1
|
Downes-Ward B, Behzadfar A, Thawoos S, Suits AG. Product branching in the photodissociation of oxazole detected by broadband rotational spectroscopy. Phys Chem Chem Phys 2024. [PMID: 39445608 DOI: 10.1039/d4cp03276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The photodissociation of oxazole (c-C3H3NO) following excitation at 193 nm is studied using mm-Wave rotational spectroscopy in a uniform supersonic flow. Molecules entrained in the flow are excited to a ππ* state after which it is believed most relax back to the ground state via ring opening at the O-C[N] bond with subsequent fragmentation. From the line intensities of the probed products, we obtained the branching fractions for seven different products which are the result of five different dissociation pathways. The detected photoproducts and respective branching fractions (%) are the following: HCN (70.4), HCO (22.8), CH2CN (4.2), CH2CO (1.0), CH3CN (1.0), HNC (0.9), HNCO (0.08). We suspect much of the HCO may be formed in conjunction with the isocyanomethyl radical, CH2NC, which we did not probe. We discuss our results in relation to previous work, in particular our own study on the related isomer isoxazole, as well as direct dynamics theoretical simulations from the literature. We also studied the relaxation of a number of vibrationally excited levels of HCN produced at 20 K.
Collapse
Affiliation(s)
- Briony Downes-Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | - Abbas Behzadfar
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | - Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
2
|
Lucas DI, Guillaume T, Heard DE, Lehman JH. Design and implementation of a new apparatus for astrochemistry: Kinetic measurements of the CH + OCS reaction and frequency comb spectroscopy in a cold uniform supersonic flow. J Chem Phys 2024; 161:094203. [PMID: 39230369 DOI: 10.1063/5.0220774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
We present the development of a new astrochemical research tool, HILTRAC, the Highly Instrumented Low Temperature ReAction Chamber. The instrument is based on a pulsed form of the CRESU (Cinétique de Réaction en Écoulement Supersonique Uniforme, meaning reaction kinetics in a uniform supersonic flow) apparatus, with the aim of collecting kinetics and spectroscopic information on gas phase chemical reactions important in interstellar space or planetary atmospheres. We discuss the apparatus design and its flexibility, the implementation of pulsed laser photolysis followed by laser induced fluorescence, and the first implementation of direct infrared frequency comb spectroscopy (DFCS) coupled to the uniform supersonic flow. Achievable flow temperatures range from 32(3) to 111(9) K, characterizing a total of five Laval nozzles for use with N2 and Ar buffer gases by impact pressure measurements. These results were further validated using LIF and direct frequency comb spectroscopy measurements of the CH radical and OCS, respectively. Spectroscopic constants and linelists for OCS are reported for the 1001 band near 2890-2940 cm-1 for both OC32S and OC34S, measured using DFCS. Additional peaks in the spectrum are tentatively assigned to the OCS-Ar complex. The first reaction rate coefficients for the CH + OCS reaction measured between 32(3) and 58(5) K are reported. The reaction rate coefficient at 32(3) K was measured to be 3.9(4) × 10-10 cm3 molecule-1 s-1 and the reaction was found to exhibit no observable temperature dependence over this low temperature range.
Collapse
Affiliation(s)
- Daniel I Lucas
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Théo Guillaume
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Dwayne E Heard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Julia H Lehman
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
3
|
Thawoos S, Hall GE, Suas-David N, Suits AG. Contrast and Complexity in the Low-Temperature Kinetics of CN( v = 1) with O 2 and NO: Simultaneous Kinetics and Ringdown in a Uniform Supersonic Flow. J Phys Chem A 2024; 128:5906-5924. [PMID: 38990162 DOI: 10.1021/acs.jpca.4c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Bimolecular rate coefficients were determined for the reaction CN(v = 1) + NO and O2 using continuous wave cavity ringdown spectroscopy in a uniform supersonic flow (UF-CRDS). The well-matched time scales for ringdown and reaction under pseudo-first-order conditions allow for the use of the SKaR method (simultaneous kinetics and ringdown) in which the full kinetic trace is obtained on each ringdown. The reactions offer an interesting contrast in that the CN(v = 1) + NO system is nonreactive and proceeds by complex-mediated vibrational relaxation, while the CN(v = 1) + O2 reaction is primarily reactive. The measured rate coefficients at 70 K are (2.49 ± 0.08) × 10-11 and (10.49 ± 0.22) × 10-11 cm3 molecule-1 s-1 for the reaction with O2 and NO, respectively. The rate for reaction with O2 is a factor 2 lower than previously reported for v = 0 in the same temperature range, a surprising result, while that for NO is consistent with extrapolation of previous high-temperature measurements to 70 K. The latter is also discussed in light of theoretical calculations and measurements of the rate constants for the association reaction in the high-pressure limit. The measurements are complicated by the presence of a metastable population of high-J CN formed by photolysis of the precursor BrCN, and a kinetic model is developed to treat the competing relaxation and reaction. It is particularly problematic for reactions at low temperatures where the rotational relaxation and reaction have similar rates, precluding a reliable determination of the rate coefficients at 30 K. Also presented are important modifications to the data acquisition and control for the instrument that have yielded considerably enhanced stability and throughput.
