1
|
Titov E. Visible Light Induced Exciton Dynamics and trans-to- cis Isomerization in Azobenzene Aggregates: Insights from Surface Hopping/Semiempirical Configuration Interaction Molecular Dynamics Simulations. ACS OMEGA 2024; 9:8520-8532. [PMID: 38405525 PMCID: PMC10882624 DOI: 10.1021/acsomega.3c09900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Assemblies of photochromic molecules feature exciton states, which govern photochemical and photophysical processes in multichromophoric systems. Understanding the photoinduced dynamics of the assemblies requires nonadiabatic treatment involving multiple exciton states and numerous nuclear degrees of freedom, thus posing a challenge for simulations. In this work, we address this challenge for aggregates of azobenzene, a prototypical molecular switch, performing on-the-fly surface hopping calculations combined with semiempirical configuration interaction electronic structure and augmented with transition density matrix analysis to characterize exciton evolution. Specifically, we consider excitation of azobenzene tetramers in the nπ* absorption band located in the visible (blue) part of the electromagnetic spectrum, thus extending our recent work on dynamics after ππ* excitation corresponding to the ultraviolet region [Titov, J. Phys. Chem. C2023, 127, 13678-13688]. We find that the nπ* excitons, which are initially strongly localized by ground-state conformational disorder, undergo further (very strong) localization during short-time photodynamics. This excited-state localization process is extremely ultrafast, occurring within the first 10 fs of photodynamics. We observe virtually no exciton transfer of the localized excitons in the nπ* manifold. However, the transfer may occur via secondary pathways involving ππ* states or the ground state. Moreover, we find that the nπ* quantum yields of the trans-to-cis isomerization are reduced in the aggregated state.
Collapse
Affiliation(s)
- Evgenii Titov
- Institute of Chemistry, Theoretical
Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Kasyanenko NA, Silanteva IA, Gabrusenok PV, Santer S, Komolkin AV. Electrostatic Interactions in the Formation of DNA Complexes with Cis- and Trans-Isomers of Azobenzene-Containing Surfactants in Solutions with Di- and Trivalent Metal Ions. ACS OMEGA 2023; 8:14597-14609. [PMID: 37125131 PMCID: PMC10134229 DOI: 10.1021/acsomega.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The effect of the presence of divalent and trivalent metal ions in solutions upon DNA packaging induced by the photosensitive azobenzene-containing surfactant is considered. It has been shown that the addition of divalent and trivalent metal ions does not affect the DNA-surfactant interaction for both the cis- and the trans-isomers of the surfactant. At the same time, the ionic strength of the solution, which is provided by a certain concentration of the salt, has a huge impact. It affects the association of surfactant molecules with each other and their binding to DNA. It has been shown by computer simulation that cobalt hexamine is attracted to the N7 atom of guanine in the major groove of DNA and does not penetrate into grooves near the AT base pairs.
Collapse
Affiliation(s)
- Nina A. Kasyanenko
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya embankment, Saint Petersburg, 199034, Russia
| | - Irina A. Silanteva
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya embankment, Saint Petersburg, 199034, Russia
| | - Pavel V. Gabrusenok
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya embankment, Saint Petersburg, 199034, Russia
| | - Svetlana Santer
- Experimental
Physics, Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Andrei V. Komolkin
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya embankment, Saint Petersburg, 199034, Russia
| |
Collapse
|
3
|
Titov E, Beqiraj A. Exciton States of Azobenzene Aggregates: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| | - Alkit Beqiraj
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| |
Collapse
|
4
|
Silanteva IA, Komolkin AV, Mamontova VV, Gabrusenok PV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. J Phys Chem B 2021; 125:11197-11207. [PMID: 34586822 DOI: 10.1021/acs.jpcb.1c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA.
