1
|
Marie A, Loos PF. Reference Energies for Valence Ionizations and Satellite Transitions. J Chem Theory Comput 2024; 20:4751-4777. [PMID: 38776293 PMCID: PMC11171335 DOI: 10.1021/acs.jctc.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
Upon ionization of an atom or a molecule, another electron (or more) can be simultaneously excited. These concurrently generated states are called "satellites" (or shakeup transitions) as they appear in ionization spectra as higher-energy peaks with weaker intensity and larger width than the main peaks associated with single-particle ionizations. Satellites, which correspond to electronically excited states of the cationic species, are notoriously challenging to model using conventional single-reference methods due to their high excitation degree compared to the neutral reference state. This work reports 42 satellite transition energies and 58 valence ionization potentials (IPs) of full configuration interaction quality computed in small molecular systems. Following the protocol developed for the quest database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; and Loos, P.-F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1517], these reference energies are computed using the configuration interaction using a perturbative selection made iteratively (CIPSI) method. In addition, the accuracy of the well-known coupled-cluster (CC) hierarchy (CC2, CCSD, CC3, CCSDT, CC4, and CCSDTQ) is gauged against these new accurate references. The performances of various approximations based on many-body Green's functions (GW, GF2, and T-matrix) for IPs are also analyzed. Their limitations in correctly modeling satellite transitions are discussed.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et Physique
Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique
Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
2
|
Marie A, Loos PF. A Similarity Renormalization Group Approach to Green's Function Methods. J Chem Theory Comput 2023; 19:3943-3957. [PMID: 37311565 PMCID: PMC10339683 DOI: 10.1021/acs.jctc.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 06/15/2023]
Abstract
The family of Green's function methods based on the GW approximation has gained popularity in the electronic structure theory thanks to its accuracy in weakly correlated systems combined with its cost-effectiveness. Despite this, self-consistent versions still pose challenges in terms of convergence. A recent study [Monino and Loos J. Chem. Phys. 2022, 156, 231101.] has linked these convergence issues to the intruder-state problem. In this work, a perturbative analysis of the similarity renormalization group (SRG) approach is performed on Green's function methods. The SRG formalism enables us to derive, from first-principles, the expression of a naturally static and Hermitian form of the self-energy that can be employed in quasiparticle self-consistent GW (qsGW) calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of qsGW calculations, slightly improves the overall accuracy, and is straightforward to implement in existing code.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| |
Collapse
|
3
|
Monino E, Loos PF. Unphysical discontinuities, intruder states and regularization in GW methods. J Chem Phys 2022; 156:231101. [PMID: 35732525 DOI: 10.1063/5.0089317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By recasting the non-linear frequency-dependent GW quasiparticle equation into a linear eigenvalue problem, we explain the appearance of multiple solutions and unphysical discontinuities in various physical quantities computed within the GW approximation. Considering the GW self-energy as an effective Hamiltonian, it is shown that these issues are key signatures of strong correlation in the (N ± 1)-electron states and can be directly related to the intruder state problem. A simple and efficient regularization procedure inspired by the similarity renormalization group is proposed to avoid such issues and speed up the convergence of partially self-consistent GW calculations.
Collapse
Affiliation(s)
- Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
4
|
Shee A, Yeh CN, Zgid D. Exploring Coupled Cluster Green's Function as a Method for Treating System and Environment in Green's Function Embedding Methods. J Chem Theory Comput 2022; 18:664-676. [PMID: 34989565 DOI: 10.1021/acs.jctc.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Within the self-energy embedding theory (SEET) framework, we study the coupled cluster Green's function (GFCC) method in two different contexts: as a method to treat either the system or the environment present in the embedding construction. Our study reveals that when GFCC is used to treat the environment we do not see improvement in total energies in comparison to the coupled cluster method itself. To rationalize this puzzling result, we analyze the performance of GFCC as an impurity solver with a series of transition metal oxides. These studies shed light on the strength and weaknesses of such a solver and demonstrate that such a solver gives very accurate results when the size of the impurity is small. We investigate if it is possible to achieve a systematic accuracy of the embedding solution when we increase the size of the impurity problem. We found that in such a case, the performance of the solver worsens, both in terms of finding the ground state solution of the impurity problem and the self-energies produced. We concluded that increasing the rank of GFCC solver is necessary to be able to enlarge impurity problems and achieve a reliable accuracy. We also have shown that natural orbitals from weakly correlated perturbative methods are better suited than symmetrized atomic orbitals (SAO) when the total energy of the system is the target quantity.
