1
|
Thomsen B, Nagai Y, Kobayashi K, Hamada I, Shiga M. Self-learning path integral hybrid Monte Carlo with mixed ab initio and machine learning potentials for modeling nuclear quantum effects in water. J Chem Phys 2024; 161:204109. [PMID: 39601285 DOI: 10.1063/5.0230464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The introduction of machine learned potentials (MLPs) has greatly expanded the space available for studying Nuclear Quantum Effects computationally with ab initio path integral (PI) accuracy, with the MLPs' promise of an accuracy comparable to that of ab initio at a fraction of the cost. One of the challenges in development of MLPs is the need for a large and diverse training set calculated by ab initio methods. This dataset should ideally cover the entire phase space, while not searching this space using ab initio methods, as this would be counterproductive and generally intractable with respect to computational time. In this paper, we present the self-learning PI hybrid Monte Carlo Method using a mixed ab initio and ML potential (SL-PIHMC-MIX), where the mixed potential allows for the study of larger systems and the extension of the original SL-HMC method [Nagai et al., Phys. Rev. B 102, 041124 (2020)] to PI methods and larger systems. While the MLPs generated by this method can be directly applied to run long-time ML-PIMD simulations, we demonstrate that using PIHMC-MIX with the trained MLPs allows for an exact reproduction of the structure obtained from ab initio PIMD. Specifically, we find that the PIHMC-MIX simulations require only 5000 evaluations of the 32-bead structure, compared to the 100 000 evaluations needed for the ab initio PIMD result.
Collapse
Affiliation(s)
- Bo Thomsen
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Yuki Nagai
- Information Technology Center, The University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Keita Kobayashi
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Motoyuki Shiga
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|
2
|
Kaur H, Della Pia F, Batatia I, Advincula XR, Shi BX, Lan J, Csányi G, Michaelides A, Kapil V. Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies. Faraday Discuss 2024. [PMID: 39329168 PMCID: PMC11428088 DOI: 10.1039/d4fd00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy - even with the aid of machine learning potentials - is a challenge that requires sub-kJ mol-1 accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ mol-1 accuracy in the sublimation enthalpies and sub-1% error in densities at finite temperature and pressure. Exploiting this data efficiency, we perform preliminary NPT simulations of hexagonal ice at the random phase approximation level and demonstrate a good agreement with experiments. Our results show promise for finite-temperature modelling of molecular crystals with the accuracy of correlated electronic structure theory methods.
Collapse
Affiliation(s)
- Harveen Kaur
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Flaviano Della Pia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Ilyes Batatia
- Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Xavier R Advincula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Benjamin X Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jinggang Lan
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
| | - Gábor Csányi
- Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Venkat Kapil
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Physics and Astronomy, University College, London WC1E 6BT, UK
- Thomas Young Centre and London Centre for Nanotechnology, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Tahir MN, Shang H, Li J, Ren X. Efficient Structural Relaxation Based on the Random Phase Approximation: Applications to Water Clusters. J Phys Chem A 2024; 128:7939-7949. [PMID: 39240284 DOI: 10.1021/acs.jpca.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
We report an improved implementation for evaluating the analytical gradients of the random phase approximation (RPA) electron-correlation energy based on atomic orbitals and the localized resolution of the identity scheme. The more efficient RPA force calculations allow us to relax the structures of medium-sized water clusters. Particular attention is paid to the structures and energy orderings of the low-energy isomers of (H2O)n clusters with n = 21, 22, and 25. It is found that the RPA energy ordering of the low-energy isomers of these water clusters is rather sensitive to the basis set used. For the five low-energy isomers of (H2O)25, the RPA energy ordering still undergoes a change by increasing the basis set to the quadruple to quintuple level. The standard RPA underbinds the water clusters, and this underbinding behavior becomes more pronounced by increasing the basis size to the complete basis set (CBS) limit. The renormalized single excitation (rSE) correction remedies this underbinding, giving rise to a noticeable overbinding behavior at finite basis sets. However, as the CBS limit is approached, RPA+rSE yields an accuracy for the binding energies that is comparable to that of the best available double hybrid functionals, as demonstrated for the WATER27 test set.
Collapse
Affiliation(s)
- Muhammad N Tahir
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Honghui Shang
- University of Science and Technology of China, Hefei 230026, China
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinguo Ren
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Gäding J, Della Balda V, Lan J, Konrad J, Iannuzzi M, Meißner RH, Tocci G. The role of the water contact layer on hydration and transport at solid/liquid interfaces. Proc Natl Acad Sci U S A 2024; 121:e2407877121. [PMID: 39259594 PMCID: PMC11420213 DOI: 10.1073/pnas.2407877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024] Open
Abstract
Understanding the structure in the nanoscopic region of water that is in direct contact with solid surfaces, so-called contact layer, is key to quantifying macroscopic properties that are of interest to e.g. catalysis, ice nucleation, nanofluidics, gas adsorption, and sensing. We explore the structure of the water contact layer on various technologically relevant solid surfaces, namely graphene, MoS[Formula: see text], Au(111), Au(100), Pt(111), and Pt(100), which have been previously hampered by time and length scale limitations of ab initio approaches or force field inaccuracies, by means of molecular dynamics simulations based on ab initio machine learning potentials built using an active learning scheme. Our results reveal that the in-plane intermolecular correlations of the water contact layer vary greatly among different systems: Whereas the contact layer on graphene and on Au(111) is predominantly homogeneous and isotropic, it is inhomogeneous and anisotropic on MoS[Formula: see text], on Au(100), and on the Pt surfaces, where it additionally forms two distinct sublayers. We apply hydrodynamics and the theory of the hydrophobic effect, to relate the energy corrugation and the characteristic length-scales of the contact layer with wetting, slippage, the hydration of small hydrophobic solutes and diffusio-osmotic transport. Thus, this work provides a microscopic picture of the water contact layer and links it to macroscopic properties of liquid/solid interfaces that are measured experimentally and that are relevant to wetting, hydrophobic solvation, nanofluidics, and osmotic transport.
Collapse
Affiliation(s)
- J Gäding
- Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
- Institute of Surface Science, Department of Atomistic Corrosion Informatics, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - V Della Balda
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - J Lan
- Department of Chemistry, New York University, New York, NY 10003
- Department of Chemistry, Simons Center for Computational Physical Chemistry at New York University, New York, NY 10003
| | - J Konrad
- Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
| | - M Iannuzzi
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - R H Meißner
- Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany
- Institute of Surface Science, Department of Atomistic Corrosion Informatics, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - G Tocci
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
5
|
Zare M, Sahsah D, Saleheen M, Behler J, Heyden A. Hybrid Quantum Mechanical, Molecular Mechanical, and Machine Learning Potential for Computing Aqueous-Phase Adsorption Free Energies on Metal Surfaces. J Chem Theory Comput 2024. [PMID: 39254514 DOI: 10.1021/acs.jctc.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Performing reliable computer simulations of elementary processes occurring at metal-water interfaces is pivotal for novel catalyst design in sustainable energy applications. Computational catalyst design hinges on the ability to reliably and efficiently compute the potential energy surface (PES) of the system. Due to the large system sizes needed for studying processes at liquid water-metal interfaces, these systems can currently not be described using density functional theory (DFT). In this work, we used a hybrid quantum mechanical, molecular mechanical, and machine learning potential for studying the adsorption behavior of phenol, atomic hydrogen, 2-butanol, and 2-butanone on the (0001) facet of Ru under reducing conditions when Ru is not oxidized. Specifically, we describe the adsorbate and the surrounding metal atoms at the DFT level of theory. Here, we also considered the electrostatic field effect of the water molecules on adsorbate-metal interactions. Next, for the water-water and water-adsorbate interactions, we used established classical force fields. Finally, for the water-Ru surface interaction, for which no reliable force fields have been published, we used Behler-Parrinello high-dimensional neural network potentials (HDNNPs). Employing this setup, we used our explicit solvation for metal surface (eSMS) approach to compute the aqueous-phase effect on the low-coverage adsorption of selected molecules and atoms on the (0001) facet of Ru. In agreement with previous experimental and computational studies of oxygenated molecules over transition metal facets, we found that liquid water destabilizes the tested adsorbates on Ru(0001). Interestingly, our findings indicate that adsorbates on Ru are less affected by the presence of an aqueous phase than on other transition metals (e.g., Pt), highlighting the necessity of experimental investigations of Ru-based catalytic systems in liquid water.