Collapse
Affiliation(s)
- Irina A Silanteva
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V Mamontova
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel V Gabrusenok
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel N Vorontsov-Velyaminov
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A Kasyanenko
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|
5
|
Titov E, Sharma A, Lomadze N, Saalfrank P, Santer S, Bekir M. Photoisomerization of an Azobenzene‐Containing Surfactant Within a Micelle. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry Institute of Chemistry University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Anjali Sharma
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Nino Lomadze
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Peter Saalfrank
- Theoretical Chemistry Institute of Chemistry University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Svetlana Santer
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Marek Bekir
- Experimental Physics Institute of Physics and Astronomy University of Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| |
Collapse
|
6
|
Titov E. On the Low-Lying Electronically Excited States of Azobenzene Dimers: Transition Density Matrix Analysis. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26144245. [PMID: 34299521 PMCID: PMC8303869 DOI: 10.3390/molecules26144245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest ππ* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.
Collapse
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Silanteva IA, Komolkin AV, Mamontova VV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Some Features of Surfactant Organization in DNA Solutions at Various NaCl Concentrations. ACS OMEGA 2020; 5:18234-18243. [PMID: 32743199 PMCID: PMC7391854 DOI: 10.1021/acsomega.0c01850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 05/17/2023]
Abstract
The photosensitive azobenzene-containing surfactant C4-Azo-OC6TMAB is a promising agent for reversible DNA packaging in a solution. The simulation of the trans-isomer surfactant organization into associates in a solution with and without salt as well as its binding to DNA at different NaCl concentrations was carried out by molecular dynamics. Experimental data obtained by spectral and hydrodynamic methods were used to verify the results of simulation. It was shown that head-to-tail aggregates with close to antiparallel orientation of surfactant molecules were formed at certain NaCl and surfactant concentrations (below critical micelle concentration). Such aggregates have two positively charged ends, and therefore, they can be attracted to negatively charged DNA phosphates far located along the chain, as well as those that belong to different molecules. This contributes to the formation of intermolecular DNA-DNA contacts, and this way, the experimentally observed precipitation of DNA can be explained.
Collapse
Affiliation(s)
- Irina A. Silanteva
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V. Komolkin
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V. Mamontova
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | | | - Svetlana Santer
- Experimental
Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A. Kasyanenko
- Faculty
of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|
8
|
Schimka S, Klier DT, de Guereñu AL, Bastian P, Lomadze N, Kumke MU, Santer S. Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:125201. [PMID: 30625434 DOI: 10.1088/1361-648x/aafcfa] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm3+ or Er3+ as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < λ em < 480 nm (for Tm3+, three and four photon induced emission) or 525 nm < λ em < 545 nm (for Er3+, two photon induced emission), respectively. Especially for UCNPs containing Tm3+ a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (λ ex = 976 nm) in the presence of the Tm3+-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR.
Collapse
Affiliation(s)
- Selina Schimka
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Blayo C, Houston JE, King SM, Evans RC. Unlocking Structure-Self-Assembly Relationships in Cationic Azobenzene Photosurfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10123-10134. [PMID: 30071720 DOI: 10.1021/acs.langmuir.8b02109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Azobenzene photosurfactants are light-responsive amphiphiles that have garnered significant attention for diverse applications including delivery and sorting systems, phase transfer catalysis, and foam drainage. The azobenzene chromophore changes both its polarity and conformation (trans-cis isomerization) in response to UV light, while the amphiphilic structure drives self-assembly. Detailed understanding of the inherent relationship between the molecular structure, physicochemical behavior, and micellar arrangement of azobenzene photosurfactants is critical to their usefulness. Here, we investigate the key structure-function-assembly relationships in the popular cationic alkylazobenzene trimethylammonium bromide (AzoTAB) family of photosurfactants. We show that subtle changes in the surfactant structure (alkyl tail, spacer length) can lead to large variations in the critical micelle concentration, particularly in response to light, as determined by surface tensiometry and dynamic light scattering. Small-angle neutron scattering studies also reveal the formation of more diverse micellar aggregate structures (ellipsoids, cylinders, spheres) than predicted based on simple packing parameters. The results suggest that whereas the azobenzene core resides in the effective hydrophobic segment in the trans-isomer, it forms part of the effective hydrophilic segment in the cis-isomer because of the dramatic conformational and polarity changes induced by photoisomerization. The extent of this shift in the hydrophobic-hydrophilic balance is determined by the separation between the azobenzene core and the polar head group in the molecular structure. Our findings show that judicious design of the AzoTAB structure enables selective tailoring of the surfactant properties in response to light, such that they can be exploited and controlled in a reliable fashion.