Collapse
Affiliation(s)
- Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gregory E Hall
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nicolas Suas-David
- Univ Rennes, CNRS, Institut de Physique de Rennes─UMR 6251, F-35000 Rennes, France
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Guillaume T, Hays BM, Gupta D, Cooke IR, Abdelkader Khedaoui O, Hearne TS, Drissi M, Sims IR. Product-specific reaction kinetics in continuous uniform supersonic flows probed by chirped-pulse microwave spectroscopy. J Chem Phys 2024; 160:204201. [PMID: 38808747 DOI: 10.1063/5.0203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Experimental studies of the products of elementary gas-phase chemical reactions occurring at low temperatures (<50 K) are very scarce, but of importance for fundamental studies of reaction dynamics, comparisons with high-level quantum dynamical calculations, and, in particular, for providing data for the modeling of cold astrophysical environments, such as dense interstellar clouds, the atmospheres of the outer planets, and cometary comae. This study describes the construction and testing of a new apparatus designed to measure product branching fractions of elementary bimolecular gas-phase reactions at low temperatures. It combines chirped-pulse Fourier transform millimeter wave spectroscopy with continuous uniform supersonic flows and high repetition rate laser photolysis. After a comprehensive description of the apparatus, the experimental procedures and data processing protocols used for signal recovery, the capabilities of the instrument are explored by the study of the photodissociation of acrylonitrile and the detection of two of its photoproducts, HC3N and HCN. A description is then given of a study of the reactions of the CN radical with C2H2 at 30 K, detecting the HC3N product, and with C2H6 at 10 K, detecting the HCN product. A calibration of these two products is finally attempted using the photodissociation of acrylonitrile as a reference process. The limitations and possible improvements in the instrument are discussed in conclusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian R Sims
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
- Institut universitaire de France (IUF), France
| |
Collapse
|
5
|
Changala PB, McCarthy MC. Rotational Spectrum of the Phenoxy Radical. J Phys Chem Lett 2024:5063-5069. [PMID: 38701387 DOI: 10.1021/acs.jpclett.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
We report the hyperfine-resolved rotational spectrum of the gas-phase phenoxy radical in the 8-25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates that are yet undetected at radio wavelengths are discussed.
Collapse
Affiliation(s)
- P Bryan Changala
- Center for Astrophysics | Harvard & Smithsonian Cambridge, Massachusetts 02138, United States
| | - Michael C McCarthy
- Center for Astrophysics | Harvard & Smithsonian Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Castillo R, Blanco S, López JC. Conformational isomerism in trans-3-methoxycinnamic acid: From solid to gas phase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123997. [PMID: 38335592 DOI: 10.1016/j.saa.2024.123997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The rotational spectrum of laser ablated trans-3-methoxycinnamic acid has been observed in the 2-8 GHz range using chirped-pulse Fourier transform microwave spectroscopy coupled to a supersonic jet and adapted to support a laser ablation vaporization system (LA-CP-FTMW). Eight stable conformers were theoretically predicted to exist at B3LYP-D3BJ/6-311++(2d,p) level, all of which were experimentally detected. The experimental rotational parameters data evidence the essentially planar structures for all the conformers. The relative population distribution of conformers in the supersonic jet was investigated from relative intensity measurements. Cooling in the jet brings rotational temperatures close to 1 K for all the conformers. The theoretical predictions for the rotational constants and electric dipole moments show good agreement with the experimental constants and selection rules observed. The population distribution of conformers in the supersonic jet was found to be close to the equilibrium distribution calculated at temperatures lower than the stagnation temperature. Finally, the correlation of the observed conformers structures with those found in condensed phases was investigated.
Collapse
Affiliation(s)
- Roger Castillo
- Departamento de Química Física y Química Inorgánica, IU CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain
| | - Susana Blanco
- Departamento de Química Física y Química Inorgánica, IU CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain
| | - Juan Carlos López
- Departamento de Química Física y Química Inorgánica, IU CINQUIMA, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
7
|
Thawoos S, Suas-David N, Gurusinghe RM, Edlin M, Behzadfar A, Lang J, Suits AG. Low temperature reaction kinetics inside an extended Laval nozzle: REMPI characterization and detection by broadband rotational spectroscopy. J Chem Phys 2023; 159:214201. [PMID: 38054511 DOI: 10.1063/5.0178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Chirped-Pulse Fourier-Transform millimeter wave (CP-FTmmW) spectroscopy is a powerful method that enables detection of quantum state specific reactants and products in mixtures. We have successfully coupled this technique with a pulsed uniform Laval flow system to study photodissociation and reactions at low temperature, which we refer to as CPUF ("Chirped-Pulse/Uniform flow"). Detection by CPUF requires monitoring the free induction decay (FID) of the rotational coherence. However, the high collision frequency in high-density uniform supersonic flows can interfere with the FID and attenuate the signal. One way to overcome this is to sample the flow, but this can cause interference from shocks in the sampling region. This led us to develop an extended Laval nozzle that creates a uniform flow within the nozzle itself, after which the gas undergoes a shock-free secondary expansion to cold, low pressure conditions ideal for CP-FTmmW detection. Impact pressure measurements, commonly used to characterize Laval flows, cannot be used to monitor the flow within the nozzle. Therefore, we implemented a REMPI (resonance-enhanced multiphoton ionization) detection scheme that allows the interrogation of the conditions of the flow directly inside the extended nozzle, confirming the fluid dynamics simulations of the flow environment. We describe the development of the new 20 K extended flow, along with its characterization using REMPI and computational fluid dynamics. Finally, we demonstrate its application to the first low temperature measurement of the reaction kinetics of HCO with O2 and obtain a rate coefficient at 20 K of 6.66 ± 0.47 × 10-11 cm3 molec-1 s-1.
