• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624939)   Today's Articles (5659)   Subscriber (49436)
For: Michalis VK, Costandy J, Tsimpanogiannis IN, Stubos AK, Economou IG. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology. J Chem Phys 2015;142:044501. [DOI: 10.1063/1.4905572] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Tanaka H, Matsumoto M, Yagasaki T, Takeuchi M, Mori Y, Kono T. Stability mechanism of crystalline CO2 and Xe. J Chem Phys 2024;161:084501. [PMID: 39177089 DOI: 10.1063/5.0223879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]  Open
2
Torrejón MJ, Algaba J, Blas FJ. Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation. II. Effect of multiple occupancy. J Chem Phys 2024;161:054712. [PMID: 39092957 DOI: 10.1063/5.0220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]  Open
3
Liu L, Guan D, Lu Y, Sun M, Liu Y, Zhao J, Yang L. A Molecular Dynamics Study on Xe/Kr Separation Mechanisms Using Crystal Growth Method. ACS OMEGA 2024;9:25822-25831. [PMID: 38911791 PMCID: PMC11191100 DOI: 10.1021/acsomega.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
4
Blazquez S, Algaba J, Míguez JM, Vega C, Blas FJ, Conde MM. Three-phase equilibria of hydrates from computer simulation. I. Finite-size effects in the methane hydrate. J Chem Phys 2024;160:164721. [PMID: 38686998 DOI: 10.1063/5.0201295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]  Open
5
Algaba J, Blazquez S, Míguez JM, Conde MM, Blas FJ. Three-phase equilibria of hydrates from computer simulation. III. Effect of dispersive interactions in the methane and carbon dioxide hydrates. J Chem Phys 2024;160:164723. [PMID: 38686999 DOI: 10.1063/5.0201309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]  Open
6
Fernández-Fernández ÁM, Bárcena Á, Conde MM, Pérez-Sánchez G, Pérez-Rodríguez M, Piñeiro MM. Modeling oceanic sedimentary methane hydrate growth through molecular dynamics simulation. J Chem Phys 2024;160:144107. [PMID: 38591679 DOI: 10.1063/5.0203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024]  Open
7
Cao P, Wu J, Ning F. Mechanical properties of amorphous CO2 hydrates: insights from molecular simulations. Phys Chem Chem Phys 2024;26:9388-9398. [PMID: 38444360 DOI: 10.1039/d4cp00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
8
Li K, Chen B, Yang M, Song Y, Sum AK. Methane hydrate phase equilibrium considering dissolved methane concentrations and interfacial geometries from molecular simulations. J Chem Phys 2023;159:244505. [PMID: 38153154 DOI: 10.1063/5.0174705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]  Open
9
Hao X, Li C, Meng Q, Sun J, Huang L, Bu Q, Li C. Molecular Dynamics Simulation of the Three-Phase Equilibrium Line of CO2 Hydrate with OPC Water Model. ACS OMEGA 2023;8:39847-39854. [PMID: 37901483 PMCID: PMC10601413 DOI: 10.1021/acsomega.3c05673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
10
Algaba J, Zerón IM, Míguez JM, Grabowska J, Blazquez S, Sanz E, Vega C, Blas FJ. Solubility of carbon dioxide in water: Some useful results for hydrate nucleation. J Chem Phys 2023;158:2889490. [PMID: 37158326 DOI: 10.1063/5.0146618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]  Open
11
Grabowska J, Blazquez S, Sanz E, Zerón IM, Algaba J, Míguez JM, Blas FJ, Vega C. Solubility of Methane in Water: Some Useful Results for Hydrate Nucleation. J Phys Chem B 2022;126:8553-8570. [PMID: 36222501 PMCID: PMC9623592 DOI: 10.1021/acs.jpcb.2c04867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Indexed: 11/30/2022]
12
Michalis VK, Economou IG, Stubos AK, Tsimpanogiannis IN. Phase equilibria molecular simulations of hydrogen hydrates via the direct phase coexistence approach. J Chem Phys 2022;157:154501. [PMID: 36272800 DOI: 10.1063/5.0108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
13
Fernández-Fernández ÁM, Conde MM, Pérez-Sánchez G, Pérez-Rodríguez M, Piñeiro MM. Molecular simulation of methane hydrate growth confined into a silica pore. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
14
Mohr S, Pétuya R, Sarria J, Purkayastha N, Bodnar S, Wylde J, Tsimpanogiannis IN. Assessing the effect of a liquid water layer on the adsorption of hydrate anti-agglomerants using molecular simulations. J Chem Phys 2022;157:094703. [DOI: 10.1063/5.0100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
15
