the frequency for pDEP, so that live circulating cells are selected based on multiple biophysical metrics, including membrane physiology, cytoplasmic conductivity and cell size, which is not possible using deterministic lateral displacement that is solely based on cell size. Using typical drug-treated samples with low levels of live circulating cells (<3%), we present pDEP enrichment of the target subpopulation to ∼44% levels within 20 minutes, while rejecting >90% of dead cells. This strategy of utilizing single-cell impedance cytometry to guide the optimization of dielectrophoresis has implications for other complex biological samples.
Collapse
Affiliation(s)
- Aditya Rane
- Chemistry, University of Virginia, Charlottesville, USA.
| | - Javad Jarmoshti
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| | | | - Sara Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | | | - Carlos Honrado
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Nathan S Swami
- Chemistry, University of Virginia, Charlottesville, USA.
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| |
Collapse
|
3
|
Zahedi Siani O, Zabetian Targhi M, Sojoodi M, Movahedin M. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization. Bioprocess Biosyst Eng 2020; 43:1573-1586. [PMID: 32328730 DOI: 10.1007/s00449-020-02349-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
This study proposes a microfluidic device capable of separating monocytes from a type of cancer cell that is called T-cell acute lymphoblastic leukemia (RPMI-8402) in a continuous flow using negative and positive dielectrophoretic forces. The use of both the hydrodynamic and dielectrophoretic forces allows the separation of RPMI-8402 from monocytes based on differences in their intrinsic electrical properties and sizes. The specific crossover frequencies of monocytes and RPMI-8402 cells have been obtained experimentally. The optimum ranges of electrode pitch-to-channel height ratio at the cross sections with different electrode widths have been generally calculated by numerical simulations of the gradients of the electric field intensities and calculation their effective values (root-mean-square). In the device, the cell sorting has been conducted empirically, and then, the separation performance has been evaluated by analyzing the images before and after dielectrophoretic forces applied to the cells. In this work, the design of a chip with 77 μm gold-titanium electrode pitch was investigated to achieve high purity of monocytes of 95.2%. The proposed device can be used with relatively low applied voltages, as low as 16.5 V (peak to peak). Thus, the design can be used in biomedical diagnosis and chemical analysis applications as a lab-on-chip platform. Also, it can be used for the separation of biological cells such as bacteria, RNA, DNA, and blood cells.
Collapse
Affiliation(s)
- Omid Zahedi Siani
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mahdi Sojoodi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
4
|
Zahedi Siani O, Sojoodi M, Zabetian Targhi M, Movahedin M. Blood Particle Separation Using Dielectrophoresis in A Novel Microchannel: A Numerical Study. CELL JOURNAL 2019; 22:218-226. [PMID: 31721537 PMCID: PMC6874797 DOI: 10.22074/cellj.2020.6386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/06/2019] [Indexed: 11/09/2022]
Abstract
Objective We present a four-branch model of the dielectrophoresis (DEP) method that takes into consideration the
inherent properties of particles, including size, electrical conductivity, and permittivity coefficient. By using this model,
bioparticles can be continuously separated by the application of only a one-stage separation process.
Materials and Methods In this numerical study, we based the separation process on the differences in the particle
sizes. We used the various negative DEP forces on the particles caused by the electrodes to separate them with a high
efficiency. The particle separator could separate blood cells because of their different sizes.
Results Blood cells greater than 12 μm were guided to a special branch, which improved separation efficiency because
it prevented the deposition of particles in other branches. The designed device had the capability to separate blood cells
with diameters of 2.0 μm, 6.2 μm, 10.0 μm, and greater than 12.0 μm. The applied voltage to the electrodes was 50 V
with a frequency of 100 kHz.
Conclusion The proposed device is a simple, efficient DEP-based continuous cell separator. This capability makes it
ideal for use in various biomedical applications, including cell therapy and cell separation, and results in a throughput
increment of microfluidics devices.