Collapse
Affiliation(s)
- Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Nicolas Suas-David
- Univ Rennes, CNRS, Institut de Physique de Rennes - UMR 6251, F-35000 Rennes, France
| | - Ranil M Gurusinghe
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
- Department of Chemistry, Tennessee Tech University, Cookeville, Tennessee 38505, USA
| | - Matthew Edlin
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Abbas Behzadfar
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Jinxin Lang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
8
|
Thawoos S, Hall GE, Cavallotti C, Suits AG. Kinetics of CN ( v = 1) reactions with butadiene isomers at low temperature by cw-cavity ring-down in a pulsed Laval flow with theoretical modelling of rates and entrance channel branching. Faraday Discuss 2023; 245:245-260. [PMID: 37317673 DOI: 10.1039/d3fd00029j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We present an experimental and theoretical investigation of the reaction of vibrationally excited CN (v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN (v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10-10 and (3.06 ± 0.35) × 10-10 cm3 per molecule per s, respectively. The reaction rate measured for CN (v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN (v = 0) under similar conditions. We report the rate of the reaction of CN (v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed.
Collapse
Affiliation(s)
- Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Gregory E Hall
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Carlo Cavallotti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milano 20133, Italy
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
9
|
Satterthwaite L, Koumarianou G, Carroll PB, Sedlik RJ, Wang I, McCarthy MC, Patterson D. Low-Temperature Gas-Phase Kinetics of Ethanol-Methanol Heterodimer Formation. J Phys Chem A 2023; 127:4096-4102. [PMID: 37119198 PMCID: PMC10184117 DOI: 10.1021/acs.jpca.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The structures of gas-phase noncovalently bound clusters have long been studied in supersonic expansions. This method of study, while providing a wealth of information about the nature of noncovalent bonds, precludes observation of the formation of the cluster, as the clusters form just after the orifice of the pulsed valve. Here, we directly observe formation of ethanol-methanol dimers via microwave spectroscopy in a controlled cryogenic environment. Time profiles of the concentration of reagents in the cell yielded gas-phase reaction rate constants of kMe-g = (2.8 ± 1.4) × 10-13 cm3 molecule-1 s-1 and kMe-t = (1.6 ± 0.8) × 10-13 cm3 molecule-1 s-1 for the pseudo-second-order ethanol-methanol dimerization reaction at 8 K. The relaxation cross section between the gauche and trans conformers of ethanol was also measured using the same technique. In addition, thermodynamic relaxation between conformers of ethanol over time allowed for selection of conformer stoichiometry in the ethanol-methanol dimerization reaction, but no change in the ratio of dimer conformers was observed with changing ethanol monomer stoichiometry.
Collapse
Affiliation(s)
- Lincoln Satterthwaite
- Department of Chemistry and Biochemistry, Building 232, University of California, Santa Barbara, California 93106, United States
| | - Greta Koumarianou
- Department of Chemistry and Biochemistry, Building 232, University of California, Santa Barbara, California 93106, United States
| | - P Brandon Carroll
- Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| | - Robert J Sedlik
- Physics Department, Broida Hall, University of California, Santa Barbara, California 93106, United States
| | - Irene Wang
- Physics Department, Broida Hall, University of California, Santa Barbara, California 93106, United States
| | - Michael C McCarthy
- Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| | - David Patterson
- Physics Department, Broida Hall, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Dias N, Gurusinghe RM, Suits AG. Multichannel Radical-Radical Reaction Dynamics of NO + Propargyl Probed by Broadband Rotational Spectroscopy. J Phys Chem A 2022; 126:5354-5362. [PMID: 35938878 DOI: 10.1021/acs.jpca.2c01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chirped-pulse rotational spectroscopy in a quasi-uniform flow has been used to investigate the reaction dynamics of a multichannel radical-radical reaction of relevance to planetary atmospheres and combustion. In this work, the NO + propargyl (C3H3) reaction was found to yield six product channels containing eight detected species. These products and their branching fractions (%), are as follows: HCN (50), HCNO (18), CH2CN (12), CH3CN (7.4), HC3N (6.2), HNC (2.3), CH2CO (1.3), HCO (1.8). The results are discussed in light of previous unimolecular photodissociation studies of isoxazole and prior potential energy surface calculations of the NO + C3H3 system. The results also show that the product branching is strongly influenced by the excess energy of the reactant radicals. The implications of the title reaction to the planetary atmospheres, particularly to Titan, are discussed.
Collapse
Affiliation(s)
- Nureshan Dias
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211 United States
| | - Ranil M Gurusinghe
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211 United States
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211 United States
| |
Collapse
|
11
|
Dutton SE, Blake GA. High throughput chirped pulse Fourier-transform microwave spectroscopy of ethanol and water clusters. Phys Chem Chem Phys 2022; 24:13831-13838. [PMID: 35616604 DOI: 10.1039/d2cp01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we discuss the design and performance of a novel high-throughput instrument for Chirped Pulse Fourier-transform Microwave (CP-FTMW) spectroscopy, and demonstrate its efficacy through the identification of the lowest energy conformers of the ethanol trimer and mixed water : ethanol trimers. Rotational constants for these trimers were calculated from observed lines in the spectra from 10 to 14 GHz, and compared to the results of anharmonic ab initio computations. As predicted, all trimers share a cyclic donor-acceptor hydrogen bonding structure, with the ethanol monomer favoring the gauche conformation in the lowest energy structures. The increased speed of data collection and resulting sensitivity opens a new avenue into rotational studies of higher order clusters.
