1
|
Trébosc J, Lafon O, Amoureux JP. High-resolution indirect detection of spin-3/2 quadrupolar nuclei in solids using multiple-quantum-filtered through-space D-HMQC experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101971. [PMID: 39357421 DOI: 10.1016/j.ssnmr.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Through-space heteronuclear correlation experiments under magic-angle spinning (MAS) conditions can provide unique insights into inter-atomic proximities. In particular, it has been shown that experiments based on two consecutive coherence transfers, 1H → I → 1H, like D-HMQC (dipolar-mediated heteronuclear multiple-quantum correlation), are usually more sensitive for the indirect detection via protons of spin-3/2 quadrupolar nuclei with low gyromagnetic ratio. Nevertheless, the resolution is often decreased by the second-order quadrupolar broadening along the indirect dimension. To circumvent this issue, we incorporate an MQMAS (multiple-quantum MAS) quadrupolar filter into the t1 evolution period of the D-HMQC sequence, which results in a novel pulse sequence called D-HMQC-MQ. The triple-quantum coherences evolving during this filter are excited and reconverted using cosine-modulated long-pulses synchronized with the sample rotation to avoid spinning sidebands in the indirect dimension. The desired coherence transfer pathways during this sequence are selected using two nested cogwheel phase cycles with 56 steps. This high-resolution heteronuclear correlation technique is demonstrated experimentally for the indirect detection via 1H of spin-3/2 isotopes, such as 11B, 23Na and 35Cl, in zinc borate hydrate, NaH2PO4 and l-histidine hydrochloride, respectively. We show that this experiment can be applied at high magnetic fields up to 28.2 T for protons subject to chemical shift anisotropies larger than 20 ppm, provided the MAS frequency is sufficiently stable since the D-HMQC-MQ experiment, like the parent D-HMQC, is sensitive to MAS fluctuations, which can produce t1-noise.
Collapse
Affiliation(s)
- Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, FR 2638, Federation Chevreul, F-59000, Lille, France.
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS- Unité de Catalyse et de Chimie Du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS- Unité de Catalyse et de Chimie Du Solide, F-59000, Lille, France.
| |
Collapse
|
2
|
Zheng M, Chu Y, Wang Q, Wang Y, Xu J, Deng F. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:1-41. [PMID: 38705634 DOI: 10.1016/j.pnmrs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Mingji Zheng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongxiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
3
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202207400. [DOI: 10.1002/anie.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Hu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Chao Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Yueying Chu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Qiang Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Shenhui Li
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Jun Xu
- wuhan institute of physics and mathematics state key laboratory of magnetic resonance and atomic and molecular physics West No.30 Xiao Hong Shan 430071 Wuhan CHINA
| | - Feng Deng
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| |
Collapse
|
5
|
Perras FA, Goh TW, Huang W. t 1-noise elimination by continuous chemical shift anisotropy refocusing. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101807. [PMID: 35709566 DOI: 10.1016/j.ssnmr.2022.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.
Collapse
Affiliation(s)
| | - Tian Wei Goh
- US DOE, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Wenyu Huang
- US DOE, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
6
|
Nagashima H, Trébosc J, Kon Y, Lafon O, Amoureux JP. Efficient transfer of DNP-enhanced 1 H magnetization to half-integer quadrupolar nuclei in solids at moderate spinning rate. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:920-939. [PMID: 33300128 DOI: 10.1002/mrc.5121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
We show herein how the proton magnetization enhanced by dynamic nuclear polarization (DNP) can be efficiently transferred at moderate magic-angle spinning (MAS) frequencies to half-integer quadrupolar nuclei, S ≥ 3/2, using the Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (D-RINEPT) technique, in which a symmetry-based SR 4 1 2 recoupling scheme built from adiabatic inversion 1 H pulses reintroduces the 1 H-S dipolar couplings, while suppressing the 1 H-1 H ones. The use of adiabatic pulses also improves the robustness to offsets and radiofrequency (rf)-field inhomogeneity. Furthermore, the efficiency of the polarization transfer is further improved by using 1 H composite pulses and continuous-wave irradiations between the recoupling blocks, as well as by manipulating the S satellite transitions during the first recoupling block. Furthermore, in the case of large 1 H-S dipolar couplings, the D-RINEPT variant with two pulses on the quadrupolar channel results in an improved transfer efficiency. We compare here the performances of this new adiabatic scheme with those of its parent version with single π pulses, as well as with those of PRESTO and CPMAS transfers. This comparison is performed using simulations as well as DNP-enhanced 27 Al, 95 Mo, and 17 O NMR experiments on isotopically unmodified γ-alumina, hydrated titania-supported MoO3 , Mg(OH)2 , and l-histidine·HCl·H2 O. The introduced RINEPT method outperforms the existing methods, both in terms of efficiency and robustness to rf-field inhomogeneity and offset.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, France