Collapse
Affiliation(s)
- Omid Zahedi Siani
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Sojoodi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | - Mohammad Zabetian Targhi
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | | |
Collapse
|
5
|
Aljadi Z, Kalm F, Ramachandraiah H, Nopp A, Lundahl J, Russom A. Microfluidic Immunoaffinity Basophil Activation Test for Point-of-Care Allergy Diagnosis. J Appl Lab Med 2019; 4:152-163. [PMID: 31639660 DOI: 10.1373/jalm.2018.026641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The flow cytometry-based basophil activation test (BAT) is used for the diagnosis of allergic response. However, flow cytometry is time-consuming, requiring skilled personnel and cumbersome processing, which has limited its use in the clinic. Here, we introduce a novel microfluidic-based immunoaffinity BAT (miBAT) method. METHODS The microfluidic device, coated with anti-CD203c, was designed to capture basophils directly from whole blood. The captured basophils are activated by anti-FcεRI antibody followed by optical detection of CD63 expression (degranulation marker). The device was first characterized using a basophil cell line followed by whole blood experiments. We evaluated the device with ex vivo stimulation of basophils in whole blood from healthy controls and patients with allergies and compared it with flow cytometry. RESULTS The microfluidic device was capable of capturing basophils directly from whole blood followed by in vitro activation and quantification of CD63 expression. CD63 expression was significantly higher (P = 0.0002) in on-chip activated basophils compared with nonactivated cells. The difference in CD63 expression on anti-FcεRI-activated captured basophils in microfluidic chip was significantly higher (P = 0.03) in patients with allergies compared with healthy controls, and the results were comparable with flow cytometry analysis (P = 0.04). Furthermore, there was no significant difference of CD63% expression in anti-FcεRI-activated captured basophils in microfluidic chip compared with flow cytometry. CONCLUSIONS We report on the miBAT. This device is capable of isolating basophils directly from whole blood for on-chip activation and detection. The new miBAT method awaits validation in larger patient populations to assess performance in diagnosis and monitoring of patients with allergies at the point of care.
Collapse
Affiliation(s)
- Zenib Aljadi
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden
| | - Frida Kalm
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden
| | - Harisha Ramachandraiah
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Nopp
- Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden
| | - Joachim Lundahl
- Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden
| | - Aman Russom
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden;
| |
Collapse
|
6
|
Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat Rev Clin Oncol 2019; 16:409-424. [DOI: 10.1038/s41571-019-0187-3] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Khan M, Mao S, Li W, Lin J. Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis. Chemistry 2018; 24:15398-15420. [DOI: 10.1002/chem.201800305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
8
|
Song Y, Tian T, Shi Y, Liu W, Zou Y, Khajvand T, Wang S, Zhu Z, Yang C. Enrichment and single-cell analysis of circulating tumor cells. Chem Sci 2017; 8:1736-1751. [PMID: 28451298 PMCID: PMC5396552 DOI: 10.1039/c6sc04671a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
Up to 90% of cancer-related deaths are caused by metastatic cancer. Circulating tumor cells (CTCs), a type of cancer cell that spreads through the blood after detaching from a solid tumor, are essential for the establishment of distant metastasis for a given cancer. As a new type of liquid biopsy, analysis of CTCs offers the possibility to avoid invasive tissue biopsy procedures with practical implications for diagnostics. The fundamental challenges of analyzing and profiling CTCs are the extremely low abundances of CTCs in the blood and the intrinsic heterogeneity of CTCs. Various technologies have been proposed for the enrichment and single-cell analysis of CTCs. This review aims to provide in-depth insights into CTC analysis, including various techniques for isolation of CTCs with capture methods based on physical and biochemical principles, and single-cell analysis of CTCs at the genomic, proteomic and phenotypic level, as well as current developmental trends and promising research directions.
Collapse
Affiliation(s)
- Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Yuanzhi Shi
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Wenli Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Yuan Zou
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Tahereh Khajvand
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Sili Wang
- Department of Hematology , The First Affiliated Hospital of Xiamen University , Xiamen 361005 , China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , The Key Laboratory of Chemical Biology of Fujian Province , State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemical Engineering , Department of Chemical Biology , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China .
| |
Collapse
|
9
|
Zhang J, Fan ZH. A universal tumor cell isolation method enabled by fibrin-coated microchannels. Analyst 2017; 141:563-6. [PMID: 26568434 DOI: 10.1039/c5an01783a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a simple but effective strategy to capture tumor cells using fibrin-immobilized microchannels. It is a universal method since it shows an ability to capture both epithelial and mesenchymal tumor cells. The cell capture efficiency is up to 90%.
Collapse
Affiliation(s)
- Jinling Zhang
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, Florida 32611, USA.
