1
|
Mou X, Liu K, He L, Li S. Mechanical response of double-stranded DNA: Bend, twist, and overwind. J Chem Phys 2024; 161:085102. [PMID: 39177087 DOI: 10.1063/5.0216585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
We employed all-atom molecular dynamics simulations to explore the mechanical response of bending, twisting, and overwinding for double-stranded DNA (dsDNA). We analyzed the bending and twisting deformations, as well as their stiffnesses, using the tilt, roll, and twist modes under stretching force. Findings indicate that the roll and twist angles vary linearly with the stretching force but show opposite trends. The tilt, roll, and twist elastic moduli are considered constants, while the coupling between roll and twist modes slightly decreases under stretching force. The effect of the stretching force on the roll and twist modes, including both their deformations and elasticities, exhibits sequence-dependence, with symmetry around the base pair step. Furthermore, we examined the overwinding path and mechanism of dsDNA from the perspective of the stiffness matrix, based on the tilt, roll, and twist modes. The correlations among tilt, roll, and twist angles imply an alternative overwinding pathway via twist-roll coupling when dsDNA is stretched, wherein entropic contribution prevails.
Collapse
Affiliation(s)
- Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Kai Liu
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
2
|
Zheng CC, Chen YL, Dong HL, Zhang XH, Tan ZJ. Effect of ethanol on the elasticities of double-stranded RNA and DNA revealed by magnetic tweezers and simulations. J Chem Phys 2024; 161:075101. [PMID: 39145565 DOI: 10.1063/5.0211869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
The elasticities of double-stranded (ds) DNA and RNA, which are critical to their biological functions and applications in materials science, can be significantly modulated by solution conditions such as ions and temperature. However, there is still a lack of a comprehensive understanding of the role of solvents in the elasticities of dsRNA and dsDNA in a comparative way. In this work, we explored the effect of ethanol solvent on the elasticities of dsRNA and dsDNA by magnetic tweezers and all-atom molecular dynamics simulations. We found that the bending persistence lengths and contour lengths of dsRNA and dsDNA decrease monotonically with the increase in ethanol concentration. Furthermore, the addition of ethanol weakens the positive twist-stretch coupling of dsRNA, while promotes the negative twist-stretch coupling of dsDNA. Counter-intuitively, the lower dielectric environment of ethanol causes a significant re-distribution of counterions and enhanced ion neutralization, which overwhelms the enhanced repulsion along dsRNA/dsDNA, ultimately leading to the softening in bending for dsRNA and dsDNA. Moreover, for dsRNA, ethanol causes slight ion-clamping across the major groove, which weakens the major groove-mediated twist-stretch coupling, while for dsDNA, ethanol promotes the stretch-radius correlation due to enhanced ion binding and consequently enhances the helical radius-mediated twist-stretch coupling.
Collapse
Affiliation(s)
- Chen-Chen Zheng
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Long Chen
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Wang X, Huang T, Li L, Xu Y. Effect of temperature on anisotropic bending elasticity of dsRNA: an all-atom molecular dynamics simulation. RSC Adv 2024; 14:17170-17177. [PMID: 38808231 PMCID: PMC11130765 DOI: 10.1039/d4ra02354d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Employing all-atom molecular dynamics simulations, we examined the temperature-dependent behavior of bending elasticity in double-stranded RNA (dsRNA). Specifically, we focused on the bending persistence length and its constituent components, namely, the tilt and roll stiffness. Our results revealed a near-linear decrease in these stiffness components as a function of temperature, thereby highlighting the increased flexibility of dsRNA at elevated temperatures. Furthermore, our data revealed a significant anisotropy in dsRNA bending elasticity, which diminished with increasing temperature, attributable to marked disparities in tilt and roll stiffness components. We delineated the underlying biophysical mechanisms and corroborated our findings with extant literature. These observations offer salient implications for advancing our understanding of nucleic acid elasticity, and are pertinent to potential medical applications.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Sino-German Engineering, Shanghai Technical Institute of Electronics and Information Shanghai 201411 China
| | - Tingting Huang
- School of Sino-German Engineering, Shanghai Technical Institute of Electronics and Information Shanghai 201411 China
| | - Liyun Li
- Department of Physics, Wenzhou University Wenzhou 325035 China
| | - Yanliang Xu
- School of Sino-German Engineering, Shanghai Technical Institute of Electronics and Information Shanghai 201411 China
| |
Collapse
|
4
|
Zhang Z, Mou X, Zhang Y, He L, Li S. Influence of temperature on bend, twist and twist-bend coupling of dsDNA. Phys Chem Chem Phys 2024; 26:8077-8088. [PMID: 38224130 DOI: 10.1039/d3cp04932a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The temperature-dependent bend and twist elasticities of dsDNA, as well as their couplings, were explored through all-atom molecular dynamics simulations. Three rotational parameters, tilt, roll, and twist, were employed to assess the bend and twist elasticities through their stiffness matrix. Our analysis indicates that the bend and twist stiffnesses decrease as the temperature rises, primarily owing to entropic influences stemming from thermodynamic fluctuations. Furthermore, the couplings between these rotational parameters also exhibit a decline with increasing temperature, although the roll-twist coupling displays greater strength than the tilt-roll and tilt-twist couplings, attributed to its more robust correction component. We elucidated the influence of temperature on bend and twist elasticities based on the comparisons between various models and existing data.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Abdelhady H, Aleanizy F, Alqahtani F, Bukhari A, Soliman S, Sau S, Iyer A. Visualizing the 4D Impact of Gold Nanoparticles on DNA. Int J Mol Sci 2023; 25:542. [PMID: 38203711 PMCID: PMC10778996 DOI: 10.3390/ijms25010542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The genotoxicity of AuNPs has sparked a scientific debate, with one perspective attributing it to direct DNA damage and another to oxidative damage through reactive oxygen species (ROS) activation. This controversy poses challenges for the widespread use of AuNPs in biomedical applications. To address this debate, we employed four-dimensional atomic force microscopy (4DAFM) to examine the ability of AuNPs to damage DNA in vitro in the absence of ROS. To further examine whether the size and chemical coupling of these AuNPs are properties that control their toxicity, we exposed individual DNA molecules to three different types of AuNPs: small (average diameter = 10 nm), large (average diameter = 22 nm), and large conjugated (average diameter = 39 nm) AuNPs. We found that all types of AuNPs caused rapid (within minutes) and direct damage to the DNA molecules without the involvement of ROS. This research holds significant promise for advancing nanomedicines in diverse areas like viral therapy (including COVID-19), cancer treatment, and biosensor development for detecting DNA damage or mutations by resolving the ongoing debate regarding the genotoxicity mechanism. Moreover, it actively contributes to the continuous endeavors aimed at fully harnessing the capabilities of AuNPs across diverse biomedical fields, promising transformative healthcare solutions.