Collapse
Affiliation(s)
- S E Dutton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA.
| | - G A Blake
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
12
|
Wu LY, Miossec C, Heazlewood BR. Low-temperature reaction dynamics of paramagnetic species in the gas phase. Chem Commun (Camb) 2022; 58:3240-3254. [PMID: 35188499 PMCID: PMC8902758 DOI: 10.1039/d1cc06394d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Radicals are abundant in a range of important gas-phase environments. They are prevalent in the atmosphere, in interstellar space, and in combustion processes. As such, understanding how radicals react is essential for the development of accurate models of the complex chemistry occurring in these gas-phase environments. By controlling the properties of the colliding reactants, we can also gain insights into how radical reactions occur on a fundamental level. Recent years have seen remarkable advances in the breadth of experimental methods successfully applied to the study of reaction dynamics involving paramagnetic species-from improvements to the well-known crossed molecular beams approach to newer techniques involving magnetically guided and decelerated beams. Coupled with ever-improving theoretical methods, quantum features are being observed and interesting insights into reaction dynamics are being uncovered in an increasingly diverse range of systems. In this highlight article, we explore some of the exciting recent developments in the study of chemical dynamics involving paramagnetic species. We focus on low-energy reactive collisions involving neutral radical species, where the reaction parameters are controlled. We conclude by identifying some of the limitations of current methods and exploring possible new directions for the field.
Collapse
Affiliation(s)
- Lok Yiu Wu
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Chloé Miossec
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Brianna R Heazlewood
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
| |
Collapse
|
13
|
Gurusinghe RM, Dias N, Krueger R, Suits AG. Uniform supersonic flow sampling for detection by chirped-pulse rotational spectroscopy. J Chem Phys 2022; 156:014202. [PMID: 34998338 DOI: 10.1063/5.0073527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is a powerful near-universal detection method finding application in many areas. We have previously coupled it with supersonic flows (CPUF) to obtain product branching in reaction and photodissociation. Because chirped-pulse microwave detection requires monitoring the free induction decay on the timescale of microseconds, it cannot be employed with good sensitivity at the high densities achieved in some uniform supersonic flows. For application to low-temperature kinetics studies, a truly uniform flow is required to obtain reliable rate measurements and enjoy all the advantages that CP-FTMW has to offer. To this end, we present a new setup that combines sampling of uniform supersonic flows using an airfoil-shaped sampling device with chirped-pulse mmW detection. Density and temperature variations in the airfoil-sampled uniform flow were revealed using time-dependent rotational spectroscopy of pyridine and vinyl cyanide photoproducts, highlighting the use of UV photodissociation as a sensitive diagnostic tool for uniform flows. The performance of the new airfoil-equipped CPUF rotational spectrometer was validated using kinetics measurements of the CN + C2H6 reaction at 50 K with detection of the HCN product. Issues relating to product detection by rotational spectroscopy and airfoil sampling are discussed. We show that airfoil sampling enables direct measurements of low temperature reaction kinetics on a microsecond timescale, while rotational spectroscopic detection enables highly specific simultaneous detection of reactants and products.
Collapse
Affiliation(s)
- Ranil M Gurusinghe
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Nureshan Dias
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Ritter Krueger
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
14
|
Gurusinghe RM, Dias N, Broderick BM. Buffer gas cooling for sensitive rotational spectroscopy of ice chemistry: A proposal. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Durif O, Capron M, Messinger JP, Benidar A, Biennier L, Bourgalais J, Canosa A, Courbe J, Garcia GA, Gil JF, Nahon L, Okumura M, Rutkowski L, Sims IR, Thiévin J, Le Picard SD. A new instrument for kinetics and branching ratio studies of gas phase collisional processes at very low temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:014102. [PMID: 33514236 DOI: 10.1063/5.0029991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A new instrument dedicated to the kinetic study of low-temperature gas phase neutral-neutral reactions, including clustering processes, is presented. It combines a supersonic flow reactor with vacuum ultra-violet synchrotron photoionization time-of-flight mass spectrometry. A photoion-photoelectron coincidence detection scheme has been adopted to optimize the particle counting efficiency. The characteristics of the instrument are detailed along with its capabilities illustrated through a few results obtained at low temperatures (<100 K) including a photoionization spectrum of n-butane, the detection of formic acid dimer formation, and the observation of diacetylene molecules formed by the reaction between the C2H radical and C2H2.