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, Florida 32611, USA. and J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Lannin T, Su WW, Gruber C, Cardle I, Huang C, Thege F, Kirby B. Automated electrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT. BIOMICROFLUIDICS 2016; 10:064109. [PMID: 27990211 PMCID: PMC5135715 DOI: 10.1063/1.4964929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 05/10/2023]
Abstract
We used automated electrorotation to measure the cytoplasmic permittivity, cytoplasmic conductivity, and specific membrane capacitance of pancreatic cancer cells under environmental perturbation to evaluate the effects of serum starvation, epithelial-to-mesenchymal transition, and evolution of chemotherapy resistance which may be associated with the development and dissemination of cancer. First, we compared gemcitabine-resistant BxPC3 subclones with gemcitabine-naive parental cells. Second, we serum-starved BxPC3 and PANC-1 cells and compared them to untreated counterparts. Third, we induced the epithelial-to-mesenchymal transition in PANC-1 cells and compared them to untreated PANC-1 cells. We also measured the electrorotation spectra of white blood cells isolated from a healthy donor. The properties from fit electrorotation spectra were used to compute dielectrophoresis (DEP) spectra and crossover frequencies. For all three experiments, the median crossover frequency for both treated and untreated pancreatic cancer cells remained significantly lower than the median crossover frequency for white blood cells. The robustness of the crossover frequency to these treatments indicates that DEP is a promising technique for enhancing capture of circulating cancer cells.
Collapse
Affiliation(s)
- Timothy Lannin
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Wey-Wey Su
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Conor Gruber
- College of Agriculture and Life Sciences, Cornell University , Ithaca, New York 14853, USA
| | - Ian Cardle
- Department of Biological and Environmental Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Chao Huang
- Department of Biomedical Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Fredrik Thege
- Department of Biomedical Engineering, Cornell University , Ithaca, New York 14853, USA
| | | |
Collapse
|
11
|
Perez-Gonzalez VH, Gallo-Villanueva RC, Camacho-Leon S, Gomez-Quiñones JI, Rodriguez-Delgado JM, Martinez-Chapa SO. Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection. IET Nanobiotechnol 2016; 10:263-275. [PMID: 27676373 PMCID: PMC8676477 DOI: 10.1049/iet-nbt.2015.0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023] Open
Abstract
Circulating tumour cells (CTCs) are active participants in the metastasis process and account for ∼90% of all cancer deaths. As CTCs are admixed with a very large amount of erythrocytes, leukocytes, and platelets in blood, CTCs are very rare, making their isolation, capture, and detection a major technological challenge. Microfluidic technologies have opened-up new opportunities for the screening of blood samples and the detection of CTCs or other important cancer biomarker-proteins. In this study, the authors have reviewed the most recent developments in microfluidic devices for cells/biomarkers manipulation and detection, focusing their attention on immunomagnetic-affinity-based devices, dielectrophoresis-based devices, surface-plasmon-resonance microfluidic sensors, and quantum-dots-based sensors.
Collapse
Affiliation(s)
- Victor Hugo Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico
| | | | - Sergio Camacho-Leon
- School of Engineering and Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico
| | - Jose Isabel Gomez-Quiñones
- School of Biotechnology and Health Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico
| | | | - Sergio Omar Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico.
| |
Collapse
|
12
|
Soffe R, Baratchi S, Tang SY, Mitchell A, McIntyre P, Khoshmanesh K. Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis. BIOMICROFLUIDICS 2016; 10:024117. [PMID: 27099646 PMCID: PMC4826375 DOI: 10.1063/1.4945309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 05/02/2023]
Abstract
Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation.
Collapse
Affiliation(s)
- Rebecca Soffe
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Sara Baratchi
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | - Shi-Yang Tang
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Peter McIntyre
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | | |
Collapse
|
13
|
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
14
|
Szydzik C, Khoshmanesh K, Mitchell A, Karnutsch C. Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis. BIOMICROFLUIDICS 2015; 9:064120. [PMID: 26759637 PMCID: PMC4698116 DOI: 10.1063/1.4938391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/09/2015] [Indexed: 05/02/2023]
Abstract
Microfluidic based blood plasma extraction is a fundamental necessity that will facilitate many future lab-on-a-chip based point-of-care diagnostic systems. However, current approaches for providing this analyte are hampered by the requirement to provide external pumping or dilution of blood, which result in low effective yield, lower concentration of target constituents, and complicated functionality. This paper presents a capillary-driven, dielectrophoresis-enabled microfluidic system capable of separating and extracting cell-free plasma from small amounts of whole human blood. This process takes place directly on-chip, and without the requirement of dilution, thus eliminating the prerequisite of pre-processed blood samples and external liquid handling systems. The microfluidic chip takes advantage of a capillary pump for driving whole blood through the main channel and a cross flow filtration system for extracting plasma from whole blood. This filter is actively unblocked through negative dielectrophoresis forces, dramatically enhancing the volume of extracted plasma. Experiments using whole human blood yield volumes of around 180 nl of cell-free, undiluted plasma. We believe that implementation of various integrated biosensing techniques into this plasma extraction system could enable multiplexed detection of various biomarkers.
