1
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
2
|
Absolute excited state molecular geometries revealed by resonance Raman signals. Nat Commun 2022; 13:7770. [PMID: 36522323 PMCID: PMC9755279 DOI: 10.1038/s41467-022-35099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Ultrafast reactions activated by light absorption are governed by multidimensional excited-state (ES) potential energy surfaces (PESs), which describe how the molecular potential varies with the nuclear coordinates. ES PESs ad-hoc displaced with respect to the ground state can drive subtle structural rearrangements, accompanying molecular biological activity and regulating physical/chemical properties. Such displacements are encoded in the Franck-Condon overlap integrals, which in turn determine the resonant Raman response. Conventional spectroscopic approaches only access their absolute value, and hence cannot determine the sense of ES displacements. Here, we introduce a two-color broadband impulsive Raman experimental scheme, to directly measure complex Raman excitation profiles along desired normal modes. The key to achieve this task is in the signal linear dependence on the Frank-Condon overlaps, brought about by non-degenerate resonant probe and off-resonant pump pulses, which ultimately enables time-domain sensitivity to the phase of the stimulated vibrational coherences. Our results provide the tool to determine the magnitude and the sensed direction of ES displacements, unambiguously relating them to the ground state eigenvectors reference frame.
Collapse
|
3
|
Batignani G, Ferrante C, Scopigno T. Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2020; 11:7805-7813. [PMID: 32841039 PMCID: PMC7735730 DOI: 10.1021/acs.jpclett.0c01971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 05/08/2023]
Abstract
Excited state vibrations are crucial for determining the photophysical and photochemical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally restricted to ground state properties. Working under resonance conditions enables cross-section enhancement and selective excitation to a targeted electronic level but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information about ground and excited state vibrations can be disentangled by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring with the signal generation. The proposed method is then exploited to elucidate the vibrational properties of the ground and excited electronic states in the paradigmatic case of cresyl violet. We anticipate that the presented approach holds the potential for selective mapping of the reaction coordinates pertaining to transient electronic stages implied in photoactive compounds.
Collapse
Affiliation(s)
- Giovanni Batignani
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
| | - Carino Ferrante
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Center
for Life Nano Science @Sapienza, Istituto
Italiano di Tecnologia, Roma I-00161, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| | - Tullio Scopigno
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Center
for Life Nano Science @Sapienza, Istituto
Italiano di Tecnologia, Roma I-00161, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
4
|
Zhang Z, Wang K, Yi Z, Zubairy MS, Scully MO, Mukamel S. Polariton-Assisted Cooperativity of Molecules in Microcavities Monitored by Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2019; 10:4448-4454. [PMID: 31304758 DOI: 10.1021/acs.jpclett.9b00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular polaritons created by the strong coupling between matter and field in microcavities enable the control of molecular dynamical processes and optical response. Multidimensional infrared spectroscopy is proposed for monitoring the polariton-assisted cooperative properties. The response of molecules to local fluctuations is incorporated and the full dynamics is monitored through the time- and frequency-resolved multidimensional signal. The cooperativity against solvent-induced disorder and its connection to the localization of the vibrational excitations are predicted. New insights are provided for recent 2DIR experiments on vibrational polaritons.
Collapse
Affiliation(s)
- Zhedong Zhang
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Kai Wang
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Zhenhuan Yi
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - M Suhail Zubairy
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Marlan O Scully
- Institute for Quantum Science and Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Quantum Optics Laboratory , Baylor Research and Innovation Collaborative , Waco , Texas 76704 , United States
- Department of Mechanical and Aerospace Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Shaul Mukamel
- Department of Chemistry, Department of Physics and Astronomy , University of California Irvine , Irvine , California 92697 , United States
| |
Collapse
|
5
|
Osipov VA, Asban S, Mukamel S. Time and frequency resolved transient-absorption and stimulated-Raman signals of stochastic light. J Chem Phys 2019; 151:044113. [DOI: 10.1063/1.5109258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- V. Al. Osipov
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, USA
| | - S. Asban
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, USA
| | - S. Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
6
|
Barclay MS, Quincy TJ, Williams-Young DB, Caricato M, Elles CG. Accurate Assignments of Excited-State Resonance Raman Spectra: A Benchmark Study Combining Experiment and Theory. J Phys Chem A 2017; 121:7937-7946. [DOI: 10.1021/acs.jpca.7b09467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew S. Barclay
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy J. Quincy
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | | | - Marco Caricato
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G. Elles
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Qi DL, Duan HG, Sun ZR, Miller RJD, Thorwart M. Tracking an electronic wave packet in the vicinity of a conical intersection. J Chem Phys 2017; 147:074101. [DOI: 10.1063/1.4989462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Da-Long Qi
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zhen-Rong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
9
|
Dietze DR, Mathies RA. Femtosecond Stimulated Raman Spectroscopy. Chemphyschem 2016; 17:1224-51. [DOI: 10.1002/cphc.201600104] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel R. Dietze
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| | - Richard A. Mathies
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| |
Collapse
|
10
|
Rao BJ, Gelin MF, Domcke W. Resonant Femtosecond Stimulated Raman Spectra: Theory and Simulations. J Phys Chem A 2016; 120:3286-95. [DOI: 10.1021/acs.jpca.5b12316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. Jayachander Rao
- Departamento de Química,
and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
11
|
Agarwalla BK, Ando H, Dorfman KE, Mukamel S. Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy. J Chem Phys 2015; 142:024115. [PMID: 25591346 DOI: 10.1063/1.4905139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamics caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified.
Collapse
Affiliation(s)
| | - Hideo Ando
- Department of Chemistry, University of California, Irvine, California 92617, USA
| | - Konstantin E Dorfman
- Department of Chemistry, University of California, Irvine, California 92617, USA
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92617, USA
| |
Collapse
|