Collapse
Affiliation(s)
- Hosam Abdelhady
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Fadilah Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fulwah Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Bukhari
- College of Medicine, Taibah University, Medina 41477, Saudi Arabia
| | - Sahar Soliman
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Samaresh Sau
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Wang Y, Wang H, Zhang S, Yang Z, Shi X, Zhang L. Exploration of the Character Representation of DNA Chiral Conformations and Deformations via a Curved Surface Discrete Frenet Frame. Int J Mol Sci 2023; 25:4. [PMID: 38203177 PMCID: PMC10778681 DOI: 10.3390/ijms25010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
While undergoing structural deformation, DNA experiences changes in the interactions between its internal base pairs, presenting challenges to conventional elastic methods. To address this, we propose the Discrete Critical State (DCS) model in this paper. This model combines surface discrete frame theory with gauge theory and Landau phase transition theory to investigate DNA's structural deformation, phase transitions, and chirality. Notably, the DCS model considers both the internal interactions within DNA and formulates an overall equation using unified physical and geometric parameters. By employing the discrete frame, we derive the evolution of physical quantities along the helical axis of DNA, including geodesic curvature, geodesic torsion, and others. Our findings indicate that B-DNA has a significantly lower free energy density compared to Z-DNA, which is in agreement with experimental observations. This research reveals that the direction of base pairs is primarily governed by the geodesic curve within the helical plane, aligning closely with the orientation of the base pairs. Moreover, the geodesic curve has a profound influence on the arrangement of base pairs at the microscopic level and effectively regulates the configuration and geometry of DNA through macroscopic-level free energy considerations.
Collapse
Affiliation(s)
- Ying Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (H.W.); (S.Z.); (Z.Y.)
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (H.W.); (S.Z.); (Z.Y.)
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (H.W.); (S.Z.); (Z.Y.)
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (H.W.); (S.Z.); (Z.Y.)
| | - Xuguang Shi
- College of Science, Beijing Forestry University, Beijing 100083, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (H.W.); (S.Z.); (Z.Y.)
| |
Collapse
|
7
|
Zoli M. Twist-stretch relations in nucleic acids. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:641-650. [PMID: 37357224 DOI: 10.1007/s00249-023-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Nucleic acids are highly deformable helical molecules constantly stretched, twisted and bent in their biological functioning. Single molecule experiments have shown that double stranded (ds)-RNA and standard ds-DNA have opposite twist-stretch patterns and stretching properties when overwound under a constant applied load. The key structural features of the A-form RNA and B-form DNA helices are here incorporated in a three-dimensional mesoscopic Hamiltonian model which accounts for the radial, bending and twisting fluctuations of the base pairs. Using path integral techniques which sum over the ensemble of the base pair fluctuations, I compute the average helical repeat of the molecules as a function of the load. The obtained twist-stretch relations and stretching properties, for short A- and B-helical fragments, are consistent with the opposite behaviors observed in kilo-base long molecules.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
8
|
Erban R, Togashi Y. Asymmetric Periodic Boundary Conditions for All-Atom Molecular Dynamics and Coarse-Grained Simulations of Nucleic Acids. J Phys Chem B 2023; 127:8257-8267. [PMID: 37713594 PMCID: PMC10544013 DOI: 10.1021/acs.jpcb.3c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Periodic boundary conditions are commonly applied in molecular dynamics simulations in the microcanonical (NVE), canonical (NVT), and isothermal-isobaric (NpT) ensembles. In their simplest application, a biological system of interest is placed in the middle of a solvation box, which is chosen 'sufficiently large' to minimize any numerical artifacts associated with the periodic boundary conditions. This practical approach brings limitations to the size of biological systems that can be simulated. Here, we study simulations of effectively infinitely long nucleic acids, which are solvated in the directions perpendicular to the polymer chain, while periodic boundary conditions are also applied along the polymer chain. We study the effects of these asymmetric periodic boundary conditions (APBC) on the simulated results, including the mechanical properties of biopolymers and the properties of the surrounding solvent. To get some further insights into the advantages of using the APBC, a coarse-grained worm-like chain model is first studied, illustrating how the persistence length can be extracted from the local properties of the polymer chain, which are less affected by the APBC than some global averages. This is followed by all-atom molecular dynamics simulations of DNA in ionic solutions, where we use the APBC to investigate sequence-dependent properties of DNA molecules and properties of the surrounding solvent.
Collapse
Affiliation(s)
- Radek Erban
- Mathematical
Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock
Road, Oxford OX2 6GG, U.K.
| | - Yuichi Togashi
- Department
of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
- RIKEN
Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
9
|
Chen YT, Yang H, Chu JW. Mechanical codes of chemical-scale specificity in DNA motifs. Chem Sci 2023; 14:10155-10166. [PMID: 37772098 PMCID: PMC10529945 DOI: 10.1039/d3sc01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
In gene transcription, certain sequences of double-stranded (ds)DNA play a vital role in nucleosome positioning and expression initiation. That dsDNA is deformed to various extents in these processes leads us to ask: Could the genomic DNA also have sequence specificity in its chemical-scale mechanical properties? We approach this question using statistical machine learning to determine the rigidity between DNA chemical moieties. What emerges for the polyA, polyG, TpA, and CpG sequences studied here is a unique trigram that contains the quantitative mechanical strengths between bases and along the backbone. In a way, such a sequence-dependent trigram could be viewed as a DNA mechanical code. Interestingly, we discover a compensatory competition between the axial base-stacking interaction and the transverse base-pairing interaction, and such a reciprocal relationship constitutes the most discriminating feature of the mechanical code. Our results also provide chemical-scale understanding for experimental observables. For example, the long polyA persistence length is shown to have strong base stacking while its complement (polyAc) exhibits high backbone rigidity. The mechanical code concept enables a direct reading of the physical interactions encoded in the sequence which, with further development, is expected to shed new light on DNA allostery and DNA-binding drugs.
Collapse
Affiliation(s)
- Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| |
Collapse
|
10
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
11
|
Zhang Y, He L, Li S. Temperature dependence of DNA elasticity: An all-atom molecular dynamics simulation study. J Chem Phys 2023; 158:094902. [PMID: 36889965 DOI: 10.1063/5.0138940] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We used all-atom molecular dynamics simulation to investigate the elastic properties of double-stranded DNA (dsDNA). We focused on the influences of temperature on the stretch, bend, and twist elasticities, as well as the twist-stretch coupling, of the dsDNA over a wide range of temperature. The results showed that the bending and twist persistence lengths, together with the stretch and twist moduli, decrease linearly with temperature. However, the twist-stretch coupling behaves in a positive correction and enhances as the temperature increases. The potential mechanisms of how temperature affects dsDNA elasticity and coupling were investigated by using the trajectories from atomistic simulation, in which thermal fluctuations in structural parameters were analyzed in detail. We analyzed the simulation results by comparing them with previous simulation and experimental data, which are in good agreement. The prediction about the temperature dependence of dsDNA elastic properties provides a deeper understanding of DNA elasticities in biological environments and potentially helps in the further development of DNA nanotechnology.