Collapse
Affiliation(s)
- O Durif
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - M Capron
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - J P Messinger
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - A Benidar
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - L Biennier
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - J Bourgalais
- LATMOS/IPSL, UVSQ, Université Paris-Saclay, UPMC, Univ Paris 06, CNRS, 78280 Guyancourt, France
| | - A Canosa
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - J Courbe
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - G A Garcia
- Synchrotron SOLEIL, L'orme des Merisiers, BP48 St Aubin, 91192 Gif Sur Yvette Cedex, France
| | - J F Gil
- Synchrotron SOLEIL, L'orme des Merisiers, BP48 St Aubin, 91192 Gif Sur Yvette Cedex, France
| | - L Nahon
- Synchrotron SOLEIL, L'orme des Merisiers, BP48 St Aubin, 91192 Gif Sur Yvette Cedex, France
| | - M Okumura
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - L Rutkowski
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - I R Sims
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - J Thiévin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - S D Le Picard
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| |
Collapse
|
16
|
Hearne TS, Abdelkader Khedaoui O, Hays BM, Guillaume T, Sims IR. A novel Ka-band chirped-pulse spectrometer used in the determination of pressure broadening coefficients of astrochemical molecules. J Chem Phys 2020; 153:084201. [PMID: 32872880 DOI: 10.1063/5.0017978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer has been constructed to cover the Ka-band (26.5 GHz-40 GHz) for use in the CRESUCHIRP project, which aims to study the branching ratios of reactions at low temperatures using the chirped-pulse in uniform flow technique. The design takes advantage of recent developments in radio-frequency components, notably, high-frequency, high-power solid-state amplifiers. The spectrometer had a flatness of 5.5 dB across the spectral range, produced harmonic signals below -20 dBc, and the recorded signal scaled well to 6 × 106 averages. The new spectrometer was used to determine pressure broadening coefficients with a helium collider at room temperature for three molecules relevant to astrochemistry, applying the Voigt function to fit the magnitude of the Fourier-transformed data in the frequency domain. The pressure broadening coefficient for carbonyl sulfide was determined to be (2.45 ± 0.02) MHz mbar-1 at room temperature, which agreed well with previous measurements. Pressure broadening coefficients were also determined for multiple transitions of vinyl cyanide and benzonitrile. Additionally, the spectrometer was coupled with a cold, uniform flow from a Laval nozzle. The spectrum of vinyl cyanide was recorded in the flow, and its rotational temperature was determined to be (24 ± 11) K. This temperature agreed with a prediction of the composite temperature of the system through simulations of the experimental environment coupled with calculations of the solution to the optical Bloch equations. These results pave the way for future quantitative studies in low-temperature and high-pressure environments using CP-FTMW spectroscopy.
Collapse
Affiliation(s)
- Thomas S Hearne
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | | | - Brian M Hays
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Théo Guillaume
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Ian R Sims
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| |
Collapse
|
17
|
Suas-David N, Thawoos S, Suits AG. A uniform flow-cavity ring-down spectrometer (UF-CRDS): A new setup for spectroscopy and kinetics at low temperature. J Chem Phys 2019; 151:244202. [PMID: 31893907 DOI: 10.1063/1.5125574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The UF-CRDS (Uniform Flow-Cavity Ring Down Spectrometer) is a new setup coupling for the first time a pulsed uniform (Laval) flow with a continuous wave CRDS in the near infrared for spectroscopy and kinetics at low temperature. This high resolution and sensitive absorption spectrometer opens a new window into the phenomena occurring within UFs. The approach extends the detection range to new electronic and rovibrational transitions within Laval flows and offers the possibility to probe numerous species which have not been investigated yet. This new tool has been designed to probe radicals and reaction intermediates but also to follow the chemistry of hydrocarbon chains and PAHs which play a crucial role in the evolution of astrophysical environments. For kinetics measurements, the UF-CRDS combines the CRESU technique (French acronym meaning reaction kinetics in uniform supersonic flows) with the SKaR (Simultaneous Kinetics and Ring-Down) approach where, as indicated by its name, the entire reaction is monitored during each intensity decay within the high finesse cavity. The setup and the approach are demonstrated with the study of the reaction between CN (v = 1) and propene at low temperature. The recorded data are finally consistent with a previous study of the same reaction for CN (v = 0) relying on the CRESU technique with laser induced fluorescence detection.
Collapse
Affiliation(s)
- N Suas-David
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - S Thawoos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - A G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
18
|
Mishra P, Fritz SM, Hays BM, Mehta-Hurt DN, Jawad KM, Zwier TS. Broadband rotational spectroscopy of trans 3-pentenenitrile and 4-pentenenitrile. Phys Chem Chem Phys 2019; 21:23651-23662. [PMID: 31625538 DOI: 10.1039/c9cp04328d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Titan, a moon of Saturn, has a nitrogen- and methane-rich atmosphere that is similar to prebiotic earth, and is replete with organic nitriles. Pentenenitriles have not yet been detected in Titan's atmosphere or in molecular clouds, but are potential precursors to hetero-aromatic compounds such as pyridine. We performed broadband microwave studies in the 8-18 GHz range on the trans isomer of 3-pentenenitrile (3-PN) and 4-pentenenitrile (4-PN) under jet-cooled conditions. Strong-field coherence breaking (SFCB) was used to selectively modulate the intensities of microwave transitions in a conformer-specific manner for 3-PN, aiding analysis. Two conformers of 3-PN and five conformers of 4-PN were identified and the rotational transitions were assigned. Evidence for methyl internal rotation splitting was observed for both the conformers of 3-PN, and the barrier heights of both conformers was determined experimentally. Comparison is made of the conformational preferences, stability and isomerization barriers through the acquired rotational spectra and potential energy surface (PES) calculations of the structural isomers 3-PN and 4-PN.
