1
|
Vakhrushev A, Fedotov A, Severyukhina O, Sidorenko A. The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:23-33. [PMID: 36703908 PMCID: PMC9830499 DOI: 10.3762/bjnano.14.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
The present paper considers a mathematical model describing the time evolution of spin states and magnetic properties of a nanomaterial. We present the results of two variants of nanosystem simulations. In the first variant, cobalt with a structure close to the hexagonal close-packed crystal lattice was considered. In the second case, a cobalt nanofilm formed in the previously obtained numerical experiment of multilayer niobium-cobalt nanocomposite deposition was investigated. The sizes of the systems were the same in both cases. For both simulations, after pre-correction in the initial time stages, the value of spin temperature stabilized and tended to the average value. Also, the change in spin temperature occurred near the average value. The system with a real structure had a variable spin temperature compared to that of a system with an ideal structure. In all cases of calculations for cobalt, the ferromagnetic behavior was preserved. Defects in the structure and local arrangement of the atoms cause a deterioration in the magnetic macroscopic parameters, such as a decrease in the magnetization modulus.
Collapse
Affiliation(s)
- Alexander Vakhrushev
- Modeling and Synthesis of Technological Structures Department, Institute of Mechanics, Udmurt Federal Research Centre, Ural Division, Russian Academy of Sciences, Baramzinoy 34, Izhevsk 426067, Russia
- Orel State University named after I.S. Turgenev, Komsomolskaya Str. 95, 302026, Orel, Russia
| | - Aleksey Fedotov
- Modeling and Synthesis of Technological Structures Department, Institute of Mechanics, Udmurt Federal Research Centre, Ural Division, Russian Academy of Sciences, Baramzinoy 34, Izhevsk 426067, Russia
- Orel State University named after I.S. Turgenev, Komsomolskaya Str. 95, 302026, Orel, Russia
- Nanotechnology and Microsystems Department, Kalