1
|
Haggenmueller S, Matthies M, Sample M, Šulc P. How We Simulate DNA Origami. SMALL METHODS 2025:e2401526. [PMID: 39905995 DOI: 10.1002/smtd.202401526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/11/2025] [Indexed: 02/06/2025]
Abstract
DNA origami consists of a long scaffold strand and short staple strands that self-assemble into a target 2D or 3D shape. It is a widely used construct in nucleic acid nanotechnology, offering a cost-effective way to design and create diverse nanoscale shapes. With promising applications in areas such as nanofabrication, diagnostics, and therapeutics, DNA origami has become a key tool in the bionanotechnology field. Simulations of these structures can offer insight into their shape and function, thus speeding up and simplifying the design process. However, simulating these structures, often comprising thousands of base pairs, poses challenges due to their large size. OxDNA, a coarse-grained model specifically designed for DNA nanotechnology, offers powerful simulation capabilities. Its associated ecosystem of visualization and analysis tools can complement experimental work with in silico characterization. This tutorial provides a general approach to simulating DNA origami structures using the oxDNA ecosystem, tailored for experimentalists looking to integrate computational analysis into their design workflow.
Collapse
Affiliation(s)
- Sarah Haggenmueller
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748, Garching, Germany
| | - Michael Matthies
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748, Garching, Germany
| | - Matthew Sample
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ, 85281, USA
| | - Petr Šulc
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748, Garching, Germany
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ, 85281, USA
- Center for Biological Physics, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
2
|
Cumberworth A, Reinhardt A. Models and simulations of structural DNA nanotechnology reveal fundamental principles of self-assembly. Chem Soc Rev 2025. [PMID: 39878142 DOI: 10.1039/d4cs01095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
DNA is not only a centrally important molecule in biology: the specificity of bonding that allows it to be the primary information storage medium for life has also allowed it to become one of the most promising materials for designing intricate, self-assembling structures at the nanoscale. While the applications of these structures are both broad and highly promising, the self-assembly process itself has attracted interest not only for the practical applications of designing structures with more efficient assembly pathways, but also due to a desire to understand the principles underlying self-assembling systems more generally, of which DNA-based systems provide intriguing and unique examples. Here, we review the fundamental physical principles that underpin the self-assembly process in the field of DNA nanotechnology, with a specific focus on simulation and modelling and what we can learn from them. In particular, we compare and contrast DNA origami and bricks and briefly outline other approaches, with an overview of concepts such as cooperativity, nucleation and hysteresis; we also explain how nucleation barriers can be controlled and why they can be helpful in ensuring error-free assembly. While high-resolution models may be needed to obtain accurate system-specific properties, often very simple coarse-grained models are sufficient to extract the fundamentals of the underlying physics and can enable us to gain deep insight. By combining experimental and simulation approaches to understand the details of the self-assembly process, we can optimise its yields and fidelity, which may in turn facilitate its use in practical applications.
Collapse
Affiliation(s)
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
3
|
Li M, Muthukumar M. RNA Translocation through Protein Nanopores: Interlude of the Molten RNA Globule. J Am Chem Soc 2025; 147:1553-1562. [PMID: 39812082 DOI: 10.1021/jacs.4c10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values. Two translocation modes emerge: fast and slow. In the fast mode, the speed is determined by the electric field, independent of pore geometry. In the slow mode, the molten globule stage is the rate-determining factor in slowing the translocation, instead of the previous paradigm of melting of the base pairs. Using these insights, we propose a neural network framework to identify and reconstruct RNA secondary structures from ionic current windows. We find that the electric field distribution, not the nanopore geometry, drives the molten globule stage. Our results explain the large current fluctuations. These results provide a fundamental understanding of the role of secondary and tertiary structures in the translocation of RNA in direct RNA translocation platforms based on single-molecule electrophoresis. This work offers design rules for new protein pores and real-time imaging of the secondary structures of RNA.
Collapse
Affiliation(s)
- Minglun Li
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Karmakar SD, Speck T. Dependencies between effective parameters in coarse-grained models for phase separation of DNA-based fluids. J Chem Phys 2024; 161:234907. [PMID: 39692499 DOI: 10.1063/5.0232651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
DNA is now firmly established as a versatile and robust platform for achieving synthetic nanostructures. While the folding of single molecules into complex structures is routinely achieved through engineering basepair sequences, very little is known about the emergence of structure on larger scales in DNA fluids. The fact that polymeric DNA fluids can undergo phase separation into dense fluid and dilute gas opens avenues to design hierachical and multifarious assemblies. Here, we investigate to which extent the phase behavior of single-stranded DNA fluids can be captured by a minimal model of semiflexible charged homopolymers while neglecting specific hybridization interactions. We first characterize the single-polymer behavior and then perform direct coexistence simulations to test the model against experimental data. While low-resolution models show great promise to bridge the gap to relevant length and time scales, obtaining consistent and transferable parameters is challenging. In particular, we conclude that counterions not only determine the effective range of direct electrostatic interactions but also contribute to the effective attractions.
Collapse
Affiliation(s)
- Soumen De Karmakar
- Institute for Theoretical Physics IV, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Thomas Speck
- Institute for Theoretical Physics IV, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Zhou L, Xiong Y, Dwivedy A, Zheng M, Cooper L, Shepherd S, Song T, Hong W, Le LTP, Chen X, Umrao S, Rong L, Wang T, Cunningham BT, Wang X. Bioinspired designer DNA NanoGripper for virus sensing and potential inhibition. Sci Robot 2024; 9:eadi2084. [PMID: 39602515 PMCID: PMC11750070 DOI: 10.1126/scirobotics.adi2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
DNA has shown great biocompatibility, programmable mechanical properties, and precise structural addressability at the nanometer scale, rendering it a material for constructing versatile nanorobots for biomedical applications. Here, we present the design principle, synthesis, and characterization of a DNA nanorobotic hand, called DNA NanoGripper, that contains a palm and four bendable fingers as inspired by naturally evolved human hands, bird claws, and bacteriophages. Each NanoGripper finger consists of three phalanges connected by three rotatable joints that are bendable in response to the binding of other entities. NanoGripper functions are enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We demonstrate that the NanoGripper can be engineered to effectively interact with and capture nanometer-scale objects, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. With multiple DNA aptamer nanoswitches programmed to generate a fluorescent signal that is enhanced on a photonic crystal platform, the NanoGripper functions as a highly sensitive biosensor that selectively detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~100 copies per milliliter, providing a sensitivity equal to that of reverse transcription quantitative polymerase chain reaction (RT-qPCR). Quantified by flow cytometry assays, we demonstrated that the NanoGripper-aptamer complex can effectively block viral entry into the host cells, suggesting its potential for inhibiting virus infections. The design, synthesis, and characterization of a sophisticated nanomachine that can be tailored for specific applications highlight a promising pathway toward feasible and efficient solutions to the detection and potential inhibition of virus infections.
Collapse
Affiliation(s)
- Lifeng Zhou
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mengxi Zheng
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Skye Shepherd
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Hong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Linh T. P. Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tong Wang
- Advanced Science Research Center at Graduate Center, City University of New York, New York, NY 10031, USA
| | - Brian T. Cunningham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Grabenhorst L, Pfeiffer M, Schinkel T, Kümmerlin M, Brüggenthies GA, Maglic JB, Selbach F, Murr AT, Tinnefeld P, Glembockyte V. Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01804-0. [PMID: 39511326 DOI: 10.1038/s41565-024-01804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/12/2024] [Indexed: 11/15/2024]
Abstract
Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window. Our approach utilizes a dynamic DNA origami nanostructure to engineer a high optical signal response based on fluorescence resonance energy transfer. We demonstrate mechanisms to tune the sensor's response window, specificity and cooperativity as well as highlight the modularity of the proposed platform by extending it to different biomolecular targets including more complex sensing schemes. This versatile nanosensor platform offers a promising starting point for the rapid development of biosensors with tailored properties.