Collapse
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chia-Nan Yeh
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Zhou Y, Gull E, Zgid D. Material-Specific Optimization of Gaussian Basis Sets against Plane Wave Data. J Chem Theory Comput 2021; 17:5611-5622. [PMID: 34448587 DOI: 10.1021/acs.jctc.1c00491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Since in periodic systems, a given element may be present in different spatial arrangements displaying vastly different physical and chemical properties, an elemental basis set that is independent of physical properties of materials may lead to significant simulation inaccuracies. To avoid such a lack of material specificity within a given basis set, we present a material-specific Gaussian basis optimization scheme for solids, which simultaneously minimizes the total energy of the system and optimizes the band energies when compared to the reference plane wave calculation while taking care of the overlap matrix condition number. To assess this basis set optimization scheme, we compare the quality of the Gaussian basis sets generated for diamond, graphite, and silicon via our method against the existing basis sets. The optimization scheme of this work has also been tested on the existing Gaussian basis sets for periodic systems such as MoS2 and NiO, yielding improved results.
Collapse
Affiliation(s)
- Yanbing Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Burton HGA, Marut C, Daas TJ, Gori-Giorgi P, Loos PF. Variations of the Hartree-Fock fractional-spin error for one electron. J Chem Phys 2021; 155:054107. [PMID: 34364354 DOI: 10.1063/5.0056968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fractional-spin errors are inherent in all current approximate density functionals, including Hartree-Fock theory, and their origin has been related to strong static correlation effects. The conventional way to encode fractional-spin calculations is to construct an ensemble density that scales between the high-spin and low-spin densities. In this article, we explore the variation of the Hartree-Fock fractional-spin (or ghost-interaction) error in one-electron systems using restricted and unrestricted ensemble densities and the exact generalized Hartree-Fock representation. By considering the hydrogen atom and H+ 2 cation, we analyze how the unrestricted and generalized Hartree-Fock schemes minimize this error by localizing the electrons or rotating the spin coordinates. We also reveal a clear similarity between the Coulomb hole of He-like ions and the density depletion near the nucleus induced by the fractional-spin error in the unpolarized hydrogen atom. Finally, we analyze the effect of the fractional-spin error on the Møller-Plesset adiabatic connection, excited states, and functional- and density-driven errors.
Collapse
Affiliation(s)
- Hugh G A Burton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Clotilde Marut
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Timothy J Daas
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
7
|
Dong X, Zgid D, Gull E, Strand HUR. Legendre-spectral Dyson equation solver with super-exponential convergence. J Chem Phys 2020; 152:134107. [DOI: 10.1063/5.0003145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Xinyang Dong
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dominika Zgid
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hugo U. R. Strand
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Center for Computational Quantum Physics, The Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|
8
|
Backhouse OJ, Nusspickel M, Booth GH. Wave Function Perspective and Efficient Truncation of Renormalized Second-Order Perturbation Theory. J Chem Theory Comput 2020; 16:1090-1104. [PMID: 31951406 DOI: 10.1021/acs.jctc.9b01182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an approach to a renormalized second-order Green's function perturbation theory (GF2), which avoids all dependency on continuous variables, grids, or explicit Green's functions and is instead formulated entirely in terms of static quantities and wave functions. Correlation effects from MP2 diagrams are iteratively incorporated to modify the underlying spectrum of excitations by coupling the physical system to fictitious auxiliary degrees of freedom, allowing for single-particle orbitals to delocalize into this additional space. The overall approach is shown to be rigorously O[N5], after an appropriate compression of this auxiliary space. This is achieved via a novel scheme, which ensures that a desired number of moments of the underlying occupied and virtual spectra are conserved in the compression, allowing a rapid and systematically improvable convergence to the limit of the effective dynamical resolution. The approach is found to then allow for the qualitative description of stronger correlation effects, avoiding the divergences of MP2, as well as its orbital-optimized version. On application to the G1 test set, we find that modification up to only the third spectral moment of the underlying spectrum from which the double excitations are built are required for accurate energetics, even in strongly correlated regimes. This is beyond simple self-consistent changes to the density matrix of the system but far from requiring a description of the full dynamics of the frequency-dependent self-energy.
Collapse
Affiliation(s)
- Oliver J Backhouse
- Department of Physics , King's College London , Strand , London WC2R 2LS , U.K
| | - Max Nusspickel
- Department of Physics , King's College London , Strand , London WC2R 2LS , U.K
| | - George H Booth
- Department of Physics , King's College London , Strand , London WC2R 2LS , U.K
| |
Collapse
|
9
|
Loos PF, Pradines B, Scemama A, Giner E, Toulouse J. Density-Based Basis-Set Incompleteness Correction for GW Methods. J Chem Theory Comput 2019; 16:1018-1028. [DOI: 10.1021/acs.jctc.9b01067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barthélémy Pradines
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
- Institut des Sciences du Calcul et des Données, Sorbonne Université, Paris, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
10
|
Tuovinen R, Covito F, Sentef MA. Efficient computation of the second-Born self-energy using tensor-contraction operations. J Chem Phys 2019; 151:174110. [DOI: 10.1063/1.5121820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Riku Tuovinen
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Fabio Covito
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael A. Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
11
|
Doran AE, Hirata S. Monte Carlo Second- and Third-Order Many-Body Green’s Function Methods with Frequency-Dependent, Nondiagonal Self-Energy. J Chem Theory Comput 2019; 15:6097-6110. [DOI: 10.1021/acs.jctc.9b00693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander E. Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Shee A, Zgid D. Coupled Cluster as an Impurity Solver for Green’s Function Embedding Methods. J Chem Theory Comput 2019; 15:6010-6024. [DOI: 10.1021/acs.jctc.9b00603] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Bajaj A, Liu F, Kulik HJ. Non-empirical, low-cost recovery of exact conditions with model-Hamiltonian inspired expressions in jmDFT. J Chem Phys 2019; 150:154115. [PMID: 31005112 DOI: 10.1063/1.5091563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Density functional theory (DFT) is widely applied to both molecules and materials, but well known energetic delocalization and static correlation errors in practical exchange-correlation approximations limit quantitative accuracy. Common methods that correct energetic delocalization errors, such as the Hubbard U correction in DFT+U or Hartree-Fock exchange in global hybrids, do so at the cost of worsening static correlation errors. We recently introduced an alternate approach [Bajaj et al., J. Chem. Phys. 147, 191101 (2017)] known as judiciously modified DFT (jmDFT), wherein the deviation from exact behavior of semilocal functionals over both fractional spin and charge, i.e., the so-called flat plane, was used to motivate functional forms of second order analytic corrections. In this work, we introduce fully nonempirical expressions for all four coefficients in a DFT+U+J-inspired form of jmDFT, where all coefficients are obtained only from energies and eigenvalues of the integer-electron systems. We show good agreement for U and J coefficients obtained nonempirically as compared with the results of numerical fitting in a jmDFT U+J/J' correction. Incorporating the fully nonempirical jmDFT correction reduces and even eliminates the fractional spin error at the same time as eliminating the energetic delocalization error. We show that this approach extends beyond s-electron systems to higher angular momentum cases including p- and d-electrons. Finally, we diagnose some shortcomings of the current jmDFT approach that limit its ability to improve upon DFT results for cases such as weakly bound anions due to poor underlying semilocal functional behavior.
Collapse
Affiliation(s)
- Akash Bajaj
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Rusakov AA, Iskakov S, Tran LN, Zgid D. Self-Energy Embedding Theory (SEET) for Periodic Systems. J Chem Theory Comput 2018; 15:229-240. [DOI: 10.1021/acs.jctc.8b00927] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander A. Rusakov
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sergei Iskakov
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lan Nguyen Tran
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Ho Chi Minh City Institute of Physics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City 70000, Vietnam
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Quantum Physics, The Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
15
|
Véril M, Romaniello P, Berger JA, Loos PF. Unphysical Discontinuities in GW Methods. J Chem Theory Comput 2018; 14:5220-5228. [DOI: 10.1021/acs.jctc.8b00745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Describing strong correlation with fractional-spin correction in density functional theory. Proc Natl Acad Sci U S A 2018; 115:9678-9683. [PMID: 30201706 DOI: 10.1073/pnas.1807095115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An effective fractional-spin correction is developed to describe static/strong correlation in density functional theory. Combined with the fractional-charge correction from recently developed localized orbital scaling correction (LOSC), a functional, the fractional-spin LOSC (FSLOSC), is proposed. FSLOSC, a correction to commonly used functional approximations, introduces the explicit derivative discontinuity and largely restores the flat-plane behavior of electronic energy at fractional charges and fractional spins. In addition to improving results from conventional functionals for the prediction of ionization potentials, electron affinities, quasiparticle spectra, and reaction barrier heights, FSLOSC properly describes the dissociation of ionic species, single bonds, and multiple bonds without breaking space or spin symmetry and corrects the spurious fractional-charge dissociation of heteroatom molecules of conventional functionals. Thus, FSLOSC demonstrates success in reducing delocalization error and including strong correlation, within low-cost density functional approximation.