Collapse
Affiliation(s)
| | - Khashayar Khoshmanesh
- School of Electrical and Computer Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Arnan Mitchell
- School of Electrical and Computer Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Christian Karnutsch
- Institute for Optofluidics and Nanophotonics (IONAS), University of Applied Sciences Karlsruhe , 76133 Karlsruhe, Germany
| |
Collapse
|
15
|
Lewis JM, Heineck DP, Heller MJ. Detecting cancer biomarkers in blood: challenges for new molecular diagnostic and point-of-care tests using cell-free nucleic acids. Expert Rev Mol Diagn 2015; 15:1187-200. [PMID: 26189641 DOI: 10.1586/14737159.2015.1069709] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As we move into the era of individualized cancer treatment, the need for more sophisticated cancer diagnostics has emerged. Cell-free (cf) nucleic acids (cf-DNA, cf-RNA) and other cellular nanoparticulates are now considered important and selective biomarkers. There is great hope that blood-borne cf-nucleic acids can be used for 'liquid biopsies', replacing more invasive tissue biopsies to analyze cancer mutations and monitor therapy. Conventional techniques for cf-nucleic acid biomarker isolation from blood are generally time-consuming, complicated and expensive. They require relatively large blood samples, which must be processed to serum or plasma before isolation of biomarkers can proceed. Such cumbersome sample preparation also limits the widespread use of powerful, downstream genomic analyses, including PCR and DNA sequencing. These limitations also preclude rapid, point-of-care diagnostic applications. Thus, new technologies that allow rapid isolation of biomarkers directly from blood will permit seamless sample-to-answer solutions that enable next-generation point-of-care molecular diagnostics.
Collapse
Affiliation(s)
- Jean M Lewis
- a 1 Department of Nanoengineering, University of California - San Diego, SME Building, 9500 Gilman Dr., La Jolla, CA 92093-0448, USA
| | | | | |
Collapse
|
16
|
Smith JP, Kirby BJ. A transfer function approach for predicting rare cell capture microdevice performance. Biomed Microdevices 2015; 17:9956. [PMID: 25971361 DOI: 10.1007/s10544-015-9956-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rare cells have the potential to improve our understanding of biological systems and the treatment of a variety of diseases; each of those applications requires a different balance of throughput, capture efficiency, and sample purity. Those challenges, coupled with the limited availability of patient samples and the costs of repeated design iterations, motivate the need for a robust set of engineering tools to optimize application-specific geometries. Here, we present a transfer function approach for predicting rare cell capture in microfluidic obstacle arrays. Existing computational fluid dynamics (CFD) tools are limited to simulating a subset of these arrays, owing to computational costs; a transfer function leverages the deterministic nature of cell transport in these arrays, extending limited CFD simulations into larger, more complicated geometries. We show that the transfer function approximation matches a full CFD simulation within 1.34 %, at a 74-fold reduction in computational cost. Taking advantage of these computational savings, we apply the transfer function simulations to simulate reversing array geometries that generate a "notch filter" effect, reducing the collision frequency of cells outside of a specified diameter range. We adapt the transfer function to study the effect of off-design boundary conditions (such as a clogged inlet in a microdevice) on overall performance. Finally, we have validated the transfer function's predictions for lateral displacement within the array using particle tracking and polystyrene beads in a microdevice.