Collapse
Affiliation(s)
- Mehdi Zare
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dia Sahsah
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mohammad Saleheen
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum 44780, Germany
| | - Andreas Heyden
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
Bilichenko M, Iannuzzi M, Tocci G. Slip Opacity and Fast Osmotic Transport of Hydrophobes at Aqueous Interfaces with Two-Dimensional Materials. ACS NANO 2024; 18:24118-24127. [PMID: 39172927 DOI: 10.1021/acsnano.4c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We investigate the interfacial transport of water and hydrophobic solutes on van der Waals bilayers and heterostructures formed by stacking graphene, hBN, and MoS2 using extensive ab initio molecular dynamics simulations. We compute water slippage and the diffusio-osmotic transport coefficient of hydrophobic particles at the interface by combining hydrodynamics and the theory of the hydrophobic effect. We find that slippage is dominated by the layer that is in direct contact with water and only marginally altered by the second layer, leading to a so-called "slip opacity". The screening of the lateral forces, where the liquid does not feel the forces coming from the second nearest layer, is one of the factors leading to the "slip opacity" in our systems. The diffusio-osmotic transport of small hydrophobes (with a radius below 2.5 Å) is also affected by the slip opacity, being dramatically enhanced by slippage. Furthermore, the direction of diffusio-osmotic flow is controlled by the solute size, with the flow in the opposite direction of the concentration gradient for smaller hydrophobes, and vice versa for larger ones. We connect our findings to the wetting properties of two-dimensional materials, and we propose that slippage and wetting can be controlled separately: whereas the slippage is mostly determined by the layer in closer proximity to water, wetting can be finely tuned by stacking different two-dimensional materials. Our study advances the computational design of two-dimensional materials and van der Waals heterostructures, enabling precise control over wetting and slippage properties for applications in coatings and water purification membranes.
Collapse
Affiliation(s)
- Maria Bilichenko
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Li Y, Yang S, Bao W, Tao Q, Jiang X, Li J, He P, Wang G, Qi K, Dong H, Ding G, Xie X. Accelerated proton dissociation in an excited state induces superacidic microenvironments around graphene quantum dots. Nat Commun 2024; 15:6634. [PMID: 39103388 DOI: 10.1038/s41467-024-50982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Investigating proton transport at the interface in an excited state facilitates the mechanistic investigation and utilization of nanomaterials. However, there is a lack of suitable tools for in-situ and interfacial analysis. Here we addresses this gap by in-situ observing the proton transport of graphene quantum dots (GQDs) in an excited state through reduction of magnetic resonance relaxation time. Experimental results, utilizing 0.1 mT ultra-low-field nuclear magnetic resonance relaxometry compatible with a light source, reveal the light-induced proton dissociation and acidity of GQDs' microenvironment in the excited state (Hammett acidity function: -13.40). Theoretical calculations demonstrate significant acidity enhancement in -OH functionalized GQDs with light induction ( p K a * = -4.62, stronger than that of H2SO4). Simulations highlight the contributions of edge and phenolic -OH groups to proton dissociation. The light-induced superacidic microenvironment of GQDs benefits functionalization and improves the catalytic performances of GQDs. Importantly, this work advances the understanding of interfacial properties of light-induced sp2-sp3 carbon nanostructure and provides a valuable tool for exploring catalyst interfaces in photocatalysis.
Collapse
Affiliation(s)
- Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Wancheng Bao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Quan Tao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiuyun Jiang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kai Qi
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiaoming Xie
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
8
|
O’Neill N, Shi BX, Fong K, Michaelides A, Schran C. To Pair or not to Pair? Machine-Learned Explicitly-Correlated Electronic Structure for NaCl in Water. J Phys Chem Lett 2024; 15:6081-6091. [PMID: 38820256 PMCID: PMC11181334 DOI: 10.1021/acs.jpclett.4c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The extent of ion pairing in solution is an important phenomenon to rationalize transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between solvated ions. The relative stabilities of the paired and solvent shared states in the PMF and the barrier between them are highly sensitive to the underlying potential energy surface. However, direct application of accurate electronic structure methods is challenging, since long simulations are required. We develop wave function based machine learning potentials with the random phase approximation (RPA) and second order Møller-Plesset (MP2) perturbation theory for the prototypical system of Na and Cl ions in water. We show both methods in agreement, predicting the paired and solvent shared states to have similar energies (within 0.2 kcal/mol). We also provide the same benchmarks for different DFT functionals as well as insight into the PMF based on simple analyses of the interactions in the system.
Collapse
Affiliation(s)
- Niamh O’Neill
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Benjamin X. Shi
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Kara Fong
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Christoph Schran
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Lennard-Jones
Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
9
|
Villard J, Bircher MP, Rothlisberger U. Structure and dynamics of liquid water from ab initio simulations: adding Minnesota density functionals to Jacob's ladder. Chem Sci 2024; 15:4434-4451. [PMID: 38516095 PMCID: PMC10952088 DOI: 10.1039/d3sc05828j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The accurate representation of the structural and dynamical properties of water is essential for simulating the unique behavior of this ubiquitous solvent. Here we assess the current status of describing liquid water using ab initio molecular dynamics, with a special focus on the performance of all the later generation Minnesota functionals. Findings are contextualized within the current knowledge on DFT for describing bulk water under ambient conditions and compared to experimental data. We find that, contrary to the prevalent idea that local and semilocal functionals overstructure water and underestimate dynamical properties, M06-L, revM06-L, and M11-L understructure water, while MN12-L and MN15-L overdistance water molecules due to weak cohesive effects. This can be attributed to a weakening of the hydrogen bond network, which leads to dynamical fingerprints that are over fast. While most of the hybrid Minnesota functionals (M06, M08-HX, M08-SO, M11, MN12-SX, and MN15) also yield understructured water, their dynamical properties generally improve over their semilocal counterparts. It emerges that exact exchange is a crucial component for accurately describing hydrogen bonds, which ultimately leads to corrections in both the dynamical and structural properties. However, an excessive amount of exact exchange strengthens hydrogen bonds and causes overstructuring and slow dynamics (M06-HF). As a compromise, M06-2X is the best performing Minnesota functional for water, and its D3 corrected variant shows very good structural agreement. From previous studies considering nuclear quantum effects (NQEs), the hybrid revPBE0-D3, and the rung-5 RPA (RPA@PBE) have been identified as the only two approximations that closely agree with experiments. Our results suggest that the M06-2X(-D3) functionals have the potential to further improve the reproduction of experimental properties when incorporating NQEs through path integral approaches. This work provides further proof that accurate modeling of water interactions requires the inclusion of both exact exchange and balanced (non-local) correlation, highlighting the need for higher rungs on Jacob's ladder to achieve predictive simulations of complex biological systems in aqueous environments.