Collapse
Affiliation(s)
- Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martina Pfeiffer
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thea Schinkel
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mirjam Kümmerlin
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gereon A Brüggenthies
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jasmin B Maglic
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Selbach
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander T Murr
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
7
|
Sample M, Liu H, Diep T, Matthies M, Šulc P. Hairygami: Analysis of DNA Nanostructures' Conformational Change Driven by Functionalizable Overhangs. ACS NANO 2024; 18:30004-30016. [PMID: 39421963 DOI: 10.1021/acsnano.4c10796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
DNA origami is a widely used method to construct nanostructures by self-assembling designed DNA strands. These structures are often used as "pegboards" for templated assembly of proteins, gold nanoparticles, aptamers, and other molecules, with applications ranging from therapeutics and diagnostics to plasmonics and photonics. Imaging these structures using atomic force microscopy (AFM) or transmission electron microscope (TEM) does not capture their full conformation ensemble as they only show their shape flattened on a surface. However, certain conformations of the nanostructure can position guest molecules into distances unaccounted for in their intended design, thus leading to spurious interactions between guest molecules that are designed to be separated. Here, we use molecular dynamics simulations to capture a conformational ensemble of two-dimensional (2D) DNA origami tiles and show that introducing single-stranded overhangs, which are typically used for functionalization of the origami with guest molecules, induces a curvature of the tile structure in the bulk. We show that the shape deformation is of entropic origin, with implications for the design of robust DNA origami breadboards as well as a potential approach to modulate structure shape by introducing overhangs. We then verify experimentally that the DNA overhangs introduce curvature into the DNA origami tiles under divalent as well as monovalent salt buffer conditions. We further experimentally verify that DNA origami functionalized with attached proteins also experiences such induced curvature. We provide the developed simulation code implementing the enhanced sampling to characterize the conformational space of DNA origami as open source software.
Collapse
Affiliation(s)
- Matthew Sample
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Liu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
| | - Thong Diep
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
| | - Michael Matthies
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Department of Bioscience, TU Munich, School of Natural Sciences, Garching 85748, Germany
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Bioscience, TU Munich, School of Natural Sciences, Garching 85748, Germany
| |
Collapse
|
8
|
Wong SH, Kopf SN, Caroprese V, Zosso Y, Morzy D, Bastings MMC. Modulating the DNA/Lipid Interface through Multivalent Hydrophobicity. NANO LETTERS 2024; 24:11210-11216. [PMID: 39054892 PMCID: PMC11403765 DOI: 10.1021/acs.nanolett.4c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lipids and nucleic acids are two of the most abundant components of our cells, and both molecules are widely used as engineering materials for nanoparticles. Here, we present a systematic study of how hydrophobic modifications can be employed to modulate the DNA/lipid interface. Using a series of DNA anchors with increasing hydrophobicity, we quantified the capacity to immobilize double-stranded (ds) DNA to lipid membranes in the liquid phase. Contrary to electrostatic effects, hydrophobic anchors are shown to be phase-independent if sufficiently hydrophobic. For weak anchors, the overall hydrophobicity can be enhanced following the concept of multivalency. Finally, we demonstrate that structural flexibility and anchor orientation overrule the effect of multivalency, emphasizing the need for careful scaffold design if strong interfaces are desired. Together, our findings guide the design of tailored DNA/membrane interfaces, laying the groundwork for advancements in biomaterials, drug delivery vehicles, and synthetic membrane mimics for biomedical research and nanomedicine.
Collapse
Affiliation(s)
- Siu Ho Wong
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Sarina Nicole Kopf
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Yann Zosso
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Walker-Gibbons R, Zhu X, Behjatian A, Bennett TJD, Krishnan M. Sensing the structural and conformational properties of single-stranded nucleic acids using electrometry and molecular simulations. Sci Rep 2024; 14:20582. [PMID: 39232063 PMCID: PMC11375218 DOI: 10.1038/s41598-024-70641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Inferring the 3D structure and conformation of disordered biomolecules, e.g., single stranded nucleic acids (ssNAs), remains challenging due to their conformational heterogeneity in solution. Here, we use escape-time electrometry (ETe) to measure with sub elementary-charge precision the effective electrical charge in solution of short to medium chain length ssNAs in the range of 5-60 bases. We compare measurements of molecular effective charge with theoretically calculated values for simulated molecular conformations obtained from Molecular Dynamics simulations using a variety of forcefield descriptions. We demonstrate that the measured effective charge captures subtle differences in molecular structure in various nucleic acid homopolymers of identical length, and also that the experimental measurements can find agreement with computed values derived from coarse-grained molecular structure descriptions such as oxDNA, as well next generation ssNA force fields. We further show that comparing the measured effective charge with calculations for a rigid, charged rod-the simplest model of a nucleic acid-yields estimates of molecular structural dimensions such as linear charge spacings that capture molecular structural trends observed using high resolution structural analysis methods such as X-ray scattering. By sensitively probing the effective charge of a molecule, electrometry provides a powerful dimension supporting inferences of molecular structural and conformational properties, as well as the validation of biomolecular structural models. The overall approach holds promise for a high throughput, microscopy-based biomolecular analytical approach offering rapid screening and inference of molecular 3D conformation, and operating at the single molecule level in solution.
Collapse
Affiliation(s)
- Rowan Walker-Gibbons
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Xin Zhu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ali Behjatian
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Timothy J D Bennett
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
- The Kavli Institute for Nanoscience Discovery, Sherrington Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
10
|
Walbrun A, Wang T, Matthies M, Šulc P, Simmel FC, Rief M. Single-molecule force spectroscopy of toehold-mediated strand displacement. Nat Commun 2024; 15:7564. [PMID: 39217165 PMCID: PMC11365964 DOI: 10.1038/s41467-024-51813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Toehold-mediated strand displacement (TMSD) is extensively utilized in dynamic DNA nanotechnology and for a wide range of DNA or RNA-based reaction circuits. Investigation of TMSD kinetics typically relies on bulk fluorescence measurements providing effective, bulk-averaged reaction rates. Information on individual molecules or even base pairs is scarce. In this work, we explore the dynamics of strand displacement processes at the single-molecule level using single-molecule force spectroscopy with a microfluidics-enhanced optical trap supported by state-of-the-art coarse-grained simulations. By applying force, we can trigger and observe TMSD in real-time with microsecond and nanometer resolution. We find TMSD proceeds very rapidly under load with single step times of 1 µs. Tuning invasion efficiency by introducing mismatches allows studying thousands of forward/backward invasion events on a single molecule and analyze the kinetics of the invasion process. Extrapolation to zero force reveals single step times for DNA invading DNA four times faster than for RNA invading RNA. We also study the kinetics of DNA invading RNA, a process that in the absence of force would rarely occur. Our results reveal the importance of sequence effects for the TMSD process and have relevance for a wide range of applications in nucleic acid nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andreas Walbrun
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Tianhe Wang
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany
| | - Michael Matthies
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany
| | - Petr Šulc
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Friedrich C Simmel
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany.
| | - Matthias Rief
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany.
| |
Collapse
|
11
|
Mou X, Liu K, He L, Li S. Mechanical response of double-stranded DNA: Bend, twist, and overwind. J Chem Phys 2024; 161:085102. [PMID: 39177087 DOI: 10.1063/5.0216585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
We employed all-atom molecular dynamics simulations to explore the mechanical response of bending, twisting, and overwinding for double-stranded DNA (dsDNA). We analyzed the bending and twisting deformations, as well as their stiffnesses, using the tilt, roll, and twist modes under stretching force. Findings indicate that the roll and twist angles vary linearly with the stretching force but show opposite trends. The tilt, roll, and twist elastic moduli are considered constants, while the coupling between roll and twist modes slightly decreases under stretching force. The effect of the stretching force on the roll and twist modes, including both their deformations and elasticities, exhibits sequence-dependence, with symmetry around the base pair step. Furthermore, we examined the overwinding path and mechanism of dsDNA from the perspective of the stiffness matrix, based on the tilt, roll, and twist modes. The correlations among tilt, roll, and twist angles imply an alternative overwinding pathway via twist-roll coupling when dsDNA is stretched, wherein entropic contribution prevails.
Collapse
Affiliation(s)
- Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Kai Liu
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
12
|
Liu X, Liu F, Chhabra H, Maffeo C, Chen Z, Huang Q, Aksimentiev A, Arai T. A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport. Nat Commun 2024; 15:7210. [PMID: 39174536 PMCID: PMC11341817 DOI: 10.1038/s41467-024-51630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vice versa, in which specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrate the stable architectures and the high shape retention. Single-channel current recordings and fluorescence influx studies demonstrate the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.
Collapse
Affiliation(s)
- Xiaoming Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
| | - Fengyu Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Hemani Chhabra
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Zhuo Chen
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Tatsuo Arai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
13
|
Mogheiseh M, Hasanzadeh Ghasemi R. Design and simulation of a wireframe DNA origami nanoactuator. J Chem Phys 2024; 161:045101. [PMID: 39037143 DOI: 10.1063/5.0214313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024] Open
Abstract
This paper explores the use of deoxyribonucleic acid (DNA) origami structures as nanorobot components. Investigating the functional properties of DNA origami structures can facilitate the fabrication of DNA origami-based nanorobots. The wireframe structure stands out as one of the most interesting DNA origami structures. Hence, the present study aims to employ these structures to create DNA origami nanoactuators. The research delves into the design of DNA origami structures with the aim of opening under specific temperature conditions. Short DNA strands (staples) are one of the crucial parts of DNA origami structures, and the appropriate design of these strands can lead to the creation of structures with different properties. Thus, the components of the DNA origami nanoactuator are tailored to enable intentional opening at specific temperatures while maintaining stability at lower temperatures. This structural modification showcases the functional property of the DNA origami structure. The engineered DNA origami nanoactuator holds potential applications in medicine. By carrying drugs under specific temperature conditions and releasing them under different temperature conditions, it can serve as a platform for smart drug delivery purposes.
Collapse
Affiliation(s)
- Maryam Mogheiseh
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
14
|
Cristofaro S, Querciagrossa L, Soprani L, Fraccia TP, Bellini T, Berardi R, Arcioni A, Zannoni C, Muccioli L, Orlandi S. Simulating the Lyotropic Phase Behavior of a Partially Self-Complementary DNA Tetramer. Biomacromolecules 2024; 25:3920-3929. [PMID: 38826125 DOI: 10.1021/acs.biomac.3c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
DNA oligomers in solution have been found to develop liquid crystal phases via a hierarchical process that involves Watson-Crick base pairing, supramolecular assembly into columns of duplexes, and long-range ordering. The multiscale nature of this phenomenon makes it difficult to quantitatively describe and assess the importance of the various contributions, particularly for very short strands. We performed molecular dynamics simulations based on the coarse-grained oxDNA model, aiming to depict all of the assembly processes involved and the phase behavior of solutions of the DNA GCCG tetramers. We find good quantitative matching to experimental data at both levels of molecular association (thermal melting) and collective ordering (phase diagram). We characterize the isotropic state and the low-density nematic and high-density columnar liquid crystal phases in terms of molecular order, size of aggregates, and structure, together with their effects on diffusivity processes. We observe a cooperative aggregation mechanism in which the formation of dimers is less thermodynamically favored than the formation of longer aggregates.
Collapse
Affiliation(s)
- Silvia Cristofaro
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Lara Querciagrossa
- CINECA, Via Magnanelli 6/3, Casalecchio di Reno 40033, Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Lorenzo Soprani
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Tommaso P Fraccia
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Via Vanvitelli 32, Milano 20129, Italy
| | - Roberto Berardi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Alberto Arcioni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Luca Muccioli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Silvia Orlandi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
15
|
Roozbahani GM, Colosi PL, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live-cell nuclei. SCIENCE ADVANCES 2024; 10:eadn9423. [PMID: 38968349 PMCID: PMC11225781 DOI: 10.1126/sciadv.adn9423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - P. L. Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Udono H, Fan M, Saito Y, Ohno H, Nomura SIM, Shimizu Y, Saito H, Takinoue M. Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction. ACS NANO 2024; 18:15477-15486. [PMID: 38831645 PMCID: PMC11191694 DOI: 10.1021/acsnano.3c12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
DNA droplets, artificial liquid-like condensates of well-engineered DNA sequences, allow the critical aspects of phase-separated biological condensates to be harnessed programmably, such as molecular sensing and phase-state regulation. In contrast, their RNA-based counterparts remain less explored despite more diverse molecular structures and functions ranging from DNA-like to protein-like features. Here, we design and demonstrate computational RNA droplets capable of two-input AND logic operations. We use a multibranched RNA nanostructure as a building block comprising multiple single-stranded RNAs. Its branches engaged in RNA-specific kissing-loop (KL) interaction enables the self-assembly into a network-like microstructure. Upon two inputs of target miRNAs, the nanostructure is programmed to break up into lower-valency structures that are interconnected in a chain-like manner. We optimize KL sequences adapted from viral sequences by numerically and experimentally studying the base-wise adjustability of the interaction strength. Only upon receiving cognate microRNAs, RNA droplets selectively show a drastic phase-state change from liquid to dispersed states due to dismantling of the network-like microstructure. This demonstration strongly suggests that the multistranded motif design offers a flexible means to bottom-up programming of condensate phase behavior. Unlike submicroscopic RNA-based logic operators, the macroscopic phase change provides a naked-eye-distinguishable readout of molecular sensing. Our computational RNA droplets can be applied to in situ programmable assembly of computational biomolecular devices and artificial cells from transcriptionally derived RNA within biological/artificial cells.
Collapse
Affiliation(s)
- Hirotake Udono
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minzhi Fan
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoko Saito
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hirohisa Ohno
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-ichiro M. Nomura
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yoshihiro Shimizu
- Laboratory
for Cell-Free Protein Synthesis, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Hirohide Saito
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative
Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
17
|
Tosti Guerra F, Poppleton E, Šulc P, Rovigatti L. ANNaMo: Coarse-grained modeling for folding and assembly of RNA and DNA systems. J Chem Phys 2024; 160:205102. [PMID: 38814009 DOI: 10.1063/5.0202829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024] Open
Abstract
The folding of RNA and DNA strands plays crucial roles in biological systems and bionanotechnology. However, studying these processes with high-resolution numerical models is beyond current computational capabilities due to the timescales and system sizes involved. In this article, we present a new coarse-grained model for investigating the folding dynamics of nucleic acids. Our model represents three nucleotides with a patchy particle and is parameterized using well-established nearest-neighbor models. Thanks to the reduction of degrees of freedom and to a bond-swapping mechanism, our model allows for simulations at timescales and length scales that are currently inaccessible to more detailed models. To validate the performance of our model, we conducted extensive simulations of various systems: We examined the thermodynamics of DNA hairpins, capturing their stability and structural transitions, the folding of an MMTV pseudoknot, which is a complex RNA structure involved in viral replication, and also explored the folding of an RNA tile containing a k-type pseudoknot. Finally, we evaluated the performance of the new model in reproducing the melting temperatures of oligomers and the dependence on the toehold length of the displacement rate in toehold-mediated displacement processes, a key reaction used in molecular computing. All in all, the successful reproduction of experimental data and favorable comparisons with existing coarse-grained models validate the effectiveness of the new model.
Collapse
Affiliation(s)
- F Tosti Guerra
- Department of Physics, Sapienza University of Rome, Roma, Italy
| | - E Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, USA
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - P Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, USA
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Munich, Germany
| | - L Rovigatti
- Department of Physics, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
18
|
Liu H, Matthies M, Russo J, Rovigatti L, Narayanan RP, Diep T, McKeen D, Gang O, Stephanopoulos N, Sciortino F, Yan H, Romano F, Šulc P. Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments. Science 2024; 384:776-781. [PMID: 38753798 DOI: 10.1126/science.adl5549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.