Collapse
Affiliation(s)
- Camille Blayo
- School of Chemistry and CRANN , University of Dublin, Trinity College , College Green , Dublin 2 , Ireland
| | - Judith E Houston
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstr. 1 , 85748 Garching , Germany
| | - Stephen M King
- ISIS Pulsed Neutron Source, STFC, Rutherford Appleton Laboratory , Didcot , Oxfordshire OX11 0QX , U.K
| | - Rachel C Evans
- Department of Materials Science & Metallurgy , University of Cambridge , Cambridge CB3 0FS , U.K
| |
Collapse
|
10
|
Kasyanenko N, Unksov I, Bakulev V, Santer S. DNA Interaction with Head-to-Tail Associates of Cationic Surfactants Prevents Formation of Compact Particles. Molecules 2018; 23:E1576. [PMID: 29958479 PMCID: PMC6100511 DOI: 10.3390/molecules23071576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets.
Collapse
Affiliation(s)
- Nina Kasyanenko
- Department of Physics, Saint Petersburg State University, 199034 St Petersburg, Russia.
| | - Ivan Unksov
- Department of Physics, Saint Petersburg State University, 199034 St Petersburg, Russia.
| | - Vladimir Bakulev
- Department of Physics, Saint Petersburg State University, 199034 St Petersburg, Russia.
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Lubbe AS, Szymanski W, Feringa BL. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem Soc Rev 2018; 46:1052-1079. [PMID: 28128377 DOI: 10.1039/c6cs00461j] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is a growing interest in the photoregulation of biological functions, due to the high level of spatiotemporal precision achievable with light. Additionally, light is non-invasive and waste-free. In particular, the photoregulation of oligonucleotide structure and function is a rapidly developing study field with relevance to biological, physical and material sciences. Molecular photoswitches have been incorporated in oligonucleotides for 20 years, and the field has currently grown beyond fundamental studies on photochemistry of the switches and DNA duplex stability, and is moving towards applications in chemical biology, nanotechnology and material science. Moreover, the currently emerging field of photopharmacology indicates the relevance of photocontrol in future medicine. In recent years, a large number of publications has appeared on photoregulation of DNA and RNA structure and function. New strategies are evaluated and novel, exciting applications are shown. In this comprehensive review, the key strategies for photoswitch inclusion in oligonucleotides are presented and illustrated with recent examples. Additionally the applications that have emerged in recent years are discussed, including gene regulation, drug delivery and materials design. Finally, we identify the challenges that the field currently faces and look forward to future applications.
Collapse
Affiliation(s)
- Anouk S Lubbe
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. and Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
12
|
Malyar IV, Titov E, Lomadze N, Saalfrank P, Santer S. Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties. J Chem Phys 2017; 146:104703. [DOI: 10.1063/1.4978225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ivan V. Malyar
- Department of Nano- and Biomedical Technologies, Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Evgenii Titov
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Nino Lomadze
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Peter Saalfrank
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Yang R, Dong G, Liu Y, Zheng C, Wang D. Synthesis and Characterization of Photoresponsive Supramolecular Gel Formed by a Smart Surfactant. CHEM LETT 2017. [DOI: 10.1246/cl.161053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Schimka S, Lomadze N, Rabe M, Kopyshev A, Lehmann M, von Klitzing R, Rumyantsev AM, Kramarenko EY, Santer S. Photosensitive microgels containing azobenzene surfactants of different charges. Phys Chem Chem Phys 2017; 19:108-117. [DOI: 10.1039/c6cp04555c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths.