Collapse
Affiliation(s)
- Justin Villard
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH-1015 Switzerland
| | - Martin P Bircher
- Computational and Soft Matter Physics, Universität Wien Wien A-1090 Austria
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH-1015 Switzerland
| |
Collapse
|
10
|
Borrelli W, Mei KJ, Park SJ, Schwartz BJ. Partial Molar Solvation Volume of the Hydrated Electron Simulated Via DFT. J Phys Chem B 2024; 128:2425-2431. [PMID: 38422045 PMCID: PMC10945486 DOI: 10.1021/acs.jpcb.3c05091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Different simulation models of the hydrated electron produce different solvation structures, but it has been challenging to determine which simulated solvation structure, if any, is the most comparable to experiment. In a recent work, Neupane et al. [J. Phys. Chem. B 2023, 127, 5941-5947] showed using Kirkwood-Buff theory that the partial molar volume of the hydrated electron, which is known experimentally, can be readily computed from an integral over the simulated electron-water radial distribution function. This provides a sensitive way to directly compare the hydration structure of different simulation models of the hydrated electron with experiment. Here, we compute the partial molar volume of an ab-initio-simulated hydrated electron model based on density-functional theory (DFT) with a hybrid functional at different simulated system sizes. We find that the partial molar volume of the DFT-simulated hydrated electron is not converged with respect to the system size for simulations with up to 128 waters. We show that even at the largest simulation sizes, the partial molar volume of DFT-simulated hydrated electrons is underestimated by a factor of 2 with respect to experiment, and at the standard 64-water size commonly used in the literature, DFT-based simulations underestimate the experimental solvation volume by a factor of ∼3.5. An extrapolation to larger box sizes does predict the experimental partial molar volume correctly; however, larger system sizes than those explored here are currently intractable without the use of machine-learned potentials. These results bring into question what aspects of the predicted hydrated electron radial distribution function, as calculated by DFT-based simulations with the PBEh-D3 functional, deviate from the true solvation structure.
Collapse
Affiliation(s)
| | | | - Sanghyun J. Park
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
11
|
Stein F, Hutter J. Massively parallel implementation of gradients within the random phase approximation: Application to the polymorphs of benzene. J Chem Phys 2024; 160:024120. [PMID: 38214385 DOI: 10.1063/5.0180704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
The Random-Phase approximation (RPA) provides an appealing framework for semi-local density functional theory. In its Resolution-of-the-Identity (RI) approach, it is a very accurate and more cost-effective method than most other wavefunction-based correlation methods. For widespread applications, efficient implementations of nuclear gradients for structure optimizations and data sampling of machine learning approaches are required. We report a well scaling implementation of RI-RPA nuclear gradients on massively parallel computers. The approach is applied to two polymorphs of the benzene crystal obtaining very good cohesive and relative energies. Different correction and extrapolation schemes are investigated for further improvement of the results and estimations of error bars.
Collapse
Affiliation(s)
- Frederick Stein
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden, Rossendorf (HZDR), Untermarkt 20, 02826 Görlitz, Germany
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Riemelmoser S, Verdi C, Kaltak M, Kresse G. Machine Learning Density Functionals from the Random-Phase Approximation. J Chem Theory Comput 2023; 19:7287-7299. [PMID: 37800677 PMCID: PMC10601474 DOI: 10.1021/acs.jctc.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 10/07/2023]
Abstract
Kohn-Sham density functional theory (DFT) is the standard method for first-principles calculations in computational chemistry and materials science. More accurate theories such as the random-phase approximation (RPA) are limited in application due to their large computational cost. Here, we use machine learning to map the RPA to a pure Kohn-Sham density functional. The machine learned RPA model (ML-RPA) is a nonlocal extension of the standard gradient approximation. The density descriptors used as ingredients for the enhancement factor are nonlocal counterparts of the local density and its gradient. Rather than fitting only RPA exchange-correlation energies, we also include derivative information in the form of RPA optimized effective potentials. We train a single ML-RPA functional for diamond, its surfaces, and liquid water. The accuracy of ML-RPA for the formation energies of 28 diamond surfaces reaches that of state-of-the-art van der Waals functionals. For liquid water, however, ML-RPA cannot yet improve upon the standard gradient approximation. Overall, our work demonstrates how machine learning can extend the applicability of the RPA to larger system sizes, time scales, and chemical spaces.
Collapse
Affiliation(s)
- Stefan Riemelmoser
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, A-1090 Vienna, Austria
| | - Carla Verdi
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- School
of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Mathematics and Physics, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Merzuk Kaltak
- VASP
Software GmbH, Sensengasse
8/12, A-1090 Vienna, Austria
| | - Georg Kresse
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- VASP
Software GmbH, Sensengasse
8/12, A-1090 Vienna, Austria
| |
Collapse
|
13
|
Shimohata Y, Kanematsu Y, Rivera Rocabado DS, Ishimoto T. Quantum Effects of Hydrogen Nuclei on the Nuclear Magnetic Shielding Tensor of Ice I h. J Phys Chem A 2023; 127:8025-8031. [PMID: 37735111 DOI: 10.1021/acs.jpca.3c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Ice is the most fundamental hydrogen-bonded system in which the hydrogen nuclear quantum effect significantly impacts the structure and relevant thermochemical and spectroscopic properties. While ice was experimentally investigated using proton nuclear magnetic resonance spectroscopy more than 40 years ago, the corresponding theoretical investigations have been rarely reported due to the difficulty in evaluating how the proton nuclear quantum effect influences the spectral characteristics of such a condensed material. In this study, we applied a combination of the ONIOM and multicomponent molecular orbital (MC_MO) methods for calculating the anisotropic and isotropic components of the nuclear magnetic shielding tensor of the hexagonal ice crystal to quantify the effects of nuclear quantum fluctuations on the spectroscopic properties of ice. The nuclear magnetic shielding values computed by incorporating the hydrogen nuclear quantum effect reasonably agree with the experimental values. The nuclear quantum effects were found to increase the anisotropic component of the magnetic shielding tensor while decreasing the isotropic component. Such a difference can be explained by their distinct dependence on the electrostatic field and hydrogen-bonding structural parameters.