Collapse
Affiliation(s)
- Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
12
|
Zhang CY, Zhang NH. Mechanical Constraint Effect on DNA Persistence Length. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227769. [PMID: 36431871 PMCID: PMC9696218 DOI: 10.3390/molecules27227769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Persistence length is a significant criterion to characterize the semi-flexibility of DNA molecules. The mechanical constraints applied on DNA chains in new single-molecule experiments play a complex role in measuring DNA persistence length; however, there is a difficulty in quantitatively characterizing the mechanical constraint effects due to their complex interactions with electrostatic repulsions and thermal fluctuations. In this work, the classical buckling theory of Euler beam and Manning's statistical theories of electrostatic force and thermal fluctuation force are combined for an isolated DNA fragment to formulate a quantitative model, which interprets the relationship between DNA persistence length and critical buckling length. Moreover, this relationship is further applied to identify the mechanical constraints in different DNA experiments by fitting the effective length factors of buckled fragments. Then, the mechanical constraint effects on DNA persistence lengths are explored. A good agreement among the results by theoretical models, previous experiments, and present molecular dynamics simulations demonstrates that the new superposition relationship including three constraint-dependent terms can effectively characterize changes in DNA persistence lengths with environmental conditions, and the strong constraint-environment coupling term dominates the significant changes of persistence lengths; via fitting effective length factors, the weakest mechanical constraints on DNAs in bulk experiments and stronger constraints on DNAs in single-molecule experiments are identified, respectively. Moreover, the consideration of DNA buckling provides a new perspective to examine the bendability of short-length DNA.
Collapse
Affiliation(s)
- Cheng-Yin Zhang
- Department of Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Neng-Hui Zhang
- Department of Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
- Correspondence:
| |
Collapse
|
13
|
Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Nat Commun 2022; 13:6569. [PMID: 36323657 PMCID: PMC9630430 DOI: 10.1038/s41467-022-34148-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity. A highly kinked DNA structure in complex with human PARP-1 domains led to the proposal that SSB sensing in Eukaryotes relies on dynamics of both the broken DNA double helix and PARP-1's multi-domain organization. Here, we directly probe this process at the single-molecule level. Quantitative smFRET and structural ensemble calculations reveal how PARP-1's N-terminal zinc fingers convert DNA SSBs from a largely unperturbed conformation, via an intermediate state into the highly kinked DNA conformation. Our data suggest an induced fit mechanism via a multi-domain assembly cascade that drives SSB sensing and stimulates an interplay with the scaffold protein XRCC1 orchestrating subsequent DNA repair events. Interestingly, a clinically used PARP-1 inhibitor Niraparib shifts the equilibrium towards the unkinked DNA conformation, whereas the inhibitor EB47 stabilizes the kinked state.
Collapse
Affiliation(s)
- Anna Sefer
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Eleni Kallis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias Eilert
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Boehringer Ingelheim, CoC CMC Statistics & Data Science, Birkendorfer Str. 65, 88400, Biberach, Germany
| | - Carlheinz Röcker
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Olga Kolesnikova
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Sebastian Eustermann
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
14
|
Mu ZC, Tan YL, Zhang BG, Liu J, Shi YZ. Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions. PLoS Comput Biol 2022; 18:e1010501. [PMID: 36260618 PMCID: PMC9621594 DOI: 10.1371/journal.pcbi.1010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.4Å from the experimental structures. For DNAs with various lengths and sequences, the present model can make reliable predictions on stability, e.g., for 27 dsDNAs with/without bulge/internal loops and 24 ssDNAs including pseudoknot, the mean deviation of predicted melting temperatures from the corresponding experimental data is only ~2.0°C. Furthermore, the model also quantificationally predicts the effects of monovalent or divalent ions on the structure stability of ssDNAs/dsDNAs. To determine 3D structures and quantify stability of single- (ss) and double-stranded (ds) DNAs is essential to unveil the mechanisms of their functions and to further guide the production and development of novel materials. Although many DNA models have been proposed to reproduce the basic structural, mechanical, or thermodynamic properties of dsDNAs based on the secondary structure information or preset constraints, there are very few models can be used to investigate the ssDNA folding or dsDNA assembly from the sequence. Furthermore, due to the polyanionic nature of DNAs, metal ions (e.g., Na+ and Mg2+) in solutions can play an essential role in DNA folding and dynamics. Nevertheless, ab initio predictions for DNA folding in ion solutions are still an unresolved problem. In this work, we developed a novel coarse-grained model to predict 3D structures and thermodynamic stabilities for both ssDNAs and dsDNAs in monovalent/divalent ion solutions from their sequences. As compared with the extensive experimental data and available existing models, we showed that the present model can successfully fold simple DNAs into their native-like structures, and can also accurately reproduce the effects of sequence and monovalent/divalent ions on structure stability for ssDNAs including pseudoknot and dsDNAs with/without bulge/internal loops.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- * E-mail:
| |
Collapse
|
15
|
Zhang Y, Yan M, Huang T, Wang X. Understanding the Structural Elasticity of RNA and DNA: All‐Atom Molecular Dynamics. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingtong Zhang
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Miao Yan
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Tingting Huang
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| | - Xianghong Wang
- Department of Physics Wenzhou University Wenzhou 325035 China
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| |
Collapse
|
16
|
Qiang XW, Zhang C, Dong HL, Tian FJ, Fu H, Yang YJ, Dai L, Zhang XH, Tan ZJ. Multivalent Cations Reverse the Twist-Stretch Coupling of RNA. PHYSICAL REVIEW LETTERS 2022; 128:108103. [PMID: 35333091 DOI: 10.1103/physrevlett.128.108103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
When stretched, both DNA and RNA duplexes change their twist angles through twist-stretch coupling. The coupling is negative for DNA but positive for RNA, which is not yet completely understood. Here, our magnetic tweezers experiments show that the coupling of RNA reverses from positive to negative by multivalent cations. Combining with the previously reported tension-induced negative-to-positive coupling reversal of DNA, we propose a unified mechanism of the couplings of both RNA and DNA based on molecular dynamics simulations. Two deformation pathways are competing when stretched: shrinking the radius causes positive couplings but widening the major groove causes negative couplings. For RNA whose major groove is clamped by multivalent cations and canonical DNA, their radii shrink when stretched, thus exhibiting positive couplings. For elongated DNA whose radius already shrinks to the minimum and canonical RNA, their major grooves are widened when stretched, thus exhibiting negative couplings.