Collapse
Affiliation(s)
- Selina Schimka
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam
- Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam
- Germany
| | - Maren Rabe
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam
- Germany
| | - Alexey Kopyshev
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam
- Germany
| | - Maren Lehmann
- Institute of Chemistry
- Technical University Berlin
- 10623 Berlin
- Germany
| | | | | | | | - Svetlana Santer
- Institute of Physics and Astronomy
- University of Potsdam
- 14476 Potsdam
- Germany
| |
Collapse
|
15
|
Feldmann D, Maduar SR, Santer M, Lomadze N, Vinogradova OI, Santer S. Manipulation of small particles at solid liquid interface: light driven diffusioosmosis. Sci Rep 2016; 6:36443. [PMID: 27808170 PMCID: PMC5093767 DOI: 10.1038/srep36443] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
Collapse
Affiliation(s)
- David Feldmann
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Salim R Maduar
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119071 Moscow, Russia.,Department of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Olga I Vinogradova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119071 Moscow, Russia.,Department of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.,DWI-Leibniz Institute for Interactive Materials, RWTH Aachen, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
16
|
Feng L, Xu L, Dong S, Hao J. Thermo-reversible capture and release of DNA by zwitterionic surfactants. SOFT MATTER 2016; 12:7495-7504. [PMID: 27539945 DOI: 10.1039/c6sm00704j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The thermo-reversible capture and release of DNA were studied by the protonation and deprotonation of alkyldimethylamine oxide (CnDMAO, n = 10, 12 and 14) in Tris-HCl buffer solution. DNA/C14DMAO in Tris-HCl buffer solution with pH = 7.2 is transparent at 25 °C, indicating that DNA molecules exist mainly in individuals and the binding of C14DMAO is weak. With the increase of temperature, the pH of the buffer solution continuously decreases, which leads to protonation of C14DMAO (C14DMAO + H(+)→ C14DMAOH(+)) and an obvious increase of the turbidity of the samples. This indicates a stronger binding of the protonated C14DMAOH(+) to DNA. Further investigations demonstrated the formation of DNA/C14DMAOH(+) complexes, in which the stretched DNA molecules are effectively compacted as evidenced from UV-vis absorptions, circular dichroism (CD) measurements, atomic force microscopy (AFM) observations, dynamic light scattering (DLS) measurements and agarose gel electrophoresis (AGE). Interestingly, when the temperature is turned back to 25 °C, the compacted DNA molecules can fully recover to the stretched conformation. This cycle can be repeated several times without obvious loss of efficiency. The effect of the chain length of CnDMAO has also been investigated. When C14DMAO was replaced by C12DMAO, similar phenomena can be observed with a slightly higher critical surfactant concentration for DNA compaction and a slightly lower pH of Tris-HCl buffer solution with pH = 6.8. For the DNA/C10DMAO system, however, no DNA compaction was observed even in Tris-HCl buffer solution with a much lower pH and a much higher C10DMAO concentration. The negative charges of DNA molecules can easily be neutralized by positive charges of cationic CnDMAOH(+) (n = 12 and 14) micelles. DNA was compacted and then insoluble DNA/CnDMAOH(+) complexes were formed. Because of the much higher critical micelle concentration (cmc) of the shorter chain length C10DMAOH(+), cationic C10DMAOH(+) micelles cannot form under the studied condition to compact DNA. The strategy may provide an efficient and alternative approach for stimuli-responsive gene therapy and drug release.
Collapse
Affiliation(s)
- Lei Feng
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China.
| | | | | | | |
Collapse
|
17
|
Schimka S, Santer S, Mujkić-Ninnemann NM, Bléger D, Hartmann L, Wehle M, Lipowsky R, Santer M. Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. Biomacromolecules 2016; 17:1959-68. [DOI: 10.1021/acs.biomac.6b00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Selina Schimka
- Institute
of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Svetlana Santer
- Institute
of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | | | - David Bléger
- Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Laura Hartmann
- Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Marko Wehle
- Theory
and Bio-Systems Group, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory
and Bio-Systems Group, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mark Santer
- Theory
and Bio-Systems Group, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
18
|
|