Collapse
Affiliation(s)
- Hao Liu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - Michael Matthies
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - John Russo
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Raghu Pradeep Narayanan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Thong Diep
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - Daniel McKeen
- Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nicholas Stephanopoulos
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
| | - Flavio Romano
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30171 Venezia-Mestre, Italy
- European Centre for Living Technology (ECLT), Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| |
Collapse
|
19
|
Voorspoels A, Gevers J, Santermans S, Akkan N, Martens K, Willems K, Van Dorpe P, Verhulst AS. Design Principles of DNA-Barcodes for Nanopore-FET Readout, Based on Molecular Dynamics and TCAD Simulations. J Phys Chem A 2024. [PMID: 38712508 DOI: 10.1021/acs.jpca.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nanopore field-effect transistor (NP-FET) devices hold great promise as sensitive single-molecule sensors, which provide CMOS-based on-chip readout and are also highly amenable to parallelization. A plethora of applications will therefore benefit from NP-FET technology, such as large-scale molecular analysis (e.g., proteomics). Due to its potential for parallelization, the NP-FET looks particularly well-suited for the high-throughput readout of DNA-based barcodes. However, to date, no study exists that unravels the bit-rate capabilities of NP-FET devices. In this paper, we design DNA-based barcodes by labeling a piece of double-stranded DNA with dumbbell-like DNA structures. We explore the impact of both the size of the dumbbells and their spacing on achievable bit-rates. The conformational fluctuations of this DNA-origami, as observed by molecular dynamics (MD) simulation, are accounted for when selecting label sizes. An experimentally informed 3D continuum nanofluidic-nanoelectronic device model subsequently predicts both the ionic current and FET signals. We present a barcode design for a conceptually generic NP-FET, with a 14 nm diameter pore, operating in conditions corresponding to experiments. By adjusting the spacing between the labels to half the length of the pore, we show that a bit-rate of 78 kbit·s-1 is achievable. This lies well beyond the state-of-the-art of ≈40 kbit·s-1, with significant headroom for further optimizations. We also highlight the advantages of NP-FET readout based on the larger signal size and sinusoidal signal shape.
Collapse
Affiliation(s)
- Aderik Voorspoels
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Juliette Gevers
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Nihat Akkan
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Koen Martens
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Pol Van Dorpe
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Anne S Verhulst
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| |
Collapse
|
20
|
Adžić N, Jochum C, Likos CN, Stiakakis E. Engineering Ultrasoft Interactions in Stiff All-DNA Dendrimers by Site-Specific Control of Scaffold Flexibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308763. [PMID: 38183376 PMCID: PMC11475228 DOI: 10.1002/smll.202308763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/10/2023] [Indexed: 01/08/2024]
Abstract
A combined experimental and theoretical study of the structural correlations in moderately concentrated suspensions of all-DNA dendrimers of the second generation (G2) with controlled scaffold rigidity is reported here. Small-angle X-ray scattering experiments in concentrated aqueous saline solutions of stiff all-DNA G2 dendritic constructs reveal a novel anomalous liquid-like phase behavior which is reflected in the calculated structure factors as a two-step increase at low scattering wave vectors. By developing a new design strategy for adjusting the particle's internal flexibility based on site-selective incorporation of single-stranded DNA linkers into the dendritic scaffold, it is shown that this unconventional type of self-organization is strongly contingent on the dendrimer's stiffness. A comprehensive computer simulation study employing dendritic models with different levels of coarse-graining, and two theoretical approaches based on effective, pair-potential interactions, remarkably confirmed the origin of this unusual liquid-like behavior. The results demonstrate that the precise control of the internal structure of the dendritic scaffold conferred by the DNA can be potentially used to engineer a rich palette of novel ultrasoft interaction potentials that could offer a route for directed self-assembly of intriguing soft matter phases and experimental realizations of a host of unusual phenomena theoretically predicted for ultrasoft interacting systems.
Collapse
Affiliation(s)
- Nataša Adžić
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5ViennaA‐1090Austria
- Institute of Physics BelgradeUniversity of BelgradePregrevica 118Belgrade11080Serbia
| | - Clemens Jochum
- Institute for Theoretical PhysicsTU WienWiedner Hauptstraße 8–10ViennaA‐1040Austria
| | - Christos N. Likos
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5ViennaA‐1090Austria
| | - Emmanuel Stiakakis
- Biomacromolecular Systems and ProcessesInstitute of Biological Information Processing (IBI‐4), Forschungszentrum JülichD‐52425JülichGermany
| |
Collapse
|
21
|
Ma Y, Guo W, Mou Q, Shao X, Lyu M, Garcia V, Kong L, Lewis W, Ward C, Yang Z, Pan X, Yi SS, Lu Y. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol 2024; 42:608-616. [PMID: 37217750 PMCID: PMC10663388 DOI: 10.1038/s41587-023-01801-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Little is known about the biological roles of glycosylated RNAs (glycoRNAs), a recently discovered class of glycosylated molecules, because of a lack of visualization methods. We report sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA) to visualize glycoRNAs in single cells with high sensitivity and selectivity. The signal output of ARPLA occurs only when dual recognition of a glycan and an RNA triggers in situ ligation, followed by rolling circle amplification of a complementary DNA, which generates a fluorescent signal by binding fluorophore-labeled oligonucleotides. Using ARPLA, we detect spatial distributions of glycoRNAs on the cell surface and their colocalization with lipid rafts as well as the intracellular trafficking of glycoRNAs through SNARE protein-mediated secretory exocytosis. Studies in breast cell lines suggest that surface glycoRNA is inversely associated with tumor malignancy and metastasis. Investigation of the relationship between glycoRNAs and monocyte-endothelial cell interactions suggests that glycoRNAs may mediate cell-cell interactions during the immune response.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Mingkuan Lyu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Valeria Garcia
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Carson Ward
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S Stephen Yi
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
22
|
Ratajczyk EJ, Šulc P, Turberfield AJ, Doye JPK, Louis AA. Coarse-grained modeling of DNA-RNA hybrids. J Chem Phys 2024; 160:115101. [PMID: 38497475 DOI: 10.1063/5.0199558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
Collapse
Affiliation(s)
- Eryk J Ratajczyk
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
23
|
Zheng Z, Grall S, Kim SH, Chovin A, Clement N, Demaille C. Activationless Electron Transfer of Redox-DNA in Electrochemical Nanogaps. J Am Chem Soc 2024; 146:6094-6103. [PMID: 38407938 DOI: 10.1021/jacs.3c13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Our recent discovery of decreased reorganization energy in electrode-tethered redox-DNA systems prompts inquiries into the origin of this phenomenon and suggests its potential use to lower the activation energy of electrochemical reactions. Here, we show that the confinement of the DNA chain in a nanogap amplifies this effect to an extent to which it nearly abolishes the intrinsic activation energy of electron transfer. Employing electrochemical atomic force microscopy (AFM-SECM), we create sub-10 nm nanogaps between a planar electrode surface bearing end-anchored ferrocenylated DNA chains and an incoming microelectrode tip. The redox cycling of the DNA's ferrocenyl (Fc) moiety between the surface and the tip generates a measurable current at the scale of ∼10 molecules. Our experimental findings are rigorously interpreted through theoretical modeling and original molecular dynamics simulations (Q-Biol code). Several intriguing findings emerge from our investigation: (i) The electron transport resulting from DNA dynamics is many times faster than predicted by simple diffusion considerations. (ii) The current in the nanogap is solely governed by the electron transfer rate at the electrodes. (iii) This rate rapidly saturates as overpotentials applied to the nanogap electrodes increase, implying near-complete suppression of the reorganization energy for the oxidation/reduction of the Fc heads within confined DNA. Furthermore, evidence is presented that this may constitute a general, previously unforeseen, behavior of redox polymer chains in electrochemical nanogaps.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Simon Grall
- IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Soo Hyeon Kim
- IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Arnaud Chovin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Nicolas Clement
- IIS, LIMMS/CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo, Japan
- LAAS, 7 avenue du Colonel Roche, 31400 Toulouse, France
| | - Christophe Demaille
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| |
Collapse
|
24
|
Dey S, Rivas-Barbosa R, Sciortino F, Zaccarelli E, Zijlstra P. Biomolecular interactions on densely coated nanoparticles: a single-molecule perspective. NANOSCALE 2024; 16:4872-4879. [PMID: 38318671 DOI: 10.1039/d3nr06140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
DNA-modified gold nanoparticles (AuNPs) play a pivotal role in bio-nanotechnology, driving advancements in bio-sensing, bio-imaging, and drug delivery. Synthetic protocols have focused on maximizing the receptor density on particles by fine-tuning chemical conditions, particularly for DNA. Despite their significance, the understanding of hybridization kinetics on functionalized AuNPs is lacking, particularly how this kinetics depends on DNA density and to what extent it varies from particle-to-particle. This study explores the molecular mechanisms of DNA hybridization on densely coated AuNPs by employing a combination of single-molecule microscopy and coarse-grained molecular dynamics simulations providing a quantification of the molecular rate constants for single particles. Our findings demonstrate that DNA receptor density and the presence of spacer strands profoundly impact association kinetics, with short spacers enhancing association rates by up to ∼15-fold. In contrast, dissociation kinetics are largely unaffected by receptor density within the studied range. Single-particle analysis directly reveals variability in hybridization kinetics, which is analyzed in terms of intra- and inter-particle heterogeneity. A coarse-grained DNA model that quantifies hybridization kinetics on densely coated surfaces further corroborates our experimental results, additionally shedding light on how transient base pairing within the DNA coating influences kinetics. This integrated approach underscores the value of single-molecule studies and simulations for understanding DNA dynamics on densely coated nanoparticle surfaces, offering guidance for designing DNA-functionalized nanoparticles in sensor applications.