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Institut Universitaire de France, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Bruker BioSpin, Wissembourg, France
- NMR Science and Development Division, Riken, Yokohama, Japan
| |
Collapse
|
7
|
Zheng M, Xin S, Wang Q, Trébosc J, Xu J, Qi G, Feng N, Lafon O, Deng F. Through-space 11 B- 27 Al correlation: Influence of the recoupling channel. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1062-1076. [PMID: 33847409 DOI: 10.1002/mrc.5163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Through-space heteronuclear correlation (D-HETCOR) experiments based on heteronuclear multiple-quantum correlation (D-HMQC) and refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) sequences have been proven to be useful approaches for the detection of the spatial proximity between half-integer quadrupolar nuclei in solids under magic-angle spinning (MAS) conditions. The corresponding pulse sequences employ coherence transfers mediated by heteronuclear dipolar interactions, which are reintroduced under MAS by radiofrequency irradiation of only one of the two correlated nuclei. We investigate herein using numerical simulations of spin dynamics and solid-state NMR experiments on magnesium aluminoborate glass how the choice of the channel to which the heteronuclear dipolar recoupling is applied affects the transfer efficiency of D-HMQC and D-RINEPT sequences between 11 B and 27 Al nuclei. Experimental results show that maximum transfer efficiency is achieved when the recoupling scheme is applied to the channel, for which the spin magnetization is parallel to the B0 axis in average.
Collapse
Affiliation(s)
- Mingji Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohui Xin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wanhua Chemical Group Co., Ltd, Yantai, China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Julien Trébosc
- Unité de Catalyse et de Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
- Institut Michel-Eugène Chevreul (IMEC),Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC, Lille, F-59000, France
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Guodong Qi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Olivier Lafon
- Unité de Catalyse et de Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Lille, F-59000, France
- Institut Universitaire de France, Paris, 75231, France
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
8
|
Iuga D, Corlett EK, Brown SP. 35 Cl- 1 H Heteronuclear correlation magic-angle spinning nuclear magnetic resonance experiments for probing pharmaceutical salts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1089-1100. [PMID: 34196042 DOI: 10.1002/mrc.5188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Heteronuclear multiple-quantum coherence (HMQC) pulse sequences for establishing heteronuclear correlation in solid-state nuclear magnetic resonance (NMR) between 35 Cl and 1 H nuclei in chloride salts under fast (60 kHz) magic-angle spinning (MAS) and at high magnetic field (a 1 H Larmor frequency of 850 MHz) are investigated. Specifically, recoupling of the 35 Cl-1 H dipolar interaction using rotary resonance recoupling with phase inversion every rotor period or the symmetry-based SR42 1 pulse sequences are compared. In our implementation of the population transfer (PT) dipolar (D) HMQC experiment, the satellite transitions of the 35 Cl nuclei are saturated with an off-resonance WURST sweep, at a low nutation frequency, over the second spinning sideband, whereby the WURST pulse must be of the same duration as the recoupling time. Numerical simulations of the 35 Cl-1 H MAS D-HMQC experiment performed separately for each crystallite orientation in a powder provide insight into the orientation dependence of changes in the second-order quadrupolar-broadened 35 Cl MAS NMR lineshape under the application of dipolar recoupling. Two-dimensional 35 Cl-1 H PT-D-HMQC MAS NMR spectra are presented for the amino acids glycine·HCl and l-tyrosine·HCl and the pharmaceuticals cimetidine·HCl, amitriptyline·HCl and lidocaine·HCl·H2 O. Experimentally observed 35 Cl lineshapes are compared with those simulated for 35 Cl chemical shift and quadrupolar parameters as calculated using the gauge-including projector-augmented wave (GIPAW) method: the calculated quadrupolar product (PQ ) values exceed those measured experimentally by a factor of between 1.3 and 1.9.