Collapse
Affiliation(s)
- Xiao-Wei Qiang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Fu-Jia Tian
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Sykes KS, White RJ. Nucleic Acid Identity, Structure, and Flexibility Affect the Electrochemical Signal of Tethered Redox Molecules upon Biopolymer Collapse. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12466-12475. [PMID: 34644498 PMCID: PMC10150403 DOI: 10.1021/acs.langmuir.1c02161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We demonstrate that cation condensation can induce the collapse of surface-bound nucleic acids and that the electrochemical signal from a tethered redox molecule (methylene blue) upon collapse reports on nucleic acid identity, structure, and flexibility. Furthermore, the correlation of the electrochemical signal and structure is consistent with theoretical considerations of nucleic acid collapse. Changes in solution dielectric permittivity or the concentration of trivalent cations cause the structure of nucleic acids to become more compact due to an increase in attractive electrostatic interactions between the charged biopolymer backbone and multivalent ions in the solution. Consequently, the compaction of nucleic acids results in a change in the dynamics and location of the terminally appended redox marker, which is reflected in the faradaic current measured using cyclic voltammetry. In comparison to ssDNA, nucleic acid duplexes (dsDNA, DNA/peptide nucleic acid, and dsRNA) require nucleic-acid-composition-specific solution conditions for the collapse to occur. Moreover, the magnitude of current increase observed after the collapse is different for each nucleic structure, and we find here that these changes are dictated by physical parameters of the nucleic acids including the axial charge spacing and the periodicity of the helix. The work here aims to provide quantitative and predicative measures of the effects of the nucleic acid structure on the electrochemical signal produced from distal-end appended redox markers. This architecture is commonly employed in functional nucleic acid sensors and a better understanding of structure-to-signal correlations will enable the rational design of sensitive sensing architectures.
Collapse
Affiliation(s)
- Kiana S. Sykes
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
- Corresponding Author
| |
Collapse
|
18
|
Dohnalová H, Lankaš F. Deciphering the mechanical properties of
B‐DNA
duplex. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| |
Collapse
|
19
|
Stellwagen NC. Using capillary electrophoresis to characterize the hydrodynamic and electrostatic properties of DNA in solutions containing various monovalent cations. Electrophoresis 2021; 43:309-326. [PMID: 34510492 DOI: 10.1002/elps.202100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022]
Abstract
This review describes the results obtained by using free-solution capillary electrophoresis to probe the electrostatic and hydrodynamic properties of DNA in solutions containing various monovalent cations. In brief, we found that the mobilities of double-stranded DNAs (dsDNAs) increase with increasing molecular weight before leveling off and becoming constant at molecular weights ≥400 bp. The mobilities of single-stranded DNAs (ssDNAs) go through a maximum at ∼10-20 nucleotides before decreasing and becoming constant for oligomers larger than ∼30-50 bases. The mobilities of both ss- and dsDNAs increase linearly with the logarithm of increasing charge per unit length and decrease linearly with the logarithm of increasing ionic strength. Surprisingly, ss- and dsDNA mobilities level off and become nearly constant at ionic strengths ≥0.6 M. The thermal stabilities of dsDNAs decrease linearly with increasing solution viscosity. The diffusion coefficients of dsDNA are modulated by the diffusion coefficients of their counterions because of electrostatic DNA-cation coupling interactions. Finally, the anomalously slow mobilities observed for A-tract-containing DNAs can be attributed both to differences in shape and to the preferential localization of small cations in the A-tract minor groove. Since many of these results are mirrored in other polyion-counterion systems, free-solution electrophoresis can be viewed as a reporter of the electrostatics and hydrodynamics of highly charged polyions. New results describing the mobilities of dsDNA analogues of a microRNA-messenger RNA complex are also presented.
Collapse
|
20
|
Al-Shaer A, Lyons A, Ishikawa Y, Hudson BG, Boudko SP, Forde NR. Sequence-dependent mechanics of collagen reflect its structural and functional organization. Biophys J 2021; 120:4013-4028. [PMID: 34390685 DOI: 10.1016/j.bpj.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023] Open
Abstract
Extracellular matrix mechanics influence diverse cellular functions, yet surprisingly little is known about the mechanical properties of their constituent collagen proteins. In particular, network-forming collagen IV, an integral component of basement membranes, has been far less studied than fibril-forming collagens. A key feature of collagen IV is the presence of interruptions in the triple-helix-defining (Gly-X-Y) sequence along its collagenous domain. Here, we used atomic force microscopy to determine the impact of sequence heterogeneity on the local flexibility of collagen IV and of the fibril-forming collagen III. Our extracted flexibility profile of collagen IV reveals that it possesses highly heterogeneous mechanics, ranging from semiflexible regions as found for fibril-forming collagens to a lengthy region of high flexibility toward its N-terminus. A simple model in which flexibility is dictated only by the presence of interruptions fit the extracted profile reasonably well, providing insight into the alignment of chains and demonstrating that interruptions, particularly when coinciding in multiple chains, significantly enhance local flexibility. To a lesser extent, sequence variations within the triple helix lead to variable flexibility, as seen along the continuously triple-helical collagen III. We found this fibril-forming collagen to possess a high-flexibility region around its matrix-metalloprotease binding site, suggesting a unique mechanical fingerprint of this region that is key for matrix remodeling. Surprisingly, proline content did not correlate with local flexibility in either collagen type. We also found that physiologically relevant changes in pH and chloride concentration did not alter the flexibility of collagen IV, indicating such environmental changes are unlikely to control its compaction during secretion. Although extracellular chloride ions play a role in triggering collagen IV network formation, they do not appear to modulate the structure of its collagenous domain.
Collapse
Affiliation(s)
- Alaa Al-Shaer
- Department of Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - Aaron Lyons
- Department of Physics, Burnaby, British Columbia, Canada
| | - Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biochemistry, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee; Department of Cell and Developmental Biology, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biochemistry, Nashville, Tennessee
| | - Nancy R Forde
- Department of Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada; Department of Physics, Burnaby, British Columbia, Canada; Department of Chemistry, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
21
|
Segers M, Skoruppa E, Stevens JA, Vangilbergen M, Voorspoels A, Carlon E. Comment on "Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs" [J. Chem. Phys. 142, 125103 (2015)]. J Chem Phys 2021; 155:027101. [PMID: 34266243 DOI: 10.1063/5.0055349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Midas Segers
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Skoruppa
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Jan A Stevens
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Merijn Vangilbergen
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Aderik Voorspoels
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Carlon
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
22
|
Zheng Y, Lin C, Zhang JS, Tan ZJ. Ion-mediated interactions between like-charged polyelectrolytes with bending flexibility. Sci Rep 2020; 10:21586. [PMID: 33299024 PMCID: PMC7726156 DOI: 10.1038/s41598-020-78684-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ion-mediated interactions between polyelectrolytes (PEs) are crucial to the properties of flexible biopolymers such as nucleic acids and proteins but the effect of PE flexibility on such interactions has not been explicitly addressed until now. In this work, the potentials of mean force (PMFs) between like-charged PEs with different bending flexibility have been investigated by Monte Carlo simulations and a cylindrical confinement around each PE was involved to model two PEs in an array. We found that in the absence of trivalent salt, the PMFs between like-charged PEs in an array are apparently repulsive while the bending flexibility can visibly decrease the repulsive PMFs. With the addition of high trivalent salt, the PMFs become significantly attractive whereas the attractive PMFs can be apparently weakened by the bending flexibility. Our analyses reveal that the effect of bending flexibility is attributed to the increased PE conformational space, which allows the PEs to fluctuate away to decrease the monovalent ion-mediated repulsion or to weaken the trivalent ion-mediated attraction through disrupting trivalent ion-bridging configuration. Additionally, our further calculations show that the effect of bending flexibility on the ion-mediated interactions is less apparent for PEs without cylindrical confinement.
Collapse
Affiliation(s)
- Yitong Zheng
- Hongyi Honor School, Wuhan University, Wuhan, 430072, China
- Department of Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Cheng Lin
- Department of Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jin-Si Zhang
- College of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an, 237012, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Jeong J, Kim HD. Determinants of cyclization-decyclization kinetics of short DNA with sticky ends. Nucleic Acids Res 2020; 48:5147-5156. [PMID: 32282905 PMCID: PMC7229855 DOI: 10.1093/nar/gkaa207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclization of DNA with sticky ends is commonly used to measure DNA bendability as a function of length and sequence, but how its kinetics depend on the rotational positioning of the sticky ends around the helical axis is less clear. Here, we measured cyclization (looping) and decyclization (unlooping) rates (kloop and kunloop) of DNA with sticky ends over three helical periods (100-130 bp) using single-molecule fluorescence resonance energy transfer (FRET). kloop showed a nontrivial undulation as a function of DNA length whereas kunloop showed a clear oscillation with a period close to the helical turn of DNA (∼10.5 bp). The oscillation of kunloop was almost completely suppressed in the presence of gaps around the sticky ends. We explain these findings by modeling double-helical DNA as a twisted wormlike chain with a finite width, intrinsic curvature, and stacking interaction between the end base pairs. We also discuss technical issues for converting the FRET-based cyclization/decyclization rates to an equilibrium quantity known as the J factor that is widely used to characterize DNA bending mechanics.
Collapse
Affiliation(s)
- Jiyoun Jeong
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430, USA
| |
Collapse
|
24
|
Wu K, Qi C, Zhu Z, Wang C, Song B, Chang C. Terahertz Wave Accelerates DNA Unwinding: A Molecular Dynamics Simulation Study. J Phys Chem Lett 2020; 11:7002-7008. [PMID: 32786218 DOI: 10.1021/acs.jpclett.0c01850] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unwinding the double helix of the DNA molecule is the basis of gene duplication and gene editing, and the acceleration of this unwinding process is crucial to the rapid detection of genetic information. Based on the unwinding of six-base-pair DNA duplexes, we demonstrate that a terahertz stimulus at a characteristic frequency (44.0 THz) can serve as an efficient, nonthermal, and long-range method to accelerate the unwinding process of DNA duplexes. The average speed of the unwinding process increased by 20 times at least, and its temperature was significantly reduced. The mechanism was revealed to be the resonance between the terahertz stimulus and the vibration of purine connected by the weak hydrogen bond and the consequent break in hydrogen bond connections between these base pairs. Our findings potentially provide a promising application of terahertz technology for the rapid detection of nucleic acids, biomedicine, and therapy.
Collapse
Affiliation(s)
- Kaijie Wu
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chonghai Qi
- School of Physics, Shandong University, Jinan 250100, China
- Division of Interfacial Water, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Zhu
- School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chunlei Wang
- Division of Interfacial Water, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Song
- School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Chang
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Stellwagen E, Stellwagen NC. Electrophoretic Mobility of DNA in Solutions of High Ionic Strength. Biophys J 2020; 118:2783-2789. [PMID: 32445623 DOI: 10.1016/j.bpj.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The free-solution mobilities of small single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) have been measured by capillary electrophoresis in solutions containing 0.01-1.0 M sodium acetate. The mobility of dsDNA is greater than that of ssDNA at all ionic strengths because of the greater charge density of dsDNA. The mobilities of both ssDNA and dsDNA decrease with increasing ionic strength until approaching plateau values at ionic strengths greater than ∼0.6 M. Hence, ssDNA and dsDNA appear to interact in a similar manner with the ions in the background electrolyte. For dsDNA, the mobilities predicted by the Manning electrophoresis equation are reasonably close to the observed mobilities, using no adjustable parameters, if the average distance between phosphate residues (the b parameter) is taken to be 1.7 Å. For ssDNA, the predicted mobilities are close to the observed mobilities at ionic strengths ≤0.01 M if the b-value is taken to be 4.1 Å. The predicted and observed mobilities diverge strongly at higher ionic strengths unless the b-value is reduced significantly. The results suggest that ssDNA strands exist as an ensemble of relatively compact conformations at high ionic strengths, with b-values corresponding to the relatively short phosphate-phosphate distances through space.
Collapse
|
26
|
Drozdetski AV, Mukhopadhyay A, Onufriev AV. Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment. FRONTIERS IN PHYSICS 2019; 7:195. [PMID: 32601596 PMCID: PMC7323118 DOI: 10.3389/fphy.2019.00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer-specific) point, the change in the convexity properties of the effective bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this strong bending regime the energy of the polymer varies linearly with the average bending angle as the system follows the convex hull of the deformation energy function. For double-stranded DNA, the effective bending deformation energy becomes non-convex for bends greater than ~ 2° per base-pair, equivalent to the curvature of a closed circular loop of ~ 160 base pairs. A simple equation is derived for the polymer loop energy that covers both the weak and strong bending regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on short DNA fragments, while maintaining the expected agreement with experiment in the weak bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of ≃ 45 base pairs. Atomistic simulations reveal that the attractive component of the short-range Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity of the DNA effective bending energy, leading to the linear bending regime. Applicability of the theory to protein-DNA complexes, including the nucleosome, is discussed.