Hao X, Li C, Liu C, Meng Q, Sun J. The performance of OPC water model in prediction of the phase equilibria of methane hydrate. J Chem Phys 2022;157:014504. [DOI: 10.1063/5.0093659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
16
Yu Z, Li J, Zhang X. A new hypothesis for cavitation nucleation in gas saturated solutions: clustering of gas molecules lowers significantly the surface tension. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
17
Molecular insights into the heterogeneous crystal growth of tetrahydrofuran hydrate: Kinetic and interfacial properties. J Mol Graph Model 2022;115:108205. [DOI: 10.1016/j.jmgm.2022.108205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022]
18
Mileo PGM, Rogge SMJ, Houlleberghs M, Breynaert E, Martens JA, Van Speybroeck V. Interfacial study of clathrates confined in reversed silica pores. JOURNAL OF MATERIALS CHEMISTRY. A 2021;9:21835-21844. [PMID: 34707871 PMCID: PMC8491980 DOI: 10.1039/d1ta03105h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/22/2021] [Indexed: 05/08/2023]
19
Fernández-Fernández ÁM, Pérez-Rodríguez M, Piñeiro MM. Molecular dynamics of fluoromethane type I hydrates. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
20
Cao P. Molecular Origins of Deformation in Amorphous Methane Hydrates. J Phys Chem B 2021;125:9811-9823. [PMID: 34420306 DOI: 10.1021/acs.jpcb.1c03777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Tsimpanogiannis IN. A novel hybrid method for the calculation of methane hydrate-water interfacial tension along the three-phase (hydrate-liquid water-vapor) equilibrium line. J Chem Phys 2021;155:024702. [PMID: 34266278 DOI: 10.1063/5.0051383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
22
Guo Q, Hu W, Zhang Y, Zhang K, Dong B, Qin Y, Li W. Molecular dynamics simulation of the interfacial properties of methane-water and methane-brine systems. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1929969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
23
Cruz FJAL, Mota JPB. Structure and thermodynamics of empty clathrate hydrates below the freezing point of water. Phys Chem Chem Phys 2021;23:16033-16043. [PMID: 34286770 DOI: 10.1039/d1cp00893e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Mohr S, Pétuya R, Wylde J, Sarria J, Purkayastha N, Ward Z, Bodnar S, Tsimpanogiannis IN. Size dependence of the dissociation process of spherical hydrate particles via microsecond molecular dynamics simulations. Phys Chem Chem Phys 2021;23:11180-11185. [DOI: 10.1039/d1cp01223a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
25
Tsimpanogiannis IN, Michalis VK, Economou IG. Novel methodology for the calculation of the enthalpy of enclathration of methane hydrates using molecular dynamics simulations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1711976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
26
Yu KB, Yazaydin AO. Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020;124:11015-11022. [PMID: 32582402 PMCID: PMC7304911 DOI: 10.1021/acs.jpcc.0c02246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Indexed: 05/23/2023]
27
Tsimpanogiannis IN, Lichtner PC. Methane dissolution inside bulk or porous-medium-confined water at near-hydrate equilibrium conditions. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1699186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
28
Fernández-Fernández A, Pérez-Rodríguez M, Comesaña A, Piñeiro M. Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from Molecular Dynamics simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
29
Choudhary N, Chakrabarty S, Roy S, Kumar R. A comparison of different water models for melting point calculation of methane hydrate using molecular dynamics simulations. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
30
Qiu N, Bai X, Sun N, Yu X, Yang L, Li Y, Yang M, Huang Q, Du S. Grand Canonical Monte Carlo Simulations on Phase Equilibria of Methane, Carbon Dioxide, and Their Mixture Hydrates. J Phys Chem B 2018;122:9724-9737. [PMID: 30278135 DOI: 10.1021/acs.jpcb.8b04551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Sicard F, Bui T, Monteiro D, Lan Q, Ceglio M, Burress C, Striolo A. Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018;34:9701-9710. [PMID: 30058809 DOI: 10.1021/acs.langmuir.8b01366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
32
Bui T, Sicard F, Monteiro D, Lan Q, Ceglio M, Burress C, Striolo A. Antiagglomerants Affect Gas Hydrate Growth. J Phys Chem Lett 2018;9:3491-3496. [PMID: 29870264 DOI: 10.1021/acs.jpclett.8b01180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