Collapse
Affiliation(s)
- Piyush Mishra
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Joalland B, Jamal-Eddine N, Papanastasiou D, Lekkas A, Carles S, Biennier L. A mass-selective ion transfer line coupled with a uniform supersonic flow for studying ion–molecule reactions at low temperatures. J Chem Phys 2019; 150:164201. [DOI: 10.1063/1.5086386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- B. Joalland
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| | - N. Jamal-Eddine
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| | - D. Papanastasiou
- Fasmatech Science and Technology SA, TESPA Lefkippos, NCSR Demokritos, 15310 Athens, Greece
| | - A. Lekkas
- Fasmatech Science and Technology SA, TESPA Lefkippos, NCSR Demokritos, 15310 Athens, Greece
| | - S. Carles
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| | - L. Biennier
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, F-35000 Rennes, France
| |
Collapse
|
20
|
Beutner V, Duffy LM, Meyer H. Resonance Enhanced Multiphoton Ionization Detected Millimeter-Wave Absorption: The 115 GHz Line of CO. J Phys Chem A 2019; 123:2153-2162. [DOI: 10.1021/acs.jpca.8b11528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- V. Beutner
- Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602-2451, United States
| | - L. M. Duffy
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - H. Meyer
- Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602-2451, United States
| |
Collapse
|
21
|
Foley CD, Alavi ST, Joalland B, Broderick BM, Dias N, Suits AG. Imaging the infrared multiphoton excitation and dissociation of propargyl chloride. Phys Chem Chem Phys 2019; 21:1528-1535. [PMID: 30617359 DOI: 10.1039/c8cp06668j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared multiphoton excitation is combined with UV excitation and state-resolved probes of Cl(2P3/2), Cl*(2P1/2), and HCl to study the photochemistry of propargyl chloride. The results show evidence both of infrared multiphoton dissociation on the ground electronic state and infrared multiphoton excitation followed by UV dissociation. The results are interpreted with the aid of a full characterization of the stationary points on the ground state using ab initio methods, as well as our recent experimental and theoretical characterization of the UV photochemistry of the molecule. The data suggest elimination of HCl on the ground electronic state produces linear propadienylidene as a coproduct over a roaming-like transition state that accesses the Cl-H-C abstraction geometry. This identification is supported by separate chirped-pulse microwave studies in a quasi-uniform flow also reported here.
Collapse
Affiliation(s)
- Casey D Foley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Dias N, Joalland B, Ariyasingha NM, Suits AG, Broderick BM. Direct versus Indirect Photodissociation of Isoxazole from Product Branching: A Chirped-Pulse Fourier Transform mm-Wave Spectroscopy/Pulsed Uniform Flow Investigation. J Phys Chem A 2018; 122:7523-7531. [PMID: 30165738 DOI: 10.1021/acs.jpca.8b04713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The UV photodissociation of isoxazole (c-C3H3NO) is studied in this work by chirped-pulse Fourier transform mm-wave spectroscopy in a pulsed uniform Laval flow. This approach offers a number of advantages over traditional spectroscopic detection methods due to its broadband, sub-MHz resolution, and fast-acquisition capabilities. In coupling this technique with a quasi-uniform Laval flow, we are able to obtain product branching fractions in the 193 nm photodissociation of isoxazole. Five dissociation channels are explored through direct detection of seven different photoproducts. These species and their respective branching fractions (%) include the following: HCN (53.8 ± 1.7), CH3CN (23.4 ± 6.8), HCO (9.5 ± 2.3), CH2CN (7.8 ± 2.9), CH2CO (3.8 ± 0.9), HCCCN (0.9 ± 0.2), and HNC (0.8 ± 0.2). Guided by previous electronic structure and dynamics simulations, we are able to elucidate the dissociation dynamics that govern the final product branching fractions observed in this work, which differ significantly from previous reports on the thermal decomposition of isoxazole. Interestingly, both direct and indirect dynamics contribute to its dissociation, and clear signatures of both are manifested in the relative branching ratios obtained. Consistent with previous studies on the unimolecular dissociation of isoxazole, our findings also suggest the importance of the open-shell singlet diradicaloid species vinylnitrene in the dissociation dynamics, regardless of the initially populated excited state. This work, taken together with previous investigations, provides a global picture of the complex dissociation pathways involved in the photodissociation of isoxazole.
Collapse
Affiliation(s)
- Nureshan Dias
- Department of Chemistry, University of Missouri , Columbia , Missouri 65211 , United States
| | - Baptiste Joalland
- Department of Chemistry, University of Missouri , Columbia , Missouri 65211 , United States
| | - Nuwandi M Ariyasingha
- Department of Chemistry, University of Missouri , Columbia , Missouri 65211 , United States
| | - Arthur G Suits
- Department of Chemistry, University of Missouri , Columbia , Missouri 65211 , United States
| | - Bernadette M Broderick
- Department of Chemistry, University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
23
|
Fritz SM, Hays BM, Hernandez-Castillo AO, Abeysekera C, Zwier TS. Multiplexed characterization of complex gas-phase mixtures combining chirped-pulse Fourier transform microwave spectroscopy and VUV photoionization time-of-flight mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093101. [PMID: 30278727 DOI: 10.1063/1.5046085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
We report details of the design and operation of a single apparatus that combines Chirped-Pulse Fourier Transform Microwave (CP-FTMW) spectroscopy with vacuum ultraviolet (VUV) photoionization Time-of-Flight Mass Spectrometry (TOFMS). The supersonic expansion used for cooling samples is interrogated first by passing through the region between two microwave horns capable of broadband excitation and detection in the 2-18 GHz frequency region of the microwave. After passing through this region, the expansion is skimmed to form a molecular beam, before being probed with 118 nm (10.5 eV) single-photon VUV photoionization in a linear time-of-flight mass spectrometer. The two detection schemes are powerfully complementary to one another. CP-FTMW detects all components with significant permanent dipole moments. Rotational transitions provide high-resolution structural data. VUV TOFMS provides a gentle and general method for ionizing all components of a gas phase mixture with ionization thresholds below 10.5 eV, providing their molecular formulae. The advantages, complementarity, and limitations of the combined methods are illustrated through results on two gas-phase mixtures made up of (i) three furanic compounds, two of which are structural isomers of one another, and (ii) the effluent from a flash pyrolysis source with o-guaiacol as the precursor.