Collapse
Affiliation(s)
| | | | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, VA, United States
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
27
|
Xiao S, Liang H, Wales DJ. The Contribution of Backbone Electrostatic Repulsion to DNA Mechanical Properties is Length-Scale-Dependent. J Phys Chem Lett 2019; 10:4829-4835. [PMID: 31380654 DOI: 10.1021/acs.jpclett.9b01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanics of DNA bending is crucially related to many vital biological processes. Recent experiments reported anomalous flexibility for DNA on short length scales, calling into doubt the validity of the harmonic worm-like chain (WLC) model in this region. In the present work, we systematically probed the bending dynamics of DNA at different length scales. In contrast to the remarkable deviation from the WLC description for DNA duplexes of less than three helical turns, our atomistic studies indicate that the neutral "null isomer" behaves in accord with the ideal elastic WLC and exhibits a uniform decay for the directional correlation of local bending. The backbone neutralization weakens the anisotropy in the effective bending preference and the helical periodicity of bend correlation that have previously been observed for normal DNA. The contribution of electrostatic repulsion to stretching cooperativity and the mechanical properties of DNA strands is length-scale-dependent: the phosphate neutralization increases the stiffness of DNA below two helical turns, but it is decreased for longer strands. We find that DNA rigidity is largely determined by base pair stacking, with electrostatic interactions contributing only around 10% of the total persistence length.
Collapse
Affiliation(s)
- Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
28
|
Liu JH, Xi K, Zhang X, Bao L, Zhang X, Tan ZJ. Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling. Biophys J 2019; 117:74-86. [PMID: 31164196 PMCID: PMC6626833 DOI: 10.1016/j.bpj.2019.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
DNA-RNA hybrid (DRH) duplexes play essential roles during the replication of DNA and the reverse transcription of RNA viruses, and their flexibility is important for their biological functions. Recent experiments indicated that A-form RNA and B-form DNA have a strikingly different flexibility in stretching and twist-stretch coupling, and the structural flexibility of DRH duplex is of great interest, especially in stretching and twist-stretch coupling. In this work, we performed microsecond all-atom molecular dynamics simulations with new AMBER force fields to characterize the structural flexibility of DRH duplex in stretching and twist-stretch coupling. We have calculated all the helical parameters, stretch modulus, and twist-stretch coupling parameters for the DRH duplex. First, our analyses on structure suggest that the DRH duplex exhibits an intermediate conformation between A- and B-forms and closer to A-form, which can be attributed to the stronger rigidity of the RNA strand than the DNA strand. Second, our calculations show that the DRH duplex has the stretch modulus of 834 ± 34 pN and a very weak twist-stretch coupling. Our quantitative analyses indicate that, compared with DNA and RNA duplexes, the different flexibility of the DRH duplex in stretching and twist-stretch coupling is mainly attributed to its apparently different basepair inclination in the helical structure.
Collapse
Affiliation(s)
- Ju-Hui Liu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- College of Life Science, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
29
|
Xi K, Wang FH, Xiong G, Zhang ZL, Tan ZJ. Competitive Binding of Mg 2+ and Na + Ions to Nucleic Acids: From Helices to Tertiary Structures. Biophys J 2019; 114:1776-1790. [PMID: 29694858 DOI: 10.1016/j.bpj.2018.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.
Collapse
Affiliation(s)
- Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Gui Xiong
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhong-Liang Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Si D, Xu Z, Nan N, Hu G. DNA Confined in a Nanodroplet: A Molecular Dynamics Study. J Phys Chem B 2018; 122:8812-8818. [PMID: 30180585 DOI: 10.1021/acs.jpcb.8b05056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a major genetic material, the configuration and the mechanical properties of a double-stranded DNA (dsDNA) molecule in confinement are crucial for the application of nanotechnology and biological engineering. In the present paper, molecular dynamics simulation is utilized to study the configuration of dsDNA in a nanodroplet on a graphene substrate. The results show that the semiflexible dsDNA molecule changes its configuration with radius of gyration ( Rg) of a few nanometers because of the confined space, that is, the Rg of the dsDNA molecule decreases with the reduction of the nanodroplet size. In comparison, the dsDNA in the bulk usually has a persistent length of tens of nanometers. Especially, if the nanodroplet is small enough, the dsDNA molecule might form a loop structure inside. The dsDNA molecule affects the wetting properties of the graphene substrate. It is found that the graphene becomes more hydrophilic in smaller systems containing the dsDNA molecule, whereas for larger droplets, the changes of the contact angles are not significant with the presence of dsDNA. Moreover, the results indicate that for larger droplets, the line tension of the droplet containing DNA is positive and greater than that without DNA; for smaller droplets, the line tension becomes negative because the dsDNA is compressed and bent in the confinement, and has the potential to expand outwards. The worm-like chain model is used to study the bending energy of a dsDNA molecule in a droplet. The results address that the bending energy of the non-loop-structured dsDNA decreases as the droplet becomes larger, and it is larger than that of loop-structured dsDNA, as the loop structure efficiently prevents the DNA from bending in the vertical direction.
Collapse
Affiliation(s)
- Dongqing Si
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering , Shanghai University , Shanghai 200072 , China
| | - Zhen Xu
- School of Mechanical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Nan Nan
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering , Shanghai University , Shanghai 200072 , China
| | - Guohui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering , Shanghai University , Shanghai 200072 , China
| |
Collapse
|
31
|
Jin L, Shi YZ, Feng CJ, Tan YL, Tan ZJ. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys J 2018; 115:1403-1416. [PMID: 30236782 DOI: 10.1016/j.bpj.2018.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
32
|
Garai A, Ghoshdastidar D, Senapati S, Maiti PK. Ionic liquids make DNA rigid. J Chem Phys 2018; 149:045104. [PMID: 30068211 DOI: 10.1063/1.5026640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Persistence length of double-stranded DNA (dsDNA) is known to decrease with an increase in ionic concentration of the solution. In contrast to this, here we show that the persistence length of dsDNA increases dramatically as a function of ionic liquid (IL) concentration. Using all atom explicit solvent molecular dynamics simulations and theoretical models, we present, for the first time, a systematic study to determine the mechanical properties of dsDNA in various hydrated ILs at different concentrations. We find that dsDNA in 50 wt % ILs have lower persistence length and stretch modulus in comparison to 80 wt % ILs. We further observe that both the persistence length and stretch modulus of dsDNA increase as we increase the concentration of ILs. The present trend of the stretch modulus and persistence length of dsDNA with IL concentration supports the predictions of the macroscopic elastic theory, in contrast to the behavior exhibited by dsDNA in monovalent salt. Our study further suggests the preferable ILs that can be used for maintaining DNA stability during long-term storage.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Debostuti Ghoshdastidar
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Prabal K Maiti
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
Zhang X, Bao L, Wu YY, Zhu XL, Tan ZJ. Radial distribution function of semiflexible oligomers with stretching flexibility. J Chem Phys 2018; 147:054901. [PMID: 28789545 DOI: 10.1063/1.4991689] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The radial distribution of the end-to-end distance Ree is crucial for quantifying the global size and flexibility of a linear polymer. For semiflexible polymers, several analytical formulas have been derived for the radial distribution of Ree ignoring the stretching flexibility. However, for semiflexible oligomers, such as DNA or RNA, the stretching flexibility can be rather pronounced and can significantly affect the radial distribution of Ree. In this study, we obtained an extended formula that includes the stretch modulus to describe the distribution of Ree for semiflexible oligomers on the basis of previous formulas for semiflexible polymers without stretching flexibility. The extended formula was validated by extensive Monte Carlo simulations over wide ranges of the stretch modulus and persistence length, as well as all-atom molecular dynamics simulations of short DNAs and RNAs. Additionally, our analyses showed that the effect of stretching flexibility on the distribution of Ree becomes negligible for DNAs longer than ∼130 base pairs and RNAs longer than ∼240 base pairs.