Collapse
Affiliation(s)
- Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Venkatesh A, Perras FA, Rossini AJ. Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106983. [PMID: 33964731 DOI: 10.1016/j.jmr.2021.106983] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Constant-time (CT) dipolar heteronuclear multiple quantum coherence (D-HMQC) has previously been demonstrated as a method for proton detection of high-resolution wideline NMR spectra of spin-1/2 nuclei with large chemical shift anisotropy (CSA). However, 1H transverse relaxation and t1-noise often reduce the sensitivity of D-HMQC experiments, preventing the theoretical gains in sensitivity provided by 1H detection from being realized. Here we demonstrate a series of improved pulse sequences for 1H detection of spin-1/2 nuclei under fast MAS, with 195Pt SSNMR experiments on cisplatin as an example. First, a t1-incrementation protocol for D-HMQC dubbed Arbitrary Indirect Dwell (AID) is demonstrated. AID allows the use of arbitrary, rotor asynchronous t1-increments, but removes the constant time period from CT D-HMQC, resulting in improved sensitivity by reducing transverse relaxation losses. Next, we show that short high-power adiabatic pulses (SHAPs), which efficiently invert broad MAS sideband manifolds, can be effectively incorporated into 1H detected symmetry-based resonance echo double resonance (S-REDOR) and t1-noise eliminated (TONE) D-HMQC experiments. The S-REDOR experiments with SHAPs provide approximately double the dipolar dephasing, as compared to experiments with rectangular inversion pulses. We lastly show that sensitivity and resolution can be further enhanced with the use of swept excitation pulses as well as adiabatic magic angle turning (aMAT).
Collapse
Affiliation(s)
- Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | | | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Venkatesh A, Luan X, Perras FA, Hung I, Huang W, Rossini AJ. t1-Noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy. Phys Chem Chem Phys 2020; 22:20815-20828. [DOI: 10.1039/d0cp03511d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
t1-Noise eliminated (TONE) heteronuclear multiple quantum correlation (HMQC) solid-state nuclear magnetic resonance pulse sequences improve the sensitivity of 2D 1H{X} heteronuclear correlation experiments with X = 17O, 25Mg, 27Al and 35Cl.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Xuechen Luan
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | | | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL)
- Tallahassee
- USA
| | - Wenyu Huang
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Aaron J. Rossini
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| |
Collapse
|
11
|
Xin S, Wang Q, Xu J, Chu Y, Wang P, Feng N, Qi G, Trébosc J, Lafon O, Fan W, Deng F. The acidic nature of "NMR-invisible" tri-coordinated framework aluminum species in zeolites. Chem Sci 2019; 10:10159-10169. [PMID: 32055370 PMCID: PMC6979346 DOI: 10.1039/c9sc02634g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023] Open
Abstract
The unambiguous characterization of different acid sites in zeolites is of great importance for understanding their catalytic performance and the rational design of highly efficient zeolite catalysts. In addition to various well-characterized extra-framework Al species, a tri-coordinated framework aluminum species can also serve as a Lewis acid site in zeolites, which is "NMR-invisible" owing to its extremely distorted local environment. Here we provide a feasible and reliable approach to elucidate the acidic nature of the tri-coordinated framework Al in dehydrated H-ZSM-5 zeolites via sensitivity-enhanced two-dimensional (2D) multiple nuclear correlation NMR experiments coupled with trimethylphosphine oxide (TMPO) probe molecules. Two types of tri-coordinated framework Al sites have been unambiguously identified, which amount to 11.6% of the total Brønsted and Lewis acid sites. Furthermore, it was found that synergistic effects arising from the close spatial proximity between the tri-coordinated framework Al site and the Brønsted acid site lead to the generation of superacidity (with an acid strength stronger than 100% H2SO4) in the zeolite.