Collapse
Affiliation(s)
- Swayandipta Dey
- Eindhoven University of Technology, Department of Applied Physics and Science Education, Postbus 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, The Netherlands
| | - Rodrigo Rivas-Barbosa
- Dipartmento di Fisica, Universita' di Roma "La Sapienza", Piazzale Moro 5, Roma I-00185, Italy
| | - Francesco Sciortino
- Dipartmento di Fisica, Universita' di Roma "La Sapienza", Piazzale Moro 5, Roma I-00185, Italy
| | - Emanuela Zaccarelli
- Dipartmento di Fisica, Universita' di Roma "La Sapienza", Piazzale Moro 5, Roma I-00185, Italy
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Peter Zijlstra
- Eindhoven University of Technology, Department of Applied Physics and Science Education, Postbus 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
25
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Liu Y, Li B, Wang F, Li Q, Jia S, Liu X, Li M. Quantitative Analysis of Resistance to Deformation of the DNA Origami Framework Supported by Struts. ACS APPLIED BIO MATERIALS 2024; 7:1311-1316. [PMID: 38303492 DOI: 10.1021/acsabm.3c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Nanostructures with controlled shapes are of particular interest due to their consistent physical and chemical properties and their potential for assembly into complex superstructures. The use of supporting struts has proven to be effective in the construction of precise DNA polyhedra. However, the influence of struts on the structure of DNA origami frameworks on the nanoscale remains unclear. In this study, we developed a flexible square DNA origami (SDO) framework and enhanced its structural stability by incorporating interarm supporting struts (SDO-s). Comparing the framework with and without such struts, we found that SDO-s demonstrated a significantly improved resistance to deformation. We assessed the deformability of these two DNA origami structures through the statistical analysis of interior angles of polygons based on atomic force microscopy and transmission electron microscopy data. Our results showed that SDO-s exhibited more centralized interior angle distributions compared to SDO, reducing from 30-150° to 60-120°. Furthermore, molecular dynamics simulations indicated that supporting struts significantly decreased the thermodynamic fluctuations of the SDO-s, as described by the root-mean-square fluctuation parameter. Finally, we experimentally demonstrated that the 2D arrays assembled from SDO-s exhibited significantly higher quality than those assembled from SDO. These quantitative analyses provide an understanding of how supporting struts can enhance the structural integrity of DNA origami frameworks.
Collapse
Affiliation(s)
- Yongjun Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bochen Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Centola M, Poppleton E, Ray S, Centola M, Welty R, Valero J, Walter NG, Šulc P, Famulok M. A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. NATURE NANOTECHNOLOGY 2024; 19:226-236. [PMID: 37857824 PMCID: PMC10873200 DOI: 10.1038/s41565-023-01516-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver-follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver-follower pair.
Collapse
Affiliation(s)
- Mathias Centola
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
| | - Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Sujay Ray
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | | | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | - Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
- Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Århus, Denmark
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA.
| | - Petr Šulc
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany.
| |
Collapse
|
28
|
Sun C, Li M, Wang F. Programming and monitoring surface-confined DNA computing. Bioorg Chem 2024; 143:107080. [PMID: 38183684 DOI: 10.1016/j.bioorg.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
DNA-based molecular computing has evolved to encompass a diverse range of functions, demonstrating substantial promise for both highly parallel computing and various biomedical applications. Recent advances in DNA computing systems based on surface reactions have demonstrated improved levels of specificity and computational speed compared to their solution-based counterparts that depend on three-dimensional molecular collisions. Herein, computational biomolecular interactions confined by various surfaces such as DNA origamis, nanoparticles, lipid membranes and chips are systematically reviewed, along with their manipulation methodologies. Monitoring techniques and applications for these surface-based computing systems are also described. The advantages and challenges of surface-confined DNA computing are discussed.
Collapse
Affiliation(s)
- Chenyun Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
29
|
Velusamy A, Sharma R, Rashid SA, Ogasawara H, Salaita K. DNA mechanocapsules for programmable piconewton responsive drug delivery. Nat Commun 2024; 15:704. [PMID: 38267454 PMCID: PMC10808132 DOI: 10.1038/s41467-023-44061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
The mechanical dysregulation of cells is associated with a number of disease states, that spans from fibrosis to tumorigenesis. Hence, it is highly desirable to develop strategies to deliver drugs based on the "mechanical phenotype" of a cell. To achieve this goal, we report the development of DNA mechanocapsules (DMC) comprised of DNA tetrahedrons that are force responsive. Modeling shows the trajectory of force-induced DMC rupture and predicts how applied force spatial position and orientation tunes the force-response threshold. DMCs functionalized with adhesion ligands mechanically denature in vitro as a result of cell receptor forces. DMCs are designed to encapsulate macromolecular cargos such as dextran and oligonucleotide drugs with minimal cargo leakage and high nuclease resistance. Force-induced release and uptake of DMC cargo is validated using flow cytometry. Finally, we demonstrate force-induced mRNA knockdown of HIF-1α in a manner that is dependent on the magnitude of cellular traction forces. These results show that DMCs can be effectively used to target biophysical phenotypes which may find useful applications in immunology and cancer biology.