Collapse
Affiliation(s)
- Sean M Fritz
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Brian M Hays
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Chamara Abeysekera
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
24
|
Broderick BM, Suas-David N, Dias N, Suits AG. Isomer-specific detection in the UV photodissociation of the propargyl radical by chirped-pulse mm-wave spectroscopy in a pulsed quasi-uniform flow. Phys Chem Chem Phys 2018; 20:5517-5529. [PMID: 29165455 DOI: 10.1039/c7cp06211g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomer-specific detection and product branching fractions in the UV photodissociation of the propargyl radical is achieved through the use of chirped-pulse Fourier-transform mm-wave spectroscopy in a pulsed quasi-uniform flow (CPUF). Propargyl radicals are produced in the 193 nm photodissociation of 1,2-butadiene. Absorption of a second photon leads to H atom elimination giving three possible C3H2 isomers: singlets cyclopropenylidene (c-C3H2) and propadienylidene (l-C3H2), and triplet propargylene (3HCCCH). The singlet products and their appearance kinetics in the flow are directly determined by rotational spectroscopy, but due to the negligible dipole moment of propargylene, it is not directly monitored. However, we exploit the time-dependent kinetics of H-atom catalyzed isomerization to infer the branching to propargylene as well. We obtain the overall branching among H loss channels to be 2.9% (+1.1/-0.5) l-C3H2 + H, 16.8% (+3.2/-1.3) c-C3H2 + H, and 80.2 (+1.8/-4.2) 3HCCCH + H. Our findings are qualitatively consistent with earlier RRKM calculations in that the major channel in the photodissociation of the propargyl radical at 193 nm is to 3HCCCH + H; however, a greater contribution to the energetically most favorable isomer, c-C3H2 + H is observed in this work. We do not detect the predicted HCCC + H2 channel, but place an upper bound on its yield of 1%.
Collapse
Affiliation(s)
- Bernadette M Broderick
- Department of Chemistry, University of Missouri, 601 S. College Ave, Columbia MO 65211, USA.
| | | | | | | |
Collapse
|
25
|
Zaleski DP, Harding LB, Klippenstein SJ, Ruscic B, Prozument K. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor. J Phys Chem Lett 2017; 8:6180-6188. [PMID: 29193976 DOI: 10.1021/acs.jpclett.7b02864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 μbar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energized HCN, HNC, and HCCCN photoproducts with 10 μs time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.
Collapse
Affiliation(s)
- Daniel P Zaleski
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Lawrence B Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Kirill Prozument
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| |
Collapse
|
26
|
Hammami H, Ben Mohamed F, Mohamed D, Ben El Hadj Rhouma M, Al Mogren MM, Hochlaf M. One-electron pseudo-potential investigation of NO(X 2Π)–Ar n clusters ( n = 1,2,3,4). Mol Phys 2017. [DOI: 10.1080/00268976.2017.1337252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- H. Hammami
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs, Université de Monastir, Tunisie
| | - F.E. Ben Mohamed
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs, Université de Monastir, Tunisie
| | - D. Mohamed
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs, Université de Monastir, Tunisie
| | - M. Ben El Hadj Rhouma
- Laboratoire de Recherche d'Etude des Milieux Ionisés et Réactifs (EMIR), Institut Préparatoire aux Etudes d'Ingénieurs, Université de Monastir, Tunisie
| | - M. M. Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - M. Hochlaf
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, Marne-la-Vallée, France
| |
Collapse
|
27
|
Potapov A, Canosa A, Jiménez E, Rowe B. Chemie mit Überschall: 30 Jahre astrochemische Forschung und künftige Herausforderungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Deutschland
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex Frankreich
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spanien
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer Frankreich
| |
Collapse
|
28
|
Potapov A, Canosa A, Jiménez E, Rowe B. Uniform Supersonic Chemical Reactors: 30 Years of Astrochemical History and Future Challenges. Angew Chem Int Ed Engl 2017; 56:8618-8640. [DOI: 10.1002/anie.201611240] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Germany
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spain
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer France
| |
Collapse
|
29
|
Hochlaf M. Advances in spectroscopy and dynamics of small and medium sized molecules and clusters. Phys Chem Chem Phys 2017; 19:21236-21261. [DOI: 10.1039/c7cp01980g] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigations of the spectroscopy and dynamics of small- and medium-sized molecules and clusters represent a hot topic in atmospheric chemistry, biology, physics, atto- and femto-chemistry and astrophysics.