33
Tsimpanogiannis IN, Costandy J, Kastanidis P, El Meragawi S, Michalis VK, Papadimitriou NI, Karozis SN, Diamantonis NI, Moultos OA, Romanos GE, Stubos AK, Economou IG. Using clathrate hydrates for gas storage and gas-mixture separations: experimental and computational studies at multiple length scales. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1471224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
34
Yuhara D, Brumby PE, Wu DT, Sum AK, Yasuoka K. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations. J Chem Phys 2018;148:184501. [DOI: 10.1063/1.5016609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
35
Yagasaki T, Matsumoto M, Tanaka H. Adsorption of Kinetic Hydrate Inhibitors on Growing Surfaces: A Molecular Dynamics Study. J Phys Chem B 2018;122:3396-3406. [PMID: 29278335 DOI: 10.1021/acs.jpcb.7b10356] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
36
Tsimpanogiannis IN, Economou IG. Monte Carlo simulation studies of clathrate hydrates: A review. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
37
Luis DP, Romero-Ramirez IE, González-Calderón A, López-Lemus J. The coexistence temperature of hydrogen clathrates: A molecular dynamics study. J Chem Phys 2018;148:114503. [DOI: 10.1063/1.5017854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
38
Papadimitriou NI, Tsimpanogiannis IN, Economou IG, Stubos AK. Monte Carlo simulations of the separation of a binary gas mixture (CH4 + CO2) using hydrates. Phys Chem Chem Phys 2018;20:28026-28038. [DOI: 10.1039/c8cp02050g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
39
Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study. ENERGIES 2017. [DOI: 10.3390/en11010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
40
Jin D, Coasne B. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017;33:11217-11230. [PMID: 28793774 DOI: 10.1021/acs.langmuir.7b02238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
41
13 The Role of Molecular Thermodynamics in Developing Industrial Processes and Novel Products That Meet the Needs for a Sustainable Future. ACTA ACUST UNITED AC 2017. [DOI: 10.1201/9781315153209-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
42
Waage MH, Vlugt TJH, Kjelstrup S. Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations. J Phys Chem B 2017;121:7336-7350. [DOI: 10.1021/acs.jpcb.7b03071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
43
Papadimitriou NI, Tsimpanogiannis IN, Economou IG, Stubos AK. Storage of H2 in Clathrate Hydrates: Evaluation of Different Force-Fields used in Monte Carlo Simulations. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1277590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
44
Zhang Z, Guo GJ. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study. Phys Chem Chem Phys 2017;19:19496-19505. [DOI: 10.1039/c7cp03649c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
45
Costandy J, Michalis VK, Tsimpanogiannis IN, Stubos AK, Economou IG. Molecular dynamics simulations of pure methane and carbon dioxide hydrates: lattice constants and derivative properties. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1241442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
46
Espinosa JR, Young JM, Jiang H, Gupta D, Vega C, Sanz E, Debenedetti PG, Panagiotopoulos AZ. On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures. J Chem Phys 2016;145:154111. [DOI: 10.1063/1.4964725] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
47
Striolo A. Interfacial water studies and their relevance for the energy sector. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1237685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
48
Benavides AL, Aragones JL, Vega C. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route. J Chem Phys 2016;144:124504. [PMID: 27036458 DOI: 10.1063/1.4943780] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
49
Papadimitriou NI, Tsimpanogiannis IN, Economou IG, Stubos AK. The effect of lattice constant on the storage capacity of hydrogen hydrates: a Monte Carlo study. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1202456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
50
Zhang Z, Liu CJ, Walsh MR, Guo GJ. Effects of ensembles on methane hydrate nucleation kinetics. Phys Chem Chem Phys 2016;18:15602-8. [PMID: 27222203 DOI: 10.1039/c6cp02171a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA