1
|
Neese F. A perspective on the future of quantum chemical software: the example of the ORCA program package. Faraday Discuss 2024; 254:295-314. [PMID: 39051881 DOI: 10.1039/d4fd00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The field of computational chemistry has made an impressive impact on contemporary chemical research. In order to carry out computational studies on actual systems, sophisticated software is required in form of large-scale quantum chemical program packages. Given the enormous diversity and complexity of the methods that need to be implementation in such packages, it is evident that these software pieces are very large (millions of code lines) and extremely complex. Most of the packages in widespread use by the computational chemistry community have had a development history of decades. Given the rapid progress in the hardware and a lack of resources (time, workforce, money), it is not possible to keep redesigning these program packages from scratch in order to keep up with the ever more quickly shifting hardware landscape. In this perspective, some aspects of the multitude of challenges that the developer community faces are discussed. While the task at hand - to ensure that quantum chemical program packages can keep evolving and make best use of the available hardware - is daunting, there are also new evolving opportunities. The problems and potential cures are discussed with the example of the ORCA package that has been developed in our research group.
Collapse
Affiliation(s)
- Frank Neese
- Department of Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
2
|
Williams-Young DB, Asadchev A, Popovici DT, Clark D, Waldrop J, Windus TL, Valeev EF, de Jong WA. Distributed memory, GPU accelerated Fock construction for hybrid, Gaussian basis density functional theory. J Chem Phys 2023; 158:234104. [PMID: 37326157 DOI: 10.1063/5.0151070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
With the growing reliance of modern supercomputers on accelerator-based architecture such a graphics processing units (GPUs), the development and optimization of electronic structure methods to exploit these massively parallel resources has become a recent priority. While significant strides have been made in the development GPU accelerated, distributed memory algorithms for many modern electronic structure methods, the primary focus of GPU development for Gaussian basis atomic orbital methods has been for shared memory systems with only a handful of examples pursing massive parallelism. In the present work, we present a set of distributed memory algorithms for the evaluation of the Coulomb and exact exchange matrices for hybrid Kohn-Sham DFT with Gaussian basis sets via direct density-fitted (DF-J-Engine) and seminumerical (sn-K) methods, respectively. The absolute performance and strong scalability of the developed methods are demonstrated on systems ranging from a few hundred to over one thousand atoms using up to 128 NVIDIA A100 GPUs on the Perlmutter supercomputer.
Collapse
Affiliation(s)
- David B Williams-Young
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrey Asadchev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Doru Thom Popovici
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David Clark
- NVIDIA Corporation, Santa Clara, California 95051, USA
| | - Jonathan Waldrop
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
| | - Theresa L Windus
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Wibe A de Jong
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Ye HZ, Berkelbach TC. Tight distance-dependent estimators for screening two-center and three-center short-range Coulomb integrals over Gaussian basis functions. J Chem Phys 2021; 155:124106. [PMID: 34598553 PMCID: PMC8463098 DOI: 10.1063/5.0064151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
We derive distance-dependent estimators for two-center and three-center electron repulsion integrals over a short-range Coulomb potential, erfc(ωr12)/r12. These estimators are much tighter than the ones based on the Schwarz inequality and can be viewed as a complement to the distance-dependent estimators for four-center short-range Coulomb integrals and for two-center and three-center full Coulomb integrals previously reported. Because the short-range Coulomb potential is commonly used in solid-state calculations, including those with the Heyd-Scuseria-Ernzerhof functional and with our recently introduced range-separated periodic Gaussian density fitting, we test our estimators on a diverse set of periodic systems using a wide range of the range-separation parameter ω. These tests demonstrate the robust tightness of our estimators, which are then used with integral screening to calculate periodic three-center short-range Coulomb integrals with linear scaling in system size.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
4
|
Wang X, Lewis CA, Valeev EF. Efficient evaluation of exact exchange for periodic systems via concentric atomic density fitting. J Chem Phys 2020; 153:124116. [DOI: 10.1063/5.0016856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiao Wang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Cannada A. Lewis
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
5
|
Valeev EF, Shiozaki T. Comment on “A tight distance-dependent estimator for screening three-center Coulomb integrals over Gaussian basis functions” [J. Chem. Phys. 142, 154106 (2015)]. J Chem Phys 2020; 153:097101. [DOI: 10.1063/5.0020567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Toru Shiozaki
- Quantum Simulation Technologies, Inc., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Csóka J, Kállay M. Speeding up density fitting Hartree–Fock calculations with multipole approximations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1769213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- József Csóka