Collapse
|
17
|
Abstract
We present a new theoretical approach, unrestricted self-energy embedding theory (USEET), that is a Green's function embedding theory used to study problems in which an open, embedded system exchanges electrons with the environment. USEET has a high potential to be used in studies of strongly correlated systems with an odd number of electrons and open shell systems such as transition metal complexes important in inorganic chemistry. In this paper, we show that USEET results agree very well with common quantum chemistry methods while avoiding typical bottlenecks present in these methods.
Collapse
Affiliation(s)
- Lan Nguyen Tran
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Ho Chi Minh City Institute of Physics, VAST , Ho Chi Minh City 70000 , Vietnam
| | - Sergei Iskakov
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Dominika Zgid
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Center for Computational Quantum Physics , The Flatiron Institute , New York , New York 10010 , United States
| |
Collapse
|
18
|
Kosugi T, Nishi H, Furukawa Y, Matsushita YI. Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD). J Chem Phys 2018; 148:224103. [DOI: 10.1063/1.5029535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Taichi Kosugi
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hirofumi Nishi
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoritaka Furukawa
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | | |
Collapse
|
19
|
Neuhauser D, Baer R, Zgid D. Stochastic Self-Consistent Second-Order Green’s Function Method for Correlation Energies of Large Electronic Systems. J Chem Theory Comput 2017; 13:5396-5403. [DOI: 10.1021/acs.jctc.7b00792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Neuhauser
- Department
of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Roi Baer
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dominika Zgid
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Kananenka AA, Zgid D. Combining Density Functional Theory and Green’s Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional. J Chem Theory Comput 2017; 13:5317-5331. [DOI: 10.1021/acs.jctc.7b00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexei A. Kananenka
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Abstract
Ab initio quantum chemistry calculations for systems with large active spaces are notoriously difficult and cannot be successfully tackled by standard methods. We generalize a Green's function QM/QM embedding method called self-energy embedding theory (SEET) that has the potential to be successfully employed to treat large active spaces. In generalized SEET, active orbitals are grouped into intersecting groups of a few orbitals, allowing us to perform multiple parallel calculations yielding results comparable to the full active-space treatment. We examine generalized SEET on a series of examples and discuss a hierarchy of systematically improvable approximations.
Collapse
Affiliation(s)
- Tran Nguyen Lan
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Welden AR, Rusakov AA, Zgid D. Exploring connections between statistical mechanics and Green’s functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order Green’s function. J Chem Phys 2016; 145:204106. [DOI: 10.1063/1.4967449] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alicia Rae Welden
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
23
|
Mussard B, Toulouse J. Fractional-charge and fractional-spin errors in range-separated density-functional theory. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1213910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bastien Mussard
- Institut des sciences du calcul et des données, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
- Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, Sorbonne Universités, CNRS, Paris, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, Sorbonne Universités, CNRS, Paris, France
| |
Collapse
|
24
|
Kananenka AA, Welden AR, Lan TN, Gull E, Zgid D. Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions. J Chem Theory Comput 2016; 12:2250-9. [DOI: 10.1021/acs.jctc.6b00178] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexei A. Kananenka
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alicia Rae Welden
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tran Nguyen Lan
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emanuel Gull
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Rusakov AA, Zgid D. Self-consistent second-order Green’s function perturbation theory for periodic systems. J Chem Phys 2016; 144:054106. [DOI: 10.1063/1.4940900] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
26
|
Kananenka AA, Phillips JJ, Zgid D. Efficient Temperature-Dependent Green’s Functions Methods for Realistic Systems: Compact Grids for Orthogonal Polynomial Transforms. J Chem Theory Comput 2016; 12:564-71. [DOI: 10.1021/acs.jctc.5b00884] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexei A. Kananenka
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jordan J. Phillips
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Lan TN, Kananenka AA, Zgid D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J Chem Phys 2015; 143:241102. [DOI: 10.1063/1.4938562] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|