Collapse
Affiliation(s)
- Yuya Shimohata
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yusuke Kanematsu
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - David S Rivera Rocabado
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Takayoshi Ishimoto
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
14
|
Becker MR, Loche P, Netz RR. Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid-vapor interface. J Chem Phys 2022; 157:240902. [PMID: 36586978 DOI: 10.1063/5.0127869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Although conceptually simple, the air-water interface displays rich behavior and is subject to intense experimental and theoretical investigations. Different definitions of the electrostatic surface potential as well as different calculation methods, each relevant for distinct experimental scenarios, lead to widely varying potential magnitudes and sometimes even different signs. Based on quantum-chemical density-functional-theory molecular dynamics (DFT-MD) simulations, different surface potentials are evaluated and compared to force-field (FF) MD simulations. As well explained in the literature, the laterally averaged electrostatic surface potential, accessible to electron holography, is dominated by the trace of the water molecular quadrupole moment, and using DFT-MD amounts to +4.35 V inside the water phase, very different from results obtained with FF water models which yield negative values of the order of -0.4 to -0.6 V. Thus, when predicting potentials within water molecules, as relevant for photoelectron spectroscopy and non-linear interface-specific spectroscopy, DFT simulations should be used. The electrochemical surface potential, relevant for ion transfer reactions and ion surface adsorption, is much smaller, less than 200 mV in magnitude, and depends specifically on the ion radius. Charge transfer between interfacial water molecules leads to a sizable surface potential as well. However, when probing electrokinetics by explicitly applying a lateral electric field in DFT-MD simulations, the electrokinetic ζ-potential turns out to be negligible, in agreement with predictions using continuous hydrodynamic models. Thus, interfacial polarization charges from intermolecular charge transfer do not lead to significant electrokinetic mobility at the pristine vapor-liquid water interface, even assuming these transfer charges are mobile in an external electric field.
Collapse
Affiliation(s)
| | - Philip Loche
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
15
|
Ahsan MS, Kochetov V, Hein D, Bokarev SI, Wilkinson I. Probing the molecular structure of aqueous triiodide via X-ray photoelectron spectroscopy and correlated electron phenomena. Phys Chem Chem Phys 2022; 24:15540-15555. [PMID: 35713286 DOI: 10.1039/d1cp05840a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid-microjet-based X-ray photoelectron spectroscopy was applied to aqueous triiodide solutions, I3-(aq.), to investigate the anion's valence- and core-level electronic structure, ionization dynamics, associated electron-correlation effects, and nuclear geometric structure. The roles of multi-active-electron (shake-up) ionization processes - with noted sensitivity to the solute geometric structure - were investigated through I3-(aq.) solution valence, I 4d, and I 3d core-level measurements. The experimental spectra were interpreted with the aid of simulated photoelectron spectra, built upon multi-reference ab initio electronic structure calculations associated with different I3-(aq.) molecular geometries. A comparison of the single-to-multi-active-electron ionization signal ratios extracted from the experimental and theoretical core-level photoemission spectra suggests that the ground state of the solute adopts a near-linear average geometry in aqueous solutions. This contrasts with the interpretation of time-resolved X-ray solution scattering studies, but is found to be fully consistent with the rest of the solution-phase I3-(aq.) literature. Comparing the results of low- and high-photon-energy photoemission measurements, we further suggest that the aqueous anion adopts a more asymmetric geometry at the aqueous-solution-gas interface than in the aqueous bulk.
Collapse
Affiliation(s)
- Md Sabbir Ahsan
- Department of Locally-Sensitive and Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany. .,Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Vladislav Kochetov
- Institut für Physik, Universität Rostock, Albert Einstein Str. 23-24, D-18059 Rostock, Germany
| | - Dennis Hein
- Operando Interfacial Photochemistry, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-platz. 1, D-14109 Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, Albert Einstein Str. 23-24, D-18059 Rostock, Germany
| | - Iain Wilkinson
- Department of Locally-Sensitive and Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.
| |
Collapse
|
16
|
Fogarty RM, Li BX, Harrison NM, Horsfield AP. Structure and interactions at the Mg(0001)/water interface: An ab initio study. J Chem Phys 2022; 156:244702. [DOI: 10.1063/5.0093562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A molecular level understanding of metal/bulk water interface structure is key for a wide range of processes, including aqueous corrosion, which is our focus, but their buried nature makes experimental investigation difficult and we must mainly rely on simulations. We investigate the Mg(0001)/water interface using second generation Car–Parrinello molecular dynamics (MD) to gain structural information, combined with static density functional theory calculations to probe the atomic interactions and electronic structure (e.g., calculating the potential of zero charge). By performing detailed structural analyses of both metal–surface atoms and the near-surface water, we find that, among other insights: (i) water adsorption causes significant surface roughening (the planar distribution for top-layer Mg has two peaks separated by [Formula: see text]), (ii) strongly adsorbed water covers only [Formula: see text] of available surface sites, and (iii) adsorbed water avoids clustering on the surface. Static calculations are used to gain a deeper understanding of the structuring observed in MD. For example, we use an energy decomposition analysis combined with calculated atomic charges to show that adsorbate clustering is unfavorable due to Coulombic repulsion between adsorption site surface atoms. Results are discussed in the context of previous simulations carried out on other metal/water interfaces. The largest differences for the Mg(0001)/water system appear to be the high degree of surface distortion and the minimal difference between the metal work function and metal/water potential of zero charge (at least compared to other interfaces with similar metal–water interaction strengths). The structural information, in this paper, is important for understanding aqueous Mg corrosion, as the Mg(0001)/water interface is the starting point for key reactions. Furthermore, our focus on understanding the driving forces behind this structuring leads to important insights for general metal/water interfaces.
Collapse
Affiliation(s)
- R. M. Fogarty
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - B. X. Li
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - N. M. Harrison
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - A. P. Horsfield
- Department of Materials and Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Herrero C, Pauletti M, Tocci G, Iannuzzi M, Joly L. Connection between water's dynamical and structural properties: Insights from ab initio simulations. Proc Natl Acad Sci U S A 2022; 119:e2121641119. [PMID: 35588447 PMCID: PMC9173753 DOI: 10.1073/pnas.2121641119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/12/2022] [Indexed: 01/25/2023] Open
Abstract
SignificanceFirst-principles calculations, which explicitly account for the electronic structure of matter, can shed light on the molecular structure and dynamics of water in its supercooled state. In this work, we use density functional theory, which relies on a functional to describe electronic exchange and correlations, to evaluate which functional best describes the temperature evolution of bulk water transport coefficients. We also assess the validity of the Stokes-Einstein relation for all the functionals in the temperature range studied, and explore the link between structure and dynamics. Based on these results, we show how transport coefficients can be computed from structural descriptors, which require shorter simulation times to converge, and we point toward strategies to develop better functionals.
Collapse
Affiliation(s)
- Cecilia Herrero
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Michela Pauletti
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Laurent Joly
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
18
|
Abstract
The existence of a two-center, three-electron hemibond in the first solvation shell of •OH(aq) has long been a matter of debate. The hemibond manifests in ab initio molecular dynamics simulations as a small-r feature in the oxygen radial distribution function (RDF) for H2O···•OH, but that feature disappears when semilocal density functionals are replaced with hybrids, suggesting a self-interaction artifact. Using periodic simulations at the PBE0+D3 level, we demonstrate that the hemibond is actually still present (as evidenced by delocalization of the spin density) but is obscured by the hydrogen-bonded feature in the RDF due to a slight elongation of the hemibond. Computed electronic spectra for •OH(aq) are in excellent agreement with experiment and confirm that hemibond-like configurations play an outsized role in the spectroscopy due to an intense charge-transfer transition that is strongly attenuated in hydrogen-bonded configurations. Apparently, 25% exact exchange (as in PBE0) is insufficient to eliminate delocalization of unpaired spins.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Yao Y, Kanai Y. Nuclear Quantum Effect and Its Temperature Dependence in Liquid Water from Random Phase Approximation via Artificial Neural Network. J Phys Chem Lett 2021; 12:6354-6362. [PMID: 34231366 DOI: 10.1021/acs.jpclett.1c01566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report structural and dynamical properties of liquid water described by the random phase approximation (RPA) correlation together with the exact exchange energy (EXX) within density functional theory. By utilizing thermostated ring polymer molecular dynamics, we examine the nuclear quantum effects and their temperature dependence. We circumvent the computational limitation of performing direct first-principles molecular dynamics simulation at this high level of electronic structure theory by adapting an artificial neural network model. We show that the EXX+RPA level of theory accurately describes liquid water in terms of both dynamical and structural properties.