Collapse
Affiliation(s)
- Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
34
|
Zoli M. End-to-end distance and contour length distribution functions of DNA helices. J Chem Phys 2018; 148:214902. [DOI: 10.1063/1.5021639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
35
|
Vargas-Lara F, Starr FW, Douglas JF. Molecular rigidity and enthalpy-entropy compensation in DNA melting. SOFT MATTER 2017; 13:8309-8330. [PMID: 29057399 DOI: 10.1039/c7sm01220a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enthalpy-entropy compensation (EEC) is observed in diverse molecular binding processes of importance to living systems and manufacturing applications, but this widely occurring phenomenon is not sufficiently understood from a molecular physics standpoint. To gain insight into this fundamental problem, we focus on the melting of double-stranded DNA (dsDNA) since measurements exhibiting EEC are extensive for nucleic acid complexes and existing coarse-grained models of DNA allow us to explore the influence of changes in molecular parameters on the energetic parameters by using molecular dynamics simulations. Previous experimental and computational studies have indicated a correlation between EEC and changes in molecular rigidity in certain binding-unbinding processes, and, correspondingly, we estimate measures of DNA molecular rigidity under a wide range of conditions, along with resultant changes in the enthalpy and entropy of binding. In particular, we consider variations in dsDNA rigidity that arise from changes of intrinsic molecular rigidity such as varying the associative interaction strength between the DNA bases, the length of the DNA chains, and the bending stiffness of the individual DNA chains. We also consider extrinsic changes of molecular rigidity arising from the addition of polymer additives and geometrical confinement of DNA between parallel plates. All our computations confirm EEC and indicate that this phenomenon is indeed highly correlated with changes in molecular rigidity. However, two distinct patterns relating to how DNA rigidity influences the entropy of association emerge from our analysis. Increasing the intrinsic DNA rigidity increases the entropy of binding, but increases in molecular rigidity from external constraints decreases the entropy of binding. EEC arises in numerous synthetic and biological binding processes and we suggest that changes in molecular rigidity might provide a common origin of this ubiquitous phenomenon in the mutual binding and unbinding of complex molecules.
Collapse
Affiliation(s)
- Fernando Vargas-Lara
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|
36
|
Sensale S, Peng Z, Chang HC. Kinetic theory for DNA melting with vibrational entropy. J Chem Phys 2017; 147:135101. [PMID: 28987107 DOI: 10.1063/1.4996174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.
Collapse
Affiliation(s)
- Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Zhangli Peng
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| |
Collapse
|
37
|
Zhang ZL, Wu YY, Xi K, Sang JP, Tan ZJ. Divalent Ion-Mediated DNA-DNA Interactions: A Comparative Study of Triplex and Duplex. Biophys J 2017; 113:517-528. [PMID: 28793207 DOI: 10.1016/j.bpj.2017.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Ion-mediated interaction between DNAs is essential for DNA condensation, and it is generally believed that monovalent and nonspecifically binding divalent cations cannot induce the aggregation of double-stranded (ds) DNAs. Interestingly, recent experiments found that alkaline earth metal ions such as Mg2+ can induce the aggregation of triple-stranded (ts) DNAs, although there is still a lack of deep understanding of the surprising findings at the microscopic level. In this work, we employed all-atom dynamic simulations to directly calculate the potentials of mean force (PMFs) between tsDNAs, between dsDNAs, and between tsDNA and dsDNA in Mg2+ solutions. Our calculations show that the PMF between tsDNAs is apparently attractive and becomes more strongly attractive at higher [Mg2+], although the PMF between dsDNAs cannot become apparently attractive even at high [Mg2+]. Our analyses show that Mg2+ internally binds into grooves and externally binds to phosphate groups for both tsDNA and dsDNA, whereas the external binding of Mg2+ is much stronger for tsDNA. Such stronger external binding of Mg2+ for tsDNA favors more apparent ion-bridging between helices than for dsDNA. Furthermore, our analyses illustrate that bridging ions, as a special part of external binding ions, are tightly and positively coupled to ion-mediated attraction between DNAs.