Collapse
Affiliation(s)
- Majdi Hochlaf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| |
Collapse
|
30
|
Hansen N, Wullenkord J, Obenchain DA, Graf I, Kohse-Höinghaus K, Grabow JU. Microwave spectroscopic detection of flame-sampled combustion intermediates. RSC Adv 2017. [DOI: 10.1039/c7ra06483g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microwave spectroscopy was used to detect and identify combustion intermediates after sampling out of laboratory-scale model flames.
Collapse
Affiliation(s)
- N. Hansen
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - J. Wullenkord
- Department of Chemistry
- Bielefeld University
- D-33615 Bielefeld
- Germany
| | - D. A. Obenchain
- Institut für Physikalische Chemie & Elektrochemie
- Gottfried-Wilhelm-Leibniz-University Hannover
- D-30167 Hannover
- Germany
| | - I. Graf
- Department of Chemistry
- Bielefeld University
- D-33615 Bielefeld
- Germany
| | | | - J.-U. Grabow
- Institut für Physikalische Chemie & Elektrochemie
- Gottfried-Wilhelm-Leibniz-University Hannover
- D-30167 Hannover
- Germany
| |
Collapse
|
31
|
Ferreiro JJ, Chakrabarty S, Schläppi B, Signorell R. Observation of propane cluster size distributions during nucleation and growth in a Laval expansion. J Chem Phys 2016; 145:211907. [DOI: 10.1063/1.4960050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jorge J. Ferreiro
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Satrajit Chakrabarty
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Bernhard Schläppi
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
32
|
Park GB, Field RW. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy. J Chem Phys 2016; 144:200901. [DOI: 10.1063/1.4952762] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- G. Barratt Park
- Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Am Faßberg 11, 37077 Göttingen, Germany
| | - Robert W. Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Trevitt AJ, Goulay F. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection. Phys Chem Chem Phys 2016; 18:5867-82. [DOI: 10.1039/c5cp06389b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase radical reactions of CN and CH with small hydrocarbons are overviewed with emphasis on isomer-resolved product detection.
Collapse
Affiliation(s)
- Adam J. Trevitt
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - Fabien Goulay
- Department of Chemistry
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
34
|
Abeysekera C, Zack LN, Park GB, Joalland B, Oldham JM, Prozument K, Ariyasingha NM, Sims IR, Field RW, Suits AG. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics. J Chem Phys 2015; 141:214203. [PMID: 25481137 DOI: 10.1063/1.4903253] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.
Collapse
Affiliation(s)
- Chamara Abeysekera
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Lindsay N Zack
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - G Barratt Park
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Baptiste Joalland
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - James M Oldham
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Kirill Prozument
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Ian R Sims
- Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Robert W Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arthur G Suits
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
35
|
Abeysekera C, Joalland B, Ariyasingha N, Zack LN, Sims IR, Field RW, Suits AG. Product Branching in the Low Temperature Reaction of CN with Propyne by Chirped-Pulse Microwave Spectroscopy in a Uniform Supersonic Flow. J Phys Chem Lett 2015; 6:1599-1604. [PMID: 26263320 DOI: 10.1021/acs.jpclett.5b00519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new chirped-pulse/uniform flow (CPUF) spectrometer has been developed and used to determine product branching in a multichannel reaction. With this technique, bimolecular reactions can be initiated in a cold, thermalized, high-density molecular flow and a broadband microwave spectrum acquired for all products with rotational transitions within a chosen frequency window. In this work, the CN + CH3CCH reaction was found to yield HCN via a direct H-abstraction reaction, whereas indirect addition/elimination pathways to HCCCN, CH3CCCN, and CH2CCHCN were also probed. From these observations, quantitative branching ratios were established for all products as 12(5)%, 66(4)%, 22(6)%, and 0(8)% into HCN, HCCCN, CH3CCCN, and CH2CCHCN, respectively. The values are consistent with statistical calculations based on new ab initio results at the CBS-QB3 level of theory. This work is a demonstration of CPUF as a powerful technique for quantitatively determining the branching into polyatomic products from a bimolecular reaction.
Collapse
Affiliation(s)
- Chamara Abeysekera
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Baptiste Joalland
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Nuwandi Ariyasingha
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Lindsay N Zack
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ian R Sims
- ‡Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042, Rennes CEDEX, France
| | - Robert W Field
- §Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Arthur G Suits
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
36
|
Jiménez E, Ballesteros B, Canosa A, Townsend TM, Maigler FJ, Napal V, Rowe BR, Albaladejo J. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:045108. [PMID: 25933898 DOI: 10.1063/1.4918529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (k(OH)) for the reaction under investigation was then obtained and compared with the only available data at this temperature.
Collapse
Affiliation(s)
- E Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - B Ballesteros
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - A Canosa
- Département de Physique Moléculaire, Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - T M Townsend
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - F J Maigler
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - V Napal
- AEROCHOP, 22 Chemin des Moines, 22750 Saint Jacut de la Mer, France
| | - B R Rowe
- Département de Physique Moléculaire, Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - J Albaladejo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
37
|
Abeysekera C, Joalland B, Shi Y, Kamasah A, Oldham JM, Suits AG. Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:116107. [PMID: 25430156 DOI: 10.1063/1.4902153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.
Collapse
Affiliation(s)
- Chamara Abeysekera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Baptiste Joalland
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Yuanyuan Shi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Alexander Kamasah
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - James M Oldham
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Arthur G Suits
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|