Collapse
Affiliation(s)
| | - Radhika Sharma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
30
|
Qiao YP, Ren CL. Correlated Hybrid DNA Structures Explored by the oxDNA Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:109-117. [PMID: 38154122 DOI: 10.1021/acs.langmuir.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Thermodynamically, perfect DNA hybridization can be formed between probes and their corresponding targets due to the favorable energy. However, this is not the case dynamically. Here, we use molecular dynamics (MD) simulations based on the oxDNA model to investigate the process of DNA microarray hybridization. In general, correlated hybrid DNA structures are formed, including one probe associated with several targets as well as one target hybrid with multiple probes leading to the target-mediated hybridization. The formation of these two types of correlated structures largely depends on the surface coverage of the DNA microarray. Moreover, DNA sequence, DNA length, and spacer length have an impact on the structural formation. Our findings shed light on the dynamics of DNA hybridization, which is important for the application of DNA microarray.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
31
|
Roozbahani GM, Colosi P, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live cell nuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573746. [PMID: 38260628 PMCID: PMC10802371 DOI: 10.1101/2023.12.30.573746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
DNA origami (DO) are promising tools for in vitro or in vivo applications including drug delivery; biosensing, detecting biomolecules; and probing chromatin sub-structures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing visualizing and controlling important biological processes in live cells. Here we present an approach to deliver DO strucures into live cell nuclei. We show that labelled DOs do not undergo detectable structural degradation in cell culture media or human cell extracts for 24 hr. To deliver DO platforms into the nuclei of human U2OS cells, we conjugated 30 nm long DO nanorods with an antibody raised against the largest subunit of RNA Polymerase II (Pol II), a key enzyme involved in gene transcription. We find that DOs remain structurally intact in cells for 24hr, including within the nucleus. Using fluorescence microscopy we demonstrate that the electroporated anti-Pol II antibody conjugated DOs are efficiently piggybacked into nuclei and exihibit sub-diffusive motion inside the nucleus. Our results reveal that functionalizing DOs with an antibody raised against a nuclear factor is a highly effective method for the delivery of nanodevices into live cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Patricia Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch, 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch, 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
32
|
Yu L, Xu Y, Al-Amin M, Jiang S, Sample M, Prasad A, Stephanopoulos N, Šulc P, Yan H. CytoDirect: A Nucleic Acid Nanodevice for Specific and Efficient Delivery of Functional Payloads to the Cytoplasm. J Am Chem Soc 2023; 145:27336-27347. [PMID: 38055928 PMCID: PMC10789493 DOI: 10.1021/jacs.3c07491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Direct and efficient delivery of functional payloads such as chemotherapy drugs, siRNA, or small-molecule inhibitors into the cytoplasm, bypassing the endo/lysosomal trapping, is a challenging task for intracellular medicine. Here, we take advantage of the programmability of DNA nanotechnology to develop a DNA nanodevice called CytoDirect, which incorporates disulfide units and human epidermal growth factor receptor 2 (HER2) affibodies into a DNA origami nanostructure, enabling rapid cytosolic uptake into targeted cancer cells and deep tissue penetration. We further demonstrated that therapeutic oligonucleotides and small-molecule chemotherapy drugs can be easily delivered by CytoDirect and showed notable effects on gene knockdown and cell apoptosis, respectively. This study demonstrates the synergistic effect of disulfide and HER2 affibody modifications on the rapid cytosolic delivery of DNA origami and its payloads to targeted cells and deep tissues, thereby expanding the delivery capabilities of DNA nanostructures in a new direction for disease treatment.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Yang Xu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Md Al-Amin
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Shuoxing Jiang
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Matthew Sample
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
33
|
Yang Y, Lu Q, Chen Y, DeLuca M, Arya G, Ke Y, Zauscher S. Spatiotemporal Control over Polynucleotide Brush Growth on DNA Origami Nanostructures. Angew Chem Int Ed Engl 2023; 62:e202311727. [PMID: 37820028 DOI: 10.1002/anie.202311727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
DNA nanotechnology provides an approach to create precise, tunable, and biocompatible nanostructures for biomedical applications. However, the stability of these structures is severely compromised in biological milieu due to their fast degradation by nucleases. Recently, we showed how enzymatic polymerization could be harnessed to grow polynucleotide brushes of tunable length and location on the surface of DNA origami nanostructures, which greatly enhances their nuclease stability. Here, we report on strategies that allow for both spatial and temporal control over polymerization through activatable initiation, cleavage, and regeneration of polynucleotide brushes using restriction enzymes. The ability to site-specifically decorate DNA origami nanostructures with polynucleotide brushes in a spatiotemporally controlled way provides access to "smart" functionalized DNA architectures with potential applications in drug delivery and supramolecular assembly.
Collapse
Affiliation(s)
- Yunqi Yang
- Department of Mechanical Engineering and Materials Science, Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qinyi Lu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Yu Chen
- University Program in Materials Science and Engineering, Duke University, Durham, NC 27708, USA
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yonggang Ke
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
34
|
Lee JY, Koh H, Kim DN. A computational model for structural dynamics and reconfiguration of DNA assemblies. Nat Commun 2023; 14:7079. [PMID: 37925463 PMCID: PMC10625641 DOI: 10.1038/s41467-023-42873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Recent advances in constructing a structured DNA assembly whose configuration can be dynamically changed in response to external stimuli have demanded the development of an efficient computational modeling approach to expedite its design process. Here, we present a computational framework capable of analyzing both equilibrium and non-equilibrium dynamics of structured DNA assemblies at the molecular level. The framework employs Langevin dynamics with structural and hydrodynamic finite element models that describe mechanical, electrostatic, base stacking, and hydrodynamic interactions. Equilibrium dynamic analysis for various problems confirms the solution accuracy at a near-atomic resolution, comparable to molecular dynamics simulations and experimental measurements. Furthermore, our model successfully simulates a long-time-scale close-to-open-to-close dynamic reconfiguration of the switch structure in response to changes in ion concentration. We expect that the proposed model will offer a versatile way of designing responsive and reconfigurable DNA machines.
Collapse
Affiliation(s)
- Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Heeyuen Koh
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
35
|
Ma R, Rashid SA, Velusamy A, Deal BR, Chen W, Petrich B, Li R, Salaita K. Molecular mechanocytometry using tension-activated cell tagging. Nat Methods 2023; 20:1666-1671. [PMID: 37798479 PMCID: PMC11325290 DOI: 10.1038/s41592-023-02030-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2023] [Indexed: 10/07/2023]
Abstract
Flow cytometry is used routinely to measure single-cell gene expression by staining cells with fluorescent antibodies and nucleic acids. Here, we present tension-activated cell tagging (TaCT) to label cells fluorescently based on the magnitude of molecular force transmitted through cell adhesion receptors. As a proof-of-concept, we analyzed fibroblasts and mouse platelets after TaCT using conventional flow cytometry.
Collapse
Affiliation(s)
- Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | - Brendan R Deal
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Wenchun Chen
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Brian Petrich
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Renhao Li
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
36
|
Karna D, Mano E, Ji J, Kawamata I, Suzuki Y, Mao H. Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies. Nat Commun 2023; 14:6459. [PMID: 37833326 PMCID: PMC10575982 DOI: 10.1038/s41467-023-41604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
The intrinsic complexity of many mesoscale (10-100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Eriko Mano
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu, 514-8507, Japan.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
37
|
Lv H, Xie N, Li M, Dong M, Sun C, Zhang Q, Zhao L, Li J, Zuo X, Chen H, Wang F, Fan C. DNA-based programmable gate arrays for general-purpose DNA computing. Nature 2023; 622:292-300. [PMID: 37704731 DOI: 10.1038/s41586-023-06484-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
The past decades have witnessed the evolution of electronic and photonic integrated circuits, from application specific to programmable1,2. Although liquid-phase DNA circuitry holds the potential for massive parallelism in the encoding and execution of algorithms3,4, the development of general-purpose DNA integrated circuits (DICs) has yet to be explored. Here we demonstrate a DIC system by integration of multilayer DNA-based programmable gate arrays (DPGAs). We find that the use of generic single-stranded oligonucleotides as a uniform transmission signal can reliably integrate large-scale DICs with minimal leakage and high fidelity for general-purpose computing. Reconfiguration of a single DPGA with 24 addressable dual-rail gates can be programmed with wiring instructions to implement over 100 billion distinct circuits. Furthermore, to control the intrinsically random collision of molecules, we designed DNA origami registers to provide the directionality for asynchronous execution of cascaded DPGAs. We exemplify this by a quadratic equation-solving DIC assembled with three layers of cascade DPGAs comprising 30 logic gates with around 500 DNA strands. We further show that integration of a DPGA with an analog-to-digital converter can classify disease-related microRNAs. The ability to integrate large-scale DPGA networks without apparent signal attenuation marks a key step towards general-purpose DNA computing.