Collapse
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Durham, North Carolina 27599, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Durham, North Carolina 27599, United States
| |
Collapse
|
20
|
Ab initio metadynamics calculations reveal complex interfacial effects in acetic acid deprotonation dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Yao Y, Kanai Y. Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional. J Chem Phys 2020; 153:044114. [DOI: 10.1063/5.0012815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
22
|
Duignan TT, Mundy CJ, Schenter GK, Zhao XS. Method for Accurately Predicting Solvation Structure. J Chem Theory Comput 2020; 16:5401-5409. [DOI: 10.1021/acs.jctc.0c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy T. Duignan
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Christopher J. Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
- Affiliate Professor, Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Gregory K. Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - X. S. Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
23
|
Tocci G, Bilichenko M, Joly L, Iannuzzi M. Ab initio nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction. NANOSCALE 2020; 12:10994-11000. [PMID: 32426791 DOI: 10.1039/d0nr02511a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite relevance to water purification and renewable energy conversion membranes, the molecular mechanisms underlying water slip are poorly understood. We disentangle the static and dynamical origin of water slippage on graphene, hBN and MoS2 by means of large-scale ab initio molecular dynamics. Accounting for the role of the electronic structure of the interface is essential to determine that water slips five and eleven times faster on graphene compared to hBN and to MoS2, respectively. Intricate changes in the water energy landscape as well as in the density correlations of the fluid provide, respectively, the main static and dynamical origin of water slippage. Surprisingly, the timescales of the density correlations are the same on graphene and hBN, whereas they are longer on MoS2 and yield a 100% slowdown in the flow of water on this material. Our results pave the way for an in silico first principles design of materials with enhanced water slip, through the modification of properties connected not only to the structure, but also to the dynamics of the interface.
Collapse
Affiliation(s)
- Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.
| | - Maria Bilichenko
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.
| | - Laurent Joly
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France and Institut Universitaire de France (IUF), France
| | - Marcella Iannuzzi
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
24
|
Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys 2020; 152:194103. [PMID: 33687235 DOI: 10.1063/5.0007045] [Citation(s) in RCA: 1060] [Impact Index Per Article: 265.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Collapse
Affiliation(s)
- Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mauro Del Ben
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ole Schütt
- Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | - Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| | - Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergey Chulkov
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | | | - Valéry Weber
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | | | | | | | | | - Hans Pabst
- Intel Extreme Computing, Software and Systems, Zürich, Switzerland
| | - Tiziano Müller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert Schade
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Manuel Guidon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Samuel Andermatt
- Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Nico Holmberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Anna Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Augustin Bussy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Belleflamme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100 Como, Italy
| | - Andreas Glöß
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
| | - Michael Lass
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Iain Bethune
- Hartree Centre, Science and Technology Facilities Council, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Christian Plessl
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Matt Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Joost VandeVondele
- Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
25
|
Goel H, Yu W, Ustach VD, Aytenfisu AH, Sun D, MacKerell AD. Impact of electronic polarizability on protein-functional group interactions. Phys Chem Chem Phys 2020; 22:6848-6860. [PMID: 32195493 PMCID: PMC7194236 DOI: 10.1039/d0cp00088d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interactions of proteins with functional groups are key to their biological functions, making it essential that they be accurately modeled. To investigate the impact of the inclusion of explicit treatment of electronic polarizability in force fields on protein-functional group interactions, the additive CHARMM and Drude polarizable force field are compared in the context of the Site-Identification by Ligand Competitive Saturation (SILCS) simulation methodology from which functional group interaction patterns with five proteins for which experimental binding affinities of multiple ligands are available, were obtained. The explicit treatment of polarizability produces significant differences in the functional group interactions in the ligand binding sites including overall enhanced binding of functional groups to the proteins. This is associated with variations of the dipole moments of solutes representative of functional groups in the binding sites relative to aqueous solution with higher dipole moments systematically occurring in the latter, though exceptions occur with positively charged methylammonium. Such variation indicates the complex, heterogeneous nature of the electronic environments of ligand binding sites and emphasizes the inherent limitation of fixed charged, additive force fields for modeling ligand-protein interactions. These effects yield more defined orientation of the functional groups in the binding pockets and a small, but systematic improvement in the ability of the SILCS method to predict the binding orientation and relative affinities of ligands to their target proteins. Overall, these results indicate that the physical model associated with the explicit treatment of polarizability along with the presence of lone pairs in a force field leads to changes in the nature of the interactions of functional groups with proteins versus that occurring with additive force fields, suggesting the utility of polarizable force fields in obtaining a more realistic understanding of protein-ligand interactions.
Collapse
Affiliation(s)
- Himanshu Goel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Wenbo Yu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Vincent D Ustach
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Asaminew H Aytenfisu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Delin Sun
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| |
Collapse
|
26
|
Lourenço MP, dos Santos EC, Pettersson LGM, Duarte HA. Accurate SCC-DFTB Parametrization for Bulk Water. J Chem Theory Comput 2020; 16:1768-1778. [DOI: 10.1021/acs.jctc.9b00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maicon Pierre Lourenço
- Departamento de Quı́mica e Fı́sica−Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espı́rito Santo, 29500-000, Alegre, Espı́rito Santo Brasil
| | - Egon Campos dos Santos
- Departamento de Quı́mica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais Brasil
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | - Lars G. M. Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | - Hélio Anderson Duarte
- Departamento de Quı́mica, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais Brasil
| |
Collapse
|
27
|
Duignan TT, Schenter GK, Fulton JL, Huthwelker T, Balasubramanian M, Galib M, Baer MD, Wilhelm J, Hutter J, Del Ben M, Zhao XS, Mundy CJ. Quantifying the hydration structure of sodium and potassium ions: taking additional steps on Jacob's Ladder. Phys Chem Chem Phys 2020; 22:10641-10652. [DOI: 10.1039/c9cp06161d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to reproduce the experimental structure of water around the sodium and potassium ions is a key test of the quality of interaction potentials due to the central importance of these ions in a wide range of important phenomena.