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
7
|
Irmler A, Pauly F. Multipole-based distance-dependent screening of Coulomb integrals. J Chem Phys 2019; 151:084111. [DOI: 10.1063/1.5111054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Fabian Pauly
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Thompson TH, Ochsenfeld C. Integral partition bounds for fast and effective screening of general one-, two-, and many-electron integrals. J Chem Phys 2019; 150:044101. [DOI: 10.1063/1.5048491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Travis H. Thompson
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
9
|
Samu G, Kállay M. Efficient evaluation of the geometrical first derivatives of three-center Coulomb integrals. J Chem Phys 2018; 149:124101. [DOI: 10.1063/1.5049529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gyula Samu
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
10
|
Thompson TH, Ochsenfeld C. Distance-including rigorous upper bounds and tight estimates for two-electron integrals over long- and short-range operators. J Chem Phys 2017; 147:144101. [PMID: 29031251 DOI: 10.1063/1.4994190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Travis H. Thompson
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
11
|
Mayhall NJ. Using Higher-Order Singular Value Decomposition To Define Weakly Coupled and Strongly Correlated Clusters: The n-Body Tucker Approximation. J Chem Theory Comput 2017; 13:4818-4828. [DOI: 10.1021/acs.jctc.7b00696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nicholas J. Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
12
|
Hollman DS, Schaefer HF, Valeev EF. Fast construction of the exchange operator in an atom-centred basis with concentric atomic density fitting. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1346312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David S. Hollman
- Center for Computing Research, Sandia National Laboratories, Livermore, CA, USA
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
13
|
Samu G, Kállay M. Efficient evaluation of three-center Coulomb integrals. J Chem Phys 2017; 146:204101. [PMID: 28571354 PMCID: PMC5440237 DOI: 10.1063/1.4983393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/28/2017] [Indexed: 11/14/2022] Open
Abstract
In this study we pursue the most efficient paths for the evaluation of three-center electron repulsion integrals (ERIs) over solid harmonic Gaussian functions of various angular momenta. First, the adaptation of the well-established techniques developed for four-center ERIs, such as the Obara-Saika, McMurchie-Davidson, Gill-Head-Gordon-Pople, and Rys quadrature schemes, and the combinations thereof for three-center ERIs is discussed. Several algorithmic aspects, such as the order of the various operations and primitive loops as well as prescreening strategies, are analyzed. Second, the number of floating point operations (FLOPs) is estimated for the various algorithms derived, and based on these results the most promising ones are selected. We report the efficient implementation of the latter algorithms invoking automated programming techniques and also evaluate their practical performance. We conclude that the simplified Obara-Saika scheme of Ahlrichs is the most cost-effective one in the majority of cases, but the modified Gill-Head-Gordon-Pople and Rys algorithms proposed herein are preferred for particular shell triplets. Our numerical experiments also show that even though the solid harmonic transformation and the horizontal recurrence require significantly fewer FLOPs if performed at the contracted level, this approach does not improve the efficiency in practical cases. Instead, it is more advantageous to carry out these operations at the primitive level, which allows for more efficient integral prescreening and memory layout.
Collapse
Affiliation(s)
- Gyula Samu
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
14
|
Kjærgaard T. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J Chem Phys 2017; 146:044103. [PMID: 28147513 DOI: 10.1063/1.4973710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.
Collapse
Affiliation(s)
- Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Kumar C, Kjærgaard T, Helgaker T, Fliegl H. Nuclei-selected atomic-orbital response-theory formulation for the calculation of NMR shielding tensors using density-fitting. J Chem Phys 2016; 145:234108. [DOI: 10.1063/1.4972212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Chandan Kumar
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Thomas Kjærgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Trygve Helgaker
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Heike Fliegl
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
16
|
Lewis CA, Calvin JA, Valeev EF. Clustered Low-Rank Tensor Format: Introduction and Application to Fast Construction of Hartree–Fock Exchange. J Chem Theory Comput 2016; 12:5868-5880. [DOI: 10.1021/acs.jctc.6b00884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cannada A. Lewis
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justus A. Calvin
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F. Valeev
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Baudin P, Ettenhuber P, Reine S, Kristensen K, Kjærgaard T. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model. J Chem Phys 2016; 144:054102. [PMID: 26851903 DOI: 10.1063/1.4940732] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.
Collapse
Affiliation(s)
- Pablo Baudin
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Patrick Ettenhuber
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Simen Reine
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033, N-1315 Blindern, Norway
| | - Kasper Kristensen
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|