Collapse
Affiliation(s)
- Hui Lv
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Laboratory, Shanghai, China
| | - Nuli Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingkai Dong
- Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China
| | - Chenyun Sun
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Xiangfu Laboratory, Jiashan, China
| | - Jiang Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Chen
- Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Xu Y, Zheng R, Prasad A, Liu M, Wan Z, Zhou X, Porter RM, Sample M, Poppleton E, Procyk J, Liu H, Li Y, Wang S, Yan H, Sulc P, Stephanopoulos N. High-affinity binding to the SARS-CoV-2 spike trimer by a nanostructured, trivalent protein-DNA synthetic antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558353. [PMID: 37790307 PMCID: PMC10542138 DOI: 10.1101/2023.09.18.558353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Multivalency enables nanostructures to bind molecular targets with high affinity. Although antibodies can be generated against a wide range of antigens, their shape and size cannot be tuned to match a given target. DNA nanotechnology provides an attractive approach for designing customized multivalent scaffolds due to the addressability and programmability of the nanostructure shape and size. Here, we design a nanoscale synthetic antibody ("nano-synbody") based on a three-helix bundle DNA nanostructure with one, two, or three identical arms terminating in a mini-binder protein that targets the SARS-CoV-2 spike protein. The nano-synbody was designed to match the valence and distance between the three receptor binding domains (RBDs) in the spike trimer, in order to enhance affinity. The protein-DNA nano-synbody shows tight binding to the wild-type, Delta, and several Omicron variants of the SARS-CoV-2 spike trimer, with affinity increasing as the number of arms increases from one to three. The effectiveness of the nano-synbody was also verified using a pseudovirus neutralization assay, with the three-arm nanostructure inhibiting two Omicron variants against which the structures with only one or two arms are ineffective. The structure of the three-arm nano-synbody bound to the Omicron variant spike trimer was solved by negative-stain transmission electron microscopy reconstruction, and shows the protein-DNA nanostructure with all three arms attached to the RBD domains, confirming the intended trivalent attachment. The ability to tune the size and shape of the nano-synbody, as well as its potential ability to attach two or more different binding ligands, will enable the high-affinity targeting of a range of proteins not possible with traditional antibodies.
Collapse
|
39
|
Madrid I, Zheng Z, Gerbelot C, Fujiwara A, Li S, Grall S, Nishiguchi K, Kim SH, Chovin A, Demaille C, Clement N. Ballistic Brownian Motion of Nanoconfined DNA. ACS NANO 2023; 17:17031-17040. [PMID: 37700490 DOI: 10.1021/acsnano.3c04349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Theoretical treatments of polymer dynamics in liquid generally start with the basic assumption that motion at the smallest scale is heavily overdamped; therefore, inertia can be neglected. We report on the Brownian motion of tethered DNA under nanoconfinement, which was analyzed by molecular dynamics simulation and nanoelectrochemistry-based single-electron shuttle experiments. Our results show a transition into the ballistic Brownian motion regime for short DNA in sub-5 nm gaps, with quality coefficients as high as 2 for double-stranded DNA, an effect mainly attributed to a drastic increase in stiffness. The possibility for DNA to enter the underdamped regime could have profound implications on our understanding of the energetics of biomolecular engines such as the replication machinery, which operates in nanocavities that are a few nanometers wide.
Collapse
Affiliation(s)
- Ignacio Madrid
- IIS, LIMMS CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan
| | - Zhiyong Zheng
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Cedric Gerbelot
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi 243-0198, Japan
| | - Akira Fujiwara
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi 243-0198, Japan
| | - Shuo Li
- IIS, LIMMS CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan
| | - Simon Grall
- IIS, LIMMS CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan
| | - Katsuhiko Nishiguchi
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi 243-0198, Japan
| | - Soo Hyeon Kim
- IIS, LIMMS CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan
| | - Arnaud Chovin
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Christophe Demaille
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Nicolas Clement
- IIS, LIMMS CNRS-IIS UMI2820, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi 243-0198, Japan
| |
Collapse
|
40
|
Micheloni M, Petrolli L, Lattanzi G, Potestio R. Kinetics of radiation-induced DNA double-strand breaks through coarse-grained simulations. Biophys J 2023; 122:3314-3322. [PMID: 37455429 PMCID: PMC10465705 DOI: 10.1016/j.bpj.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/16/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Double-strand breaks (DSBs), i.e., the covalent cut of the DNA backbone over both strands, are a detrimental outcome of cell irradiation, bearing chromosomal aberrations and leading to cell apoptosis. In the early stages of the evolution of a DSB, the disruption of the residual interactions between the DNA moieties drives the fracture of the helical layout; in spite of its biological significance, the details of this process are still largely uncertain. Here, we address the mechanical rupture of DNA by DSBs via coarse-grained molecular dynamics simulations: the setup involves a 3855-bp DNA filament and diverse DSB motifs, i.e., within a range of distances between strand breaks (or DSB distance). By employing a coarse-grained model of DNA, we access the molecular details and characteristic timescales of the rupturing process. A sequence-nonspecific, linear correlation is observed between the DSB distance and the internal energy contribution to the disruption of the residual (Watson-Crick and stacking) contacts between DNA moieties, which is seemingly driven by an abrupt, cooperative process. Moreover, we infer an exponential dependence of the characteristic rupture times on the DSB distances, which we associate to an Arrhenius-like law of thermally-activated processes. This work lays the foundations of a detailed, mechanistic assessment of DSBs in silico as a benchmark to both numerical simulations and data from single-molecule experiments.
Collapse
Affiliation(s)
- Manuel Micheloni
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Lorenzo Petrolli
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy.
| |
Collapse
|
41
|
Li R, Madhvacharyula AS, Du Y, Adepu HK, Choi JH. Mechanics of dynamic and deformable DNA nanostructures. Chem Sci 2023; 14:8018-8046. [PMID: 37538812 PMCID: PMC10395309 DOI: 10.1039/d3sc01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| |
Collapse
|
42
|
Pfeifer WG, Huang CM, Poirier MG, Arya G, Castro CE. Versatile computer-aided design of free-form DNA nanostructures and assemblies. SCIENCE ADVANCES 2023; 9:eadi0697. [PMID: 37494445 PMCID: PMC10371015 DOI: 10.1126/sciadv.adi0697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Recent advances in structural DNA nanotechnology have been facilitated by design tools that continue to push the limits of structural complexity while simplifying an often-tedious design process. We recently introduced the software MagicDNA, which enables design of complex 3D DNA assemblies with many components; however, the design of structures with free-form features like vertices or curvature still required iterative design guided by simulation feedback and user intuition. Here, we present an updated design tool, MagicDNA 2.0, that automates the design of free-form 3D geometries, leveraging design models informed by coarse-grained molecular dynamics simulations. Our GUI-based, stepwise design approach integrates a high level of automation with versatile control over assembly and subcomponent design parameters. We experimentally validated this approach by fabricating a range of DNA origami assemblies with complex free-form geometries, including a 3D Nozzle, G-clef, and Hilbert and Trifolium curves, confirming excellent agreement between design input, simulation, and structure formation.
Collapse
Affiliation(s)
- Wolfgang G. Pfeifer
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Lysne D, Hachigian T, Thachuk C, Lee J, Graugnard E. Leveraging Steric Moieties for Kinetic Control of DNA Strand Displacement Reactions. J Am Chem Soc 2023. [PMID: 37487322 PMCID: PMC10401717 DOI: 10.1021/jacs.3c04344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
DNA strand displacement networks are a critical part of dynamic DNA nanotechnology and are proven primitives for implementing chemical reaction networks. Precise kinetic control of these networks is important for their use in a range of applications. Among the better understood and widely leveraged kinetic properties of these networks are toehold sequence, length, composition, and location. While steric hindrance has been recognized as an important factor in such systems, a clear understanding of its impact and role is lacking. Here, a systematic investigation of steric hindrance within a DNA toehold-mediated strand displacement network was performed through tracking kinetic reactions of reporter complexes with incremental concatenation of steric moieties near the toehold. Two subsets of steric moieties were tested with systematic variation of structures and reaction conditions to isolate sterics from electrostatics. Thermodynamic and coarse-grained computational modeling was performed to gain further insight into the impacts of steric hindrance. Steric factors yielded up to 3 orders of magnitude decrease in the reaction rate constant. This pronounced effect demonstrates that steric moieties can be a powerful tool for kinetic control in strand displacement networks while also being more broadly informative of DNA structural assembly in both DNA-based therapeutic and diagnostic applications that possess elements of steric hindrance through DNA functionalization with an assortment of chemistries.