Collapse
Affiliation(s)
- James P Smith
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
17
|
Allahrabbi N, Chia YSM, Saifullah MSM, Lim KM, Yung LYL. A hybrid dielectrophoretic system for trapping of microorganisms from water. BIOMICROFLUIDICS 2015; 9:034110. [PMID: 26180567 PMCID: PMC4474952 DOI: 10.1063/1.4922276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/28/2015] [Indexed: 05/24/2023]
Abstract
Assessment of the microbial safety of water resources is among the most critical issues in global water safety. As the current detection methods have limitations such as high cost and long process time, new detection techniques have transpired among which microfluidics is the most attractive alternative. Here, we show a novel hybrid dielectrophoretic (DEP) system to separate and detect two common waterborne pathogens, Escherichia coli (E. coli), a bacterium, and Cryptosporidium parvum (C. parvum), a protozoan parasite, from water. The hybrid DEP system integrates a chemical surface coating with a microfluidic device containing inter-digitated microelectrodes to impart positive dielectrophoresis for enhanced trapping of the cells. Trimethoxy(3,3,3-trifluoropropyl) silane, (3-aminopropyl)triethoxysilane, and polydiallyl dimethyl ammonium chloride (p-DADMAC) were used as surface coatings. Static cell adhesion tests showed that among these coatings, the p-DADMAC-coated glass surface provided the most effective cell adhesion for both the pathogens. This was attributed to the positively charged p-DADMAC-coated surface interacting electrostatically with the negatively charged cells suspended in water leading to increased cell trapping efficiency. The trapping efficiency of E. coli and C. parvum increased from 29.0% and 61.3% in an uncoated DEP system to 51.9% and 82.2% in the hybrid DEP system, respectively. The hybrid system improved the cell trapping by encouraging the formation of cell pearl-chaining. The increment in trapping efficiency in the hybrid DEP system was achieved at an optimal frequency of 1 MHz and voltage of 2.5 Vpp for C. parvum and 2 Vpp for E. coli, the latter is lower than 2.5 Vpp and 7 Vpp, respectively, utilized for obtaining similar efficiency in an uncoated DEP system.
Collapse
Affiliation(s)
| | - Yi Shi Michelle Chia
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| | - Mohammad S M Saifullah
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore
| | - Kian-Meng Lim
- Department of Mechanical Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| | - Lin Yue Lanry Yung
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| |
Collapse
|
18
|
Nakidde D, Zellner P, Alemi MM, Shake T, Hosseini Y, Riquelme MV, Pruden A, Agah M. Three dimensional passivated-electrode insulator-based dielectrophoresis. BIOMICROFLUIDICS 2015; 9:014125. [PMID: 25784964 PMCID: PMC4344466 DOI: 10.1063/1.4913497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/12/2015] [Indexed: 05/14/2023]
Abstract
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.
Collapse
Affiliation(s)
- Diana Nakidde
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | - Phillip Zellner
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | | | - Tyler Shake
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | - Yahya Hosseini
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | - Maria V Riquelme
- Pruden Lab - Department of Civil and Environmental Engineering , Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Amy Pruden
- Pruden Lab - Department of Civil and Environmental Engineering , Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Masoud Agah
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| |
Collapse
|
19
|
Smith JP, Huang C, Kirby BJ. Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis. BIOMICROFLUIDICS 2015; 9:014116. [PMID: 25759749 PMCID: PMC4327920 DOI: 10.1063/1.4908049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 05/11/2023]
Abstract
The capture and subsequent analysis of rare cells, such as circulating tumor cells from a peripheral blood sample, has the potential to advance our understanding and treatment of a wide range of diseases. There is a particular need for high purity (i.e., high specificity) techniques to isolate these cells, reducing the time and cost required for single-cell genetic analyses by decreasing the number of contaminating cells analyzed. Previous work has shown that antibody-based immunocapture can be combined with dielectrophoresis (DEP) to differentially isolate cancer cells from leukocytes in a characterization device. Here, we build on that work by developing numerical simulations that identify microfluidic obstacle array geometries where DEP-immunocapture can be used to maximize the capture of target rare cells, while minimizing the capture of contaminating cells. We consider geometries with electrodes offset from the array and parallel to the fluid flow, maximizing the magnitude of the resulting electric field at the obstacles' leading and trailing edges, and minimizing it at the obstacles' shoulders. This configuration attracts cells with a positive DEP (pDEP) response to the leading edge, where the shear stress is low and residence time is long, resulting in a high capture probability; although these cells are also repelled from the shoulder region, the high local fluid velocity at the shoulder minimizes the impact on the overall transport and capture. Likewise, cells undergoing negative DEP (nDEP) are repelled from regions of high capture probability and attracted to regions where capture is unlikely. These simulations predict that DEP can be used to reduce the probability of capturing contaminating peripheral blood mononuclear cells (using nDEP) from 0.16 to 0.01 while simultaneously increasing the capture of several pancreatic cancer cell lines from 0.03-0.10 to 0.14-0.55, laying the groundwork for the experimental study of hybrid DEP-immunocapture obstacle array microdevices.
Collapse
Affiliation(s)
- James P Smith
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA
| | - Chao Huang
- Department of Biomedical Engineering, Cornell University , Ithaca, New York 14853, USA
| | | |
Collapse
|