Collapse
Affiliation(s)
- Timothy T. Duignan
- Physical Science Division
- Pacific Northwest National Laboratory
- Richland
- USA
- School of Chemical Engineering
| | | | - John L. Fulton
- Physical Science Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Thomas Huthwelker
- Swiss Light Source
- Paul Scherrer Institut (PSI)
- 5232 Villigen
- Switzerland
| | | | - Mirza Galib
- Physical Science Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Marcel D. Baer
- Physical Science Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Jan Wilhelm
- Department of Chemistry
- University of Zurich
- CH-8057 Zürich
- Switzerland
- Institute of Theoretical Physics
| | - Jürg Hutter
- Department of Chemistry
- University of Zurich
- CH-8057 Zürich
- Switzerland
| | - Mauro Del Ben
- Computational Research Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - X. S. Zhao
- School of Chemical Engineering
- The University of Queensland
- Brisbane 4072
- Australia
| | - Christopher J. Mundy
- Physical Science Division
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Chemical Engineering
| |
Collapse
|
28
|
Rybkin VV. Sampling Potential Energy Surfaces in the Condensed Phase with Many‐Body Electronic Structure Methods. Chemistry 2019; 26:362-368. [DOI: 10.1002/chem.201904012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Vladimir V. Rybkin
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
29
|
Chehaibou B, Badawi M, Bučko T, Bazhirov T, Rocca D. Computing RPA Adsorption Enthalpies by Machine Learning Thermodynamic Perturbation Theory. J Chem Theory Comput 2019; 15:6333-6342. [DOI: 10.1021/acs.jctc.9b00782] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bilal Chehaibou
- Université de Lorraine, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
| | - Michael Badawi
- Université de Lorraine, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
| | - Tomáš Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84236 Bratislava, Slovakia
| | - Timur Bazhirov
- Exabyte Inc., San Francisco, California 94103, United States
| | - Dario Rocca
- Université de Lorraine, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
30
|
Ohto T, Dodia M, Xu J, Imoto S, Tang F, Zysk F, Kühne TD, Shigeta Y, Bonn M, Wu X, Nagata Y. Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water-Air Interface. J Phys Chem Lett 2019; 10:4914-4919. [PMID: 31393136 PMCID: PMC6748669 DOI: 10.1021/acs.jpclett.9b01983] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/08/2019] [Indexed: 05/31/2023]
Abstract
Density functional theory-based molecular dynamics simulations are increasingly being used for simulating aqueous interfaces. Nonetheless, the choice of the appropriate density functional, critically affecting the outcome of the simulation, has remained arbitrary. Here, we assess the performance of various exchange-correlation (XC) functionals, based on the metrics relevant to sum-frequency generation spectroscopy. The structure and dynamics of water at the water-air interface are governed by heterogeneous intermolecular interactions, thereby providing a critical benchmark for XC functionals. We find that the XC functionals constrained by exact functional conditions (revPBE and revPBE0) with the dispersion correction show excellent performance. The poor performance of the empirically optimized density functional (M06-L) indicates the importance of satisfying the exact functional condition. Understanding the performance of different XC functionals can aid in resolving the controversial interpretation of the interfacial water structure and direct the design of novel, improved XC functionals better suited to describing the heterogeneous interactions in condensed phases.
Collapse
Affiliation(s)
- Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jianhang Xu
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fujie Tang
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frederik Zysk
- Dynamics
of Condensed Matter and Center for Sustainable Systems Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Thomas D. Kühne
- Dynamics
of Condensed Matter and Center for Sustainable Systems Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Yasuteru Shigeta
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xifan Wu
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
31
|
Dodia M, Ohto T, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water-Air Interface Using First-Principles Molecular Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. J Chem Theory Comput 2019; 15:3836-3843. [PMID: 31074989 PMCID: PMC6750744 DOI: 10.1021/acs.jctc.9b00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
van der Waals (vdW) correction schemes
have been recognized to
be essential for an accurate description of liquid water in first-principles
molecular dynamics simulation. The description of the structure and
dynamics of water is governed by the type of the vdW corrections.
So far, two vdW correction schemes have been often used: empirical
vdW corrections and nonlocal vdW corrections. In this paper, we assess
the influence of the empirical vs nonlocal vdW correction schemes
on the structure and dynamics of water at the water–air interface.
Since the structure of water at the water–air interface is
established by a delicate balance of hydrogen bond formation and breaking,
the simulation at the water–air interface provides a unique
platform to testify as to the heterogeneous interaction of water.
We used the metrics [Ohto et al. , 2019, 15, 595−60230468702] which
are directly connected with the sum-frequency generation spectroscopic
measurement. We find that the overall performance of nonlocal vdW
methods is either similar or worse compared to the empirical vdW methods.
We also investigated the performance of the optB88-DRSLL functional,
which showed slightly less accuracy than the revPBE-D3 method. We
conclude that the revPBE-D3 method shows the best performance for
describing the interfacial water.
Collapse
Affiliation(s)
- Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka, Osaka 560-8531 , Japan
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
32
|
Ajala AO, Voora V, Mardirossian N, Furche F, Paesani F. Assessment of Density Functional Theory in Predicting Interaction Energies between Water and Polycyclic Aromatic Hydrocarbons: from Water on Benzene to Water on Graphene. J Chem Theory Comput 2019; 15:2359-2374. [PMID: 30860827 DOI: 10.1021/acs.jctc.9b00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interactions of water with polycyclic aromatic hydrocarbons, from benzene to graphene, are investigated using various exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. The accuracy of the different functionals is assessed through comparisons with random phase approximation (RPA) and coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] calculations. Diffusion Monte Carlo (DMC) data reported in the literature are also used for comparison. Relatively large variations are found in interaction energies predicted by different DFT models, with GGA functionals underestimating the interaction strength for configurations with the water oxygen pointing toward the aromatic molecules. The meta-GGA B97M-rV and range-separated hybrid, meta-GGA ωB97M-V functionals provide nearly quantitative agreement with CCSD(T) values for the water-benzene, water-coronene, and water-circumcoronene dimers, while RPA and DMC predict interaction energies that differ by up to ∼1 kcal/mol and ∼0.4 kcal/mol from the corresponding CCSD(T) values, respectively. Similar trends among GGA, meta-GGA, and hybrid functionals are observed for larger polycyclic aromatic hydrocarbons. By performing absolutely localized molecular orbital energy decomposition analyses (ALMO-EDA), it is found that, independently of the number of carbon atoms and exchange-correlation functional, the dominant contributions to the interaction energies between water and polycyclic aromatic hydrocarbon molecules are the electrostatic and dispersion terms while polarization and charge transfer effects are negligibly small. Calculations carried out with GGA and meta-GGA functionals indicate that, as the number of carbon atoms increases, the interaction energies slowly converge to the corresponding values obtained for an infinite graphene sheet.
Collapse
Affiliation(s)
- Adeayo O Ajala
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | - Vamsee Voora
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Narbe Mardirossian
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E. California Boulevard , Pasadena , California 91125 , United States
| | - Filipp Furche
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States.,Materials Science and Engineering , University of California San Diego , La Jolla , California 92093 , United States.,San Diego Supercomputer Center , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
33
|
Wilhelm J, VandeVondele J, Rybkin VV. Dynamics of the Bulk Hydrated Electron from Many-Body Wave-Function Theory. Angew Chem Int Ed Engl 2019; 58:3890-3893. [PMID: 30776181 PMCID: PMC6594240 DOI: 10.1002/anie.201814053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/10/2022]
Abstract
The structure of the hydrated electron is a matter of debate as it evades direct experimental observation owing to the short life time and low concentrations of the species. Herein, the first molecular dynamics simulation of the bulk hydrated electron based on correlated wave‐function theory provides conclusive evidence in favor of a persistent tetrahedral cavity made up by four water molecules, and against the existence of stable non‐cavity structures. Such a cavity is formed within less than a picosecond after the addition of an excess electron to neat liquid water, with less regular cavities appearing as intermediates. The cavities are bound together by weak H−H bonds, the number of which correlates well with the number of coordinated water molecules, each type of cavity leaving a distinct spectroscopic signature. Simulations predict regions of negative spin density and a gyration radius that are both in agreement with experimental data.