Collapse
Affiliation(s)
- Drew Lysne
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Tim Hachigian
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Chris Thachuk
- Paul G Allen School of Computer Science and Engineering, University of Washington, Paul G. Allen Center, Box 352350, 185 E Stevens Way NE, Seattle, Washington 98195-2350, United States
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
44
|
Liang T, Yang C, Song X, Feng Y, Liu Y, Chen H. Quantification of macromolecule crowding at single-molecule level. Phys Rev E 2023; 108:014406. [PMID: 37583195 DOI: 10.1103/physreve.108.014406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/19/2023] [Indexed: 08/17/2023]
Abstract
Macromolecule crowding has a prominent impact on a series of biochemical processes in the cell. It is also expected to promote macromolecular complexation induced by excluded volume effects, which conflicts with recent advances in the thermodynamic interaction between inert, synthetic polymers, and nucleic acids. Along this line, a method combining high-resolution magnetic tweezers and extended crowder-oxDNA model was applied to resolve these discrepancies by systematically studying the kinetics and thermodynamics of the folding-unfolding transition for an individual DNA hairpin in a crowded environment. More specifically, from the magnetic tweezers-based experiments, the linear dependence of the critical force of the DNA hairpin on the polyethylene glycol (PEG) concentration was demonstrated, which is consistent with the results based on the crowder-oxDNA model in which the Lennard-Jones potential was adopted to express the interaction between the crowders and the DNA hairpin. These consistencies highlight that the excluded volume effects are mainly responsible for the interaction between PEG and the DNA hairpin, which is different from the interaction between dextran and the DNA hairpin. In the meantime, the dependence of the folding rate on the molecule weight of PEG, which was different from fluorescence resonance energy transfer-based results, was identified. The proposed method opens a path to detect the interaction between an inert, synthetic molecule, and the DNA hairpin, which is important to accurately mimic the cytosolic environments using mixtures of different inert molecules.
Collapse
Affiliation(s)
- Ting Liang
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Chao Yang
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Xiaoya Song
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Yuyu Feng
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang 550025, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
45
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
46
|
Tang Y, Liu H, Wang Q, Qi X, Yu L, Šulc P, Zhang F, Yan H, Jiang S. DNA Origami Tessellations. J Am Chem Soc 2023. [PMID: 37329284 DOI: 10.1021/jacs.3c03044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami nanostructures are excellent building blocks for constructing tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, we present a general method for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. Interhelical distance (D) was identified as a critical design parameter determining tile conformation and tessellation outcome. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability, enabling the formation of single-crystalline lattices ranging from tens to hundreds of square micrometers. The general applicability of the design method was demonstrated by 9 tile geometries, 15 unique tile designs, and 12 tessellation patterns covering Platonic, Laves, and Archimedean tilings. Particularly, we took two strategies to increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and coassembling tiles of different geometries. Both yielded various tiling patterns that rivaled Platonic tilings in size and quality, indicating the robustness of the optimized tessellation system. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
Collapse
Affiliation(s)
- Yue Tang
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Liu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Qi Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaodong Qi
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Fei Zhang
- Department of Chemistry, School of Arts & Sciences-Newark, Rutgers University, Newark, New Jersey 07102, United States
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Shuoxing Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
47
|
Qiao YP, Ren CL, Ma YQ. Two Different Ways of Stress Release in Supercoiled DNA Minicircles under DNA Nick. J Phys Chem B 2023; 127:4015-4021. [PMID: 37126597 DOI: 10.1021/acs.jpcb.2c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is generally believed that DNA nick is an effective way to release stress in supercoiled DNA, resulting from the twisting motion that individual strands rotate around the axis of the DNA helix. Here, we use MD simulations based on the oxDNA model to investigate the relaxation of 336 bp supercoiled minicircular DNA under DNA nick. Our simulations show that stress release, characterized by the abrupt decrease in linking number, may be induced by two types of DNA motion depending on the nick position. Except for the twisting motion, there is a writhing motion, that is, double strands collectively rotating with one plectoneme removal, which may occur in the process of DNA relaxation with the nick position in the loop region. Moreover, the writhing motion is more likely to occur in the DNA with relatively high hardness, such as C-G pairs. Our simulation results uncover the relationship between structural transformation, stress release, and DNA motion during the dynamic process under DNA nick, indicating the influence of nick position on the relaxation of the supercoiled DNA.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
48
|
Yang C, Song X, Feng Y, Zhao G, Liu Y. Stability of DNA and RNA hairpins: a comparative study based on ox-DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:265101. [PMID: 36972608 DOI: 10.1088/1361-648x/acc7eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Advances in single-molecule experiments on macromolecular crowding urgently need an efficient simulation method to resolve their discrepancies quantitatively. Ox-DNA model has been since reworked to treat the thermodynamics and mechanical properties of DNA/RNA hairpin at a stretching force. In hopping experiments, the critical forces of RNA hairpins at different temperatures are greater than those of DNA hairpins, in addition, the Gibbs free energy at a fixed temperature required to convert an RNA hairpin into a single-stranded molecule at zero force is obviously greater than that of DNA hairpin and gradually decreases by increasing the temperature. As far as force-ramping experiments are concerned, the first-rupture forces of RNA/DNA hairpins corresponding to the maximum probability density linearly pertain to the force-loading rate, with those of RNA hairpins being greater. The extended ox-DNA model could potentially identify the interaction between biologically inert polymer and RNA/DNA hairpins in crowded environments.
Collapse
Affiliation(s)
- Chao Yang
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaoya Song
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yuyu Feng
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Guangju Zhao
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
- Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, Guizhou 550025, People's Republic of China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, People's Republic of China
- Kechuang Industrial Development Company Limited,Gui'an New Area, Guiyang 550025, People's Republic of China
| |
Collapse
|
49
|
Bohlin J, Turberfield AJ, Louis AA, Šulc P. Designing the Self-Assembly of Arbitrary Shapes Using Minimal Complexity Building Blocks. ACS NANO 2023; 17:5387-5398. [PMID: 36763807 DOI: 10.1021/acsnano.2c09677] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design space for self-assembled multicomponent objects ranges from a solution in which every building block is unique to one with the minimum number of distinct building blocks that unambiguously define the target structure. We develop a pipeline to explore the design spaces for a set of structures of various sizes and complexities. To understand the implications of the different solutions, we analyze their assembly dynamics using patchy particle simulations and study the influence of the number of distinct building blocks, and the angular and spatial tolerances on their interactions, on the kinetics and yield of the target assembly. We show that the resource-saving solution with a minimum number of distinct blocks can often assemble just as well (or faster) than designs where each building block is unique. We further use our methods to design multifarious structures, where building blocks are shared between different target structures. Finally, we use coarse-grained DNA simulations to investigate the realization of multicomponent shapes using DNA nanostructures as building blocks.
Collapse
Affiliation(s)
- Joakim Bohlin
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, U.K
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, U.K
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3NP, U.K
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
| |
Collapse
|
50
|
Lu W, Onuchic JN, Di Pierro M. An associative memory Hamiltonian model for DNA and nucleosomes. PLoS Comput Biol 2023; 19:e1011013. [PMID: 36972316 PMCID: PMC10079229 DOI: 10.1371/journal.pcbi.1011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/06/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
A model for DNA and nucleosomes is introduced with the goal of studying chromosomes from a single base level all the way to higher-order chromatin structures. This model, dubbed the Widely Editable Chromatin Model (WEChroM), reproduces the complex mechanics of the double helix including its bending persistence length and twisting persistence length, and their respective temperature dependence. The WEChroM Hamiltonian is composed of chain connectivity, steric interactions, and associative memory terms representing all remaining interactions leading to the structure, dynamics, and mechanical characteristics of the B-DNA. Several applications of this model are discussed to demonstrate its applicability. WEChroM is used to investigate the behavior of circular DNA in the presence of positive and negative supercoiling. We show that it recapitulates the formation of plectonemes and of structural defects that relax mechanical stress. The model spontaneously manifests an asymmetric behavior with respect to positive or negative supercoiling, similar to what was previously observed in experiments. Additionally, we show that the associative memory Hamiltonian is also capable of reproducing the free energy of partial DNA unwrapping from nucleosomes. WEChroM is designed to emulate the continuously variable mechanical properties of the 10nm fiber and, by virtue of its simplicity, is ready to be scaled up to molecular systems large enough to investigate the structural ensembles of genes. WEChroM is implemented in the OpenMM simulation toolkits and is freely available for public use.
Collapse
Affiliation(s)
- Weiqi Lu
- Center for Theoretical Biological Physics, & Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, & Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
- Department of Chemistry, & Department of Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JNO); (MDP)
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail: (JNO); (MDP)
| |
Collapse
|