Collapse
Affiliation(s)
- Shaohui Xin
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ; .,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry , Chinese Academy of Sciences , P.O. Box 165 , Taiyuan , Shanxi 030001 , P. R. China
| | - Ningdong Feng
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Guodong Qi
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Julien Trébosc
- Univ. Lille , CNRS , ENSCL , UMR 8181 , Unité de Catalyse et de Chimie du Solide , 59000 Lille , France
| | - Olivier Lafon
- Univ. Lille , CNRS , ENSCL , UMR 8181 , Unité de Catalyse et de Chimie du Solide , 59000 Lille , France.,Institut Universitaire de France , 75231 Paris , France
| | - Weibin Fan
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry , Chinese Academy of Sciences , P.O. Box 165 , Taiyuan , Shanxi 030001 , P. R. China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| |
Collapse
|
12
|
Gan Z. Perspectives on high-field and solid-state NMR methods of quadrupole nuclei. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:86-90. [PMID: 31358369 DOI: 10.1016/j.jmr.2019.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
High magnetic field can dramatically increase the spectral resolution and sensitivity of quadrupole nuclei S > 1/2 by the reduction of the second-order quadrupole broadening. A brief overview and outlook on spectral acquisition, the importance of high magnetic field, inter-nuclei distance measurement, various 2D separation and correlation methods of quadrupole nuclei are presented. The complications and consequences of spin dynamics under rf irradiation for the (2S + 1) level system and level-crossing with the satellite transition frequencies under magic-angle spinning are discussed. There is a scaling down of (S + 1/2) to the efficiency of many experiments in comparison with a spin-1/2 due to the fact that only two central transition spin states out of the (2S + 1) levels contribute to polarization transfer and spin correlation.
Collapse
Affiliation(s)
- Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
13
|
Perras FA, Pruski M. Reducing t 1 noise through rapid scanning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:31-34. [PMID: 30513456 DOI: 10.1016/j.jmr.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
The so-called t1 noise, which arises due to random instabilities in the spectrometer hardware, remains the primary source of noise that limits the sensitivity of most 2D NMR experiments, particularly in the expanding group of solid-state NMR methods that utilize dipolar-recoupling. In this communication we revisit the relationship between the signal intensity and the t1 noise produced. It is shown that since the latter scales linearly with the signal strength, the use of a conventional relaxation delay of 1.3T1 may prove far from optimal. In cases where the fluctuations occur on a shorter timescale than the recycle delay, a considerably faster repetition rate should be used to maximize the time sensitivity in a 2D experiment than what is used to maximize the sensitivity in 1D. This is demonstrated with the acquisition of 1H{13C} Dipolar-mediated Heteronuclear Multiple-Quantum Correlation (D-HMQC) type spectra in which the sensitivity could be nearly doubled by choosing a very short relaxation delay corresponding to 0.2T1.
Collapse
Affiliation(s)
| | - Marek Pruski
- US DOE, Ames Laboratory, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Wang Q, Trébosc J, Li Y, Lafon O, Xin S, Xu J, Hu B, Feng N, Amoureux JP, Deng F. Uniform signal enhancement in MAS NMR of half-integer quadrupolar nuclei using quadruple-frequency sweeps. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:92-103. [PMID: 29909082 DOI: 10.1016/j.jmr.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
We introduce two MAS schemes that allow manipulating the satellite-transition (ST) populations of half-integer quadrupolar nuclei, and which both exhibit improved robustness to the quadrupolar coupling constant (CQ). These schemes, called quadruple frequency sweep (QFS) or quadruple WURST (QWURST) are the sums of two DFS or four WURST to efficiently invert the ST populations of nuclei subject to large or small quadrupole interactions, simultaneously. These quadruple sweeps methods only require 6% more rf-power than the double sweeps ones. We demonstrate, both numerically and experimentally, that the QFS and QWURST schemes benefit from robustness to CQ and rf amplitude and offset and hence achieve uniform enhancement of the CT signal for 27Al nuclei subject to different quadrupole interactions. Although the version of QFS with repetitive accumulation can achieve higher enhancement in the S/N of the 27Al MAS spectrum, the final sensitivity gains mainly depend on the longitudinal relaxation time of different 27Al sites. We also confirm that these schemes provide an improved acceleration of the 31P-{27Al} coherence transfer in PT-J-HMQC experiments.
Collapse
Affiliation(s)
- Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Julien Trébosc
- Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France
| | - Yixuan Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China; Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 200062 Shanghai, China
| | - Oliver Lafon
- Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Institut Universitaire de France, 75231 Paris, France
| | - Shaohui Xin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 200062 Shanghai, China
| | - Ningdong Feng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS-8181, ENSCL, UCCS-Unit of Catalysis and Chemistry of Solids, 59000 Lille, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 200062 Shanghai, China; Bruker Biospin, 67166 Wissembourg, France.
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071 Wuhan, China.
| |
Collapse
|
15
|
Sheng N, Chu Y, Xin S, Wang Q, Liu X, Xu J, Xiao FS, Deng F. New insights into the di-n-propylamine (DPA) molecule as an organic structural directing agent (OSDA) in the crystallization of AlPO4-11 molecular sieve. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00346g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Di-n-propylamine (DPA) molecules induce the transformation from 4/6-MR chains to a 2D layered structure and then to 3D crystals of AlPO4-11 molecular sieves.
Collapse
Affiliation(s)
- Na Sheng
- Department of Chemistry
- Zhejiang University
- Hangzhou 310028
- China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Wuhan 430071
- China
| | - Shaohui Xin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Wuhan 430071
- China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Wuhan 430071
- China
| | - Xiaolong Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Wuhan 430071
- China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Wuhan 430071
- China
| | - Feng-Shou Xiao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310028
- China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Wuhan 430071
- China
| |
Collapse
|
16
|
Venkatesh A, Hanrahan MP, Rossini AJ. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:171-181. [PMID: 28392024 DOI: 10.1016/j.ssnmr.2017.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 05/09/2023]
Abstract
Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as 13C, 15N and 29Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the 1H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as 17O, 27Al, 35Cl and 71Ga is demonstrated.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Michael P Hanrahan
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Aaron J Rossini
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
17
|
Xin S, Wang Q, Xu J, Feng N, Li W, Deng F. Heteronuclear correlation experiments of 23Na- 27Al in rotating solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:103-110. [PMID: 28159456 DOI: 10.1016/j.ssnmr.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
We demonstrated that the heteronuclear correlation experiments between two quadrupolar nuclei, 23Na and 27Al, with close Larmor frequencies can be achieved via D-HMQC and D-RINEPT approaches by using a diplexer connected to a conventional probe in magic-angle-spinning solid-state NMR. Low-power heteronuclear dipolar recoupling schemes can be applied on 23Na or 27Al to establish polarization transfers between the central transitions of 23Na and 27Al for a model compound, NaAlO2. Further, we showed a practical implementation of the two dimensional 23Na-27Al dipolar-based heteronuclear correlation experiment on a heterogeneous catalyst, Na2CO3/γ-Al2O3. This allows to determine spatial proximities between different 23Na and 27Al sites, thus the surface Na species adjacent to octahedral-coordination Al can be clearly discriminated.
Collapse
Affiliation(s)
- Shaohui Xin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ningdong Feng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wenzheng Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
18
|
Wu G. Solid-State ¹⁷O NMR studies of organic and biological molecules: Recent advances and future directions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 73:1-14. [PMID: 26651417 DOI: 10.1016/j.ssnmr.2015.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 05/04/2023]
Abstract
This Trends article highlights the recent advances published between 2012 and 2015 in solid-state (17)O NMR for organic and biological molecules. New developments in the following areas are described: (1) new oxygen-containing functional groups, (2) metal organic frameworks, (3) pharmaceuticals, (4) probing molecular motion in organic solids, (5) dynamic nuclear polarization, and (6) paramagnetic coordination compounds. For each of these areas, the author offers his personal views on important problems to be solved and possible future directions.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
19
|
Perras FA. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2015-0801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional J-resolved-type experiments are then presented for the measurement of dipolar and J coupling, between spin-1/2 and quadrupolar nuclei as well as in pairs of quadrupolar nuclei. Select examples utilizing these techniques for the extraction of structural information are given. Techniques are then described that enable the fine refinement of crystalline structures using solely the electric field gradient tensor, measured using NMR, as a constraint. These approaches enable the solution of crystal structures, from polycrystalline compounds, that are of comparable quality to those solved using single-crystal diffraction.
Collapse
Affiliation(s)
- Frédéric A. Perras
- 1Ames Laboratory, Iowa State University, 211 Spedding Hall, Ames, IA 50011-3020, USA
| |
Collapse
|
20
|
Perras FA, Kobayashi T, Pruski M. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Phys Chem Chem Phys 2015; 17:22616-22. [DOI: 10.1039/c5cp04145g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show both experimentally and numerically that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under MAS, the PRESTO technique consistently outperforms the traditionally used CP method, affording more quantitative intensities, improved lineshapes, better sensitivity, and easier optimization.
Collapse
Affiliation(s)
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Ames
- USA
- Department of Chemistry
- Iowa State University
| |
Collapse
|