Collapse
Affiliation(s)
- Zhong-Liang Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; College of Physical Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jian-Ping Sang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
Xu Z, Lei X, Tu Y, Tan ZJ, Song B, Fang H. Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide. Chemistry 2017; 23:13100-13104. [DOI: 10.1002/chem.201701733] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Zhen Xu
- College of Mechanical Engineering; Shanghai University of Engineering Science; Shanghai 201620 P. R. China
| | - Xiaoling Lei
- Division of Interfacial Water and Key Laboratory of Interfacial, Physic and Technology; Shanghai Institute of Applied Physics; Chinese, Academy of Sciences, P.O. Box 800-204; Shanghai 201800 P. R. China
| | - Yusong Tu
- College of Physics Science and Technology; Yangzhou University; Jiangsu 225009 P. R. China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education; School of Physics and Technology; Wuhan University; Hubei 430072 P. R. China
| | - Bo Song
- Division of Interfacial Water and Key Laboratory of Interfacial, Physic and Technology; Shanghai Institute of Applied Physics; Chinese, Academy of Sciences, P.O. Box 800-204; Shanghai 201800 P. R. China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial, Physic and Technology; Shanghai Institute of Applied Physics; Chinese, Academy of Sciences, P.O. Box 800-204; Shanghai 201800 P. R. China
| |
Collapse
|
39
|
Bao L, Zhang X, Shi YZ, Wu YY, Tan ZJ. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling. Biophys J 2017; 112:1094-1104. [PMID: 28355538 DOI: 10.1016/j.bpj.2017.02.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 01/16/2023] Open
Abstract
The flexibility of double-stranded (ds) RNA and dsDNA is crucial for their biological functions. Recent experiments have shown that the flexibility of dsRNA and dsDNA can be distinctively different in the aspects of stretching and twist-stretch coupling. Although various studies have been performed to understand the flexibility of dsRNA and dsDNA, there is still a lack of deep understanding of the distinctive differences in the flexibility of dsRNA and dsDNA helices as pertains to their stretching and twist-stretch coupling. In this work, we have explored the relative flexibility in stretching and twist-stretch coupling between dsRNA and dsDNA by all-atom molecular dynamics simulations. The calculated stretch modulus and twist-stretch coupling are in good accordance with the existing experiments. Our analyses show that the differences in stretching and twist-stretch coupling between dsRNA and dsDNA helices are mainly attributed to their different (A- and B-form) helical structures. Stronger basepair inclination and slide in dsRNA is responsible for the apparently weaker stretching rigidity versus that of dsDNA, and the opposite twist-stretch coupling for dsRNA and dsDNA is also attributed to the stronger basepair inclination in dsRNA than in dsDNA. Our calculated macroscopic elastic parameters and microscopic analyses are tested and validated by different force fields for both dsRNA and dsDNA.
Collapse
Affiliation(s)
- Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; College of Physical Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Zoli M. Twist-stretch profiles of DNA chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:225101. [PMID: 28394255 DOI: 10.1088/1361-648x/aa6c50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule's free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
41
|
Shi YZ, Jin L, Wang FH, Zhu XL, Tan ZJ. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions. Biophys J 2016; 109:2654-2665. [PMID: 26682822 DOI: 10.1016/j.bpj.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 10/24/2022] Open
Abstract
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (<77 nucleotides) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy compared to the experimental data; the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
42
|
|
43
|
Nucleic acid polymeric properties and electrostatics: Directly comparing theory and simulation with experiment. Adv Colloid Interface Sci 2016; 232:49-56. [PMID: 26482088 DOI: 10.1016/j.cis.2015.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 11/24/2022]
Abstract
Nucleic acids are biopolymers that carry genetic information and are also involved in various gene regulation functions such as gene silencing and protein translation. Because of their negatively charged backbones, nucleic acids are polyelectrolytes. To adequately understand nucleic acid folding and function, we need to properly describe its i) polymer/polyelectrolyte properties and ii) associating ion atmosphere. While various theories and simulation models have been developed to describe nucleic acids and the ions around them, many of these theories/simulations have not been well evaluated due to complexities in comparison with experiment. In this review, I discuss some recent experiments that have been strategically designed for straightforward comparison with theories and simulation models. Such data serve as excellent benchmarks to identify limitations in prevailing theories and simulation parameters.
Collapse
|
44
|
Abstract
The flexibility of short DNA fragments is studied by a Hamiltonian model which treats the inter-strand and intra-strand forces at the level of the base pair.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology
- University of Camerino
- I-62032 Camerino
- Italy
| |
Collapse
|
45
|
Chen T, Hong Y, Reinhard BM. Probing DNA Stiffness through Optical Fluctuation Analysis of Plasmon Rulers. NANO LETTERS 2015; 15:5349-57. [PMID: 26121062 PMCID: PMC4624404 DOI: 10.1021/acs.nanolett.5b01725] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The distance-dependent plasmon coupling between biopolymer tethered gold or silver nanoparticles forms the foundation for the so-called plasmon rulers. While conventional plasmon ruler applications focus on the detection of singular events in the far-field spectrum, we perform in this Letter a ratiometric analysis of the continuous spectral fluctuations arising from thermal interparticle separation variations in plasmon rulers confined to fluid lipid membranes. We characterized plasmon rulers with different DNA tethers and demonstrate the ability to detect and quantify differences in the plasmon ruler potential and tether stiffness. The influence of the nature of the tether (single-stranded versus double-stranded DNA) and the length of the tether is analyzed. The characterization of the continuous variation of the interparticle separation in individual plasmon rulers through optical fluctuation analysis provides additional information about the conformational flexibility of the tether molecule(s) located in the confinement of the deeply subdiffraction limit interparticle gap and enhances the versatility of plasmon rulers as a tool in Biophysics and Nanotechnology.
Collapse
Affiliation(s)
- Tianhong Chen
- Department of Chemistry and the Photonics Center, Boston University, Boston, MA 02215, United States
| | - Yan Hong
- Department of Chemistry and the Photonics Center, Boston University, Boston, MA 02215, United States
| | - Björn M. Reinhard
- Department of Chemistry and the Photonics Center, Boston University, Boston, MA 02215, United States
| |
Collapse
|
46
|
Wu YY, Zhang ZL, Zhang JS, Zhu XL, Tan ZJ. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA. Nucleic Acids Res 2015; 43:6156-65. [PMID: 26019178 PMCID: PMC4499160 DOI: 10.1093/nar/gkv570] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/20/2015] [Indexed: 01/30/2023] Open
Abstract
Ion-mediated interaction is critical to the structure and stability of nucleic acids. Recent experiments suggest that the multivalent ion-induced aggregation of double-stranded (ds) RNAs and DNAs may strongly depend on the topological nature of helices, while there is still lack of an understanding on the relevant ion-mediated interactions at atomistic level. In this work, we have directly calculated the potentials of mean force (PMF) between two dsRNAs and between two dsDNAs in Co(NH3)6 (3+) (Co-Hex) solutions by the atomistic molecular dynamics simulations. Our calculations show that at low [Co-Hex], the PMFs between B-DNAs and between A-RNAs are both (strongly) repulsive. However, at high [Co-Hex], the PMF between B-DNAs is strongly attractive, while those between A-RNAs and between A-DNAs are still (weakly) repulsive. The microscopic analyses show that for A-form helices, Co-Hex would become 'internal binding' into the deep major groove and consequently cannot form the evident ion-bridge between adjacent helices, while for B-form helices without deep grooves, Co-Hex would exhibit 'external binding' to strongly bridge adjacent helices. In addition, our further calculations show that, the PMF between A-RNAs could become strongly attractive either at very high [Co-Hex] or when the bottom of deep major groove is fixed with a layer of water.
Collapse
Affiliation(s)
- Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhong-Liang Zhang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jin-Si Zhang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics & Information Engineering, Jianghan University, Wuhan 430056, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|