Collapse
Affiliation(s)
- Jan Wilhelm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Current address: BASF SE, Ludwigshafen, Germany
| | - Joost VandeVondele
- Scientific Software & Libraries unit, CSCS, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093, Zurich, Switzerland
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
34
|
Wilhelm J, VandeVondele J, Rybkin VV. Dynamics of the Bulk Hydrated Electron from Many‐Body Wave‐Function Theory. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jan Wilhelm
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
- Current address: BASF SE Ludwigshafen Germany
| | - Joost VandeVondele
- Scientific Software & Libraries unit, CSCSETH Zurich Wolfgang-Pauli-Strasse 27 CH-8093 Zurich Switzerland
| | - Vladimir V. Rybkin
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
35
|
Pettersson LGM. A Two-State Picture of Water and the Funnel of Life. SPRINGER PROCEEDINGS IN PHYSICS 2019. [DOI: 10.1007/978-3-030-21755-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Ohto T, Dodia M, Imoto S, Nagata Y. Structure and Dynamics of Water at the Water–Air Interface Using First-Principles Molecular Dynamics Simulations within Generalized Gradient Approximation. J Chem Theory Comput 2018; 15:595-602. [DOI: 10.1021/acs.jctc.8b00567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sho Imoto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
37
|
Prasetyo N, Hünenberger PH, Hofer TS. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li + Using ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6443-6459. [PMID: 30284829 DOI: 10.1021/acs.jctc.8b00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recently proposed thermodynamic integration (TI) approach formulated in the framework of quantum mechanical/molecular mechanical molecular dynamics (QM/MM MD) simulations is applied to study the structure, dynamics, and absolute intrinsic hydration free energy Δs GM+,wat◦ of the Li+ ion at a correlated ab initio level of theory. Based on the results, standard values (298.15 K, ideal gas at 1 bar, ideal solute at 1 molal) for the absolute intrinsic hydration free energy [Formula: see text] of the proton, the surface electric potential jump χwat◦ upon entering bulk water, and the absolute single-electrode potential [Formula: see text] of the reference hydrogen electrode are calculated to be -1099.9 ± 4.2 kJ·mol-1, 0.13 ± 0.08 V, and 4.28 ± 0.04 V, respectively, in excellent agreement with the standard values recommended by Hünenberger and Reif on the basis of an extensive evaluation of the available experimental data (-1100 ± 5 kJ·mol-1, 0.13 ± 0.10 V, and 4.28 ± 0.13 V). The simulation results for Li+ are also compared to those for Na+ and K+ from a previous study in terms of relative hydration free energies ΔΔs GM+,wat◦ and relative electrode potentials [Formula: see text]. The calculated values are found to agree extremely well with the experimental differences in standard conventional hydration free energies ΔΔs GM+,wat• and redox potentials [Formula: see text]. The level of agreement between simulation and experiment, which is quantitative within error bars, underlines the substantial accuracy improvement achieved by applying a highly demanding QM/MM approach at the resolution-of-identity second-order Møller-Plesset perturbation (RIMP2) level over calculations relying on purely molecular mechanical or density functional theory (DFT) descriptions. A detailed analysis of the structural and dynamical properties of the Li+ hydrate indicates that a correct description of the solvation structure and dynamics is achieved as well at this level of theory. Consideration of the QM/MM potential-energy components also shows that the partitioning into QM and MM zones does not induce any significant energetic artifact for the system considered.
Collapse
Affiliation(s)
- Niko Prasetyo
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria.,Austria-Indonesia Centre (AIC) for Computational Chemistry , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia.,Department of Chemistry, Faculty of Mathematics and Natural Sciences , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie , ETH Zürich, ETH-Hönggerberg , HCI Building , CH-8093 Zürich , Switzerland
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria
| |
Collapse
|
38
|
Tsimpanogiannis IN, Moultos OA, Franco LFM, Spera MBDM, Erdős M, Economou IG. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1511903] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ioannis N. Tsimpanogiannis
- Environmental Research Laboratory, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Luís F. M. Franco
- School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Ioannis G. Economou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
39
|
Schütt O, VandeVondele J. Machine Learning Adaptive Basis Sets for Efficient Large Scale Density Functional Theory Simulation. J Chem Theory Comput 2018; 14:4168-4175. [PMID: 29957943 PMCID: PMC6096449 DOI: 10.1021/acs.jctc.8b00378] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is chemically intuitive that an optimal atom centered basis set must adapt to its atomic environment, for example by polarizing toward nearby atoms. Adaptive basis sets of small size can be significantly more accurate than traditional atom centered basis sets of the same size. The small size and well conditioned nature of these basis sets leads to large saving in computational cost, in particular in a linear scaling framework. Here, it is shown that machine learning can be used to predict such adaptive basis sets using local geometrical information only. As a result, various properties of standard DFT calculations can be easily obtained at much lower costs, including nuclear gradients. In our approach, a rotationally invariant parametrization of the basis is obtained by employing a potential anchored on neighboring atoms to ultimately construct a rotation matrix that turns a traditional atom centered basis set into a suitable adaptive basis set. The method is demonstrated using MD simulations of liquid water, where it is shown that minimal basis sets yield structural properties in fair agreement with basis set converged results, while reducing the computational cost in the best case by a factor of 200 and the required flops by 4 orders of magnitude. Already a very small training set yields satisfactory results as the variational nature of the method provides robustness.
Collapse
Affiliation(s)
- Ole Schütt
- Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | - Joost VandeVondele
- Department of Materials , ETH Zürich , 8093 Zürich , Switzerland.,Swiss National Supercomputing Centre (CSCS) , 6900 Lugano , Switzerland
| |
Collapse
|
40
|
Abstract
We determine the ionization potential (IP) and the electron affinity (EA) of liquid water together with the absolute redox level of the standard hydrogen electrode (SHE) by combining advanced electronic-structure calculations, ab initio molecular dynamics simulations, thermodynamic integration, and potential alignment at the water-vacuum interface. The calculated SHE level lies at 4.56 eV below the vacuum level, close to the experimental reference of 4.44 eV inferred by Trasatti. The band edges are determined through a hybrid functional designed to reproduce the band gap achieved with highly accurate GW calculations. Our analysis yields IP = 9.7 eV and EA = 0.8 eV, consistent with both photoemission spectra of liquid water and thermodynamical data for the hydrated electron.
Collapse
Affiliation(s)
- Francesco Ambrosio
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Zhendong Guo
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
41
|
Hofer TS, Hünenberger PH. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration. J Chem Phys 2018; 148:222814. [DOI: 10.1063/1.5000799] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Thomas S. Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Centre for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | | |
Collapse
|
42
|
Goel H, Ling S, Ellis BN, Taconi A, Slater B, Rai N. Predicting vapor liquid equilibria using density functional theory: A case study of argon. J Chem Phys 2018; 148:224501. [PMID: 29907054 DOI: 10.1063/1.5025726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase.
Collapse
Affiliation(s)
- Himanshu Goel
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Sanliang Ling
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Breanna Nicole Ellis
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Anna Taconi
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ben Slater
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
43
|
Schäfer T, Ramberger B, Kresse G. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis. J Chem Phys 2018; 146:104101. [PMID: 28298118 DOI: 10.1063/1.4976937] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O(N4), with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.
Collapse
Affiliation(s)
- Tobias Schäfer
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Benjamin Ramberger
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Georg Kresse
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| |
Collapse
|
44
|
Gaiduk AP, Gustafson J, Gygi F, Galli G. First-Principles Simulations of Liquid Water Using a Dielectric-Dependent Hybrid Functional. J Phys Chem Lett 2018; 9:3068-3073. [PMID: 29768015 DOI: 10.1021/acs.jpclett.8b01017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We carried out first-principles simulations of liquid water under ambient conditions using a dielectric-dependent hybrid functional, where the fraction of exact exchange is set equal to the inverse of the high-frequency dielectric constant of the liquid. We found excellent agreement with experiment for the oxygen-oxygen partial correlation function at the experimental equilibrium density and 311 ± 3 K. Other structural and dynamical properties, such as the diffusion coefficient, molecular dipole moments, and vibrational spectra, are also in good agreement with experiment. Our results, together with previous findings on electronic properties of the liquid with the same functional, show that the dielectric-dependent hybrid functional accurately describes both the structural and electronic properties of liquid water.
Collapse
Affiliation(s)
- Alex P Gaiduk
- Institute for Molecular Engineering , The University of Chicago , Chicago , Illinois 60637 , United States
- Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffrey Gustafson
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - François Gygi
- Department of Computer Science , University of California , Davis , California 95616 , United States
| | - Giulia Galli
- Institute for Molecular Engineering , The University of Chicago , Chicago , Illinois 60637 , United States
- Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
45
|
Zheng L, Chen M, Sun Z, Ko HY, Santra B, Dhuvad P, Wu X. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble. J Chem Phys 2018; 148:164505. [DOI: 10.1063/1.5023611] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lixin Zheng
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Mohan Chen
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Zhaoru Sun
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Hsin-Yu Ko
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Biswajit Santra
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Pratikkumar Dhuvad
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
46
|
Machida M, Kato K, Shiga M. Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations. J Chem Phys 2018; 148:102324. [DOI: 10.1063/1.5000091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Masahiko Machida
- CCSE, Japan Atomic Energy Agency (JAEA), 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Koichiro Kato
- Mizuho Information and Research Institute, Inc., 2-3, Kandanishiki-cho, Chiyoda-ku, Tokyo 101-8443, Japan
| | - Motoyuki Shiga
- CCSE, Japan Atomic Energy Agency (JAEA), 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|
47
|
Liu J, He X, Zhang JZH, Qi LW. Hydrogen-bond structure dynamics in bulk water: insights from ab initio simulations with coupled cluster theory. Chem Sci 2018; 9:2065-2073. [PMID: 29675248 PMCID: PMC5885775 DOI: 10.1039/c7sc04205a] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023] Open
Abstract
An accurate and efficient ab initio molecular dynamics (AIMD) simulation of liquid water was made possible using the fragment-based approach (J. F. Liu, X. He and J. Z. H. Zhang, Phys. Chem. Chem. Phys., 2017, 19, 11931-11936). In this study, we advance the AIMD simulations using the fragment-based coupled cluster (CC) theory, more accurately revealing the structural and dynamical properties of liquid water under ambient conditions. The results show that the double-donor hydrogen-bond configurations in liquid water are nearly in balance with the single-donor configurations, with a slight bias towards the former. Our observation is in contrast to the traditional tetrahedral water structure. The hydrogen-bond switching dynamics in liquid water are very fast, with a hydrogen-bond life time of around 0.78 picoseconds, determined using AIMD simulation at the CCD/aug-cc-pVDZ level. This time scale is remarkably shorter than the ∼3.0 picoseconds that is commonly obtained from traditional nonpolarized force fields and density functional theory (DFT) based first-principles simulations. Additionally, the obtained radial distribution functions, triplet oxygen angular distribution, diffusion coefficient, and the dipole moment of the water molecule are uniformly in good agreement with the experimental observations. The current high-level AIMD simulation sheds light on the understanding of the structural and dynamical properties of liquid water.
Collapse
Affiliation(s)
- Jinfeng Liu
- State Key Laboratory of Natural Medicines , Department of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China .
| | - Xiao He
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China
- NYU-ECNU Center for Computational Chemistry , NYU Shanghai , Shanghai , 200062 , China
| | - John Z H Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China
- NYU-ECNU Center for Computational Chemistry , NYU Shanghai , Shanghai , 200062 , China
- Department of Chemistry , New York University , New York , NY 10003 , USA
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines , Department of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China .
| |
Collapse
|
48
|
Schäfer T, Ramberger B, Kresse G. Laplace transformed MP2 for three dimensional periodic materials using stochastic orbitals in the plane wave basis and correlated sampling. J Chem Phys 2018; 148:064103. [PMID: 29448777 DOI: 10.1063/1.5016100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present an implementation and analysis of a stochastic high performance algorithm to calculate the correlation energy of three-dimensional periodic systems in second-order Møller-Plesset perturbation theory (MP2). In particular we measure the scaling behavior of the sample variance and probe whether this stochastic approach is competitive if accuracies well below 1 meV per valence orbital are required, as it is necessary for calculations of adsorption, binding, or surface energies. The algorithm is based on the Laplace transformed MP2 (LTMP2) formulation in the plane wave basis. The time-dependent Hartree-Fock orbitals, appearing in the LTMP2 formulation, are stochastically rotated in the occupied and unoccupied Hilbert space. This avoids a full summation over all combinations of occupied and unoccupied orbitals, as inspired by the work of Neuhauser, Rabani, and Baer [J. Chem. Theory Comput. 9, 24 (2013)]. Additionally, correlated sampling is introduced, accelerating the statistical convergence significantly.
Collapse
Affiliation(s)
- Tobias Schäfer
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Benjamin Ramberger
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Georg Kresse
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| |
Collapse
|
49
|
Liu J, He X, Zhang JZH. Structure of liquid water - a dynamical mixture of tetrahedral and 'ring-and-chain' like structures. Phys Chem Chem Phys 2018; 19:11931-11936. [PMID: 28440370 DOI: 10.1039/c7cp00667e] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nature of the dynamical hydrogen-bond network of liquid water under ambient conditions has challenged both experimental and theoretical researchers for decades and remains a topic of intense debate. In this work, we addressed the structural issue of the hydrogen-bond network of liquid water based on an accurate ab initio molecular dynamics simulation. The present work showed clearly that liquid water is neither accurately described by a static picture of mostly tetrahedral water molecules nor dominated by "ring-and-chain" like structures. Instead, the structure of water is a dynamical mixture of tetrahedral and 'ring-and-chain' like structures with a slight bias toward the former. On average, each water molecule forms about three hydrogen bonds with the surrounding water molecules. The present accurate ab initio molecular dynamics simulation of liquid water was made possible by using a fragment-based second-order Møller-Plesset perturbation theory (MP2) with a large basis set to treat a large body of water molecules. This level of ab initio theory is sufficiently accurate for describing water interactions, and the simulated structural and dynamical properties of liquid water, including radial distribution functions, diffusion coefficient, dipole moment, etc., are uniformly in excellent agreement with experimental observations.
Collapse
Affiliation(s)
- Jinfeng Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | | | | |
Collapse
|
50
|
Gaiduk AP, Pham TA, Govoni M, Paesani F, Galli G. Electron affinity of liquid water. Nat Commun 2018; 9:247. [PMID: 29339731 PMCID: PMC5770385 DOI: 10.1038/s41467-017-02673-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1-0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.
Collapse
Affiliation(s)
- Alex P Gaiduk
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA
| | - Marco Govoni
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.,Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, Materials Science and Engineering, San Diego Supercomputer Center, University of California, San Diego, 92093, USA.
| | - Giulia Galli
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA. .,Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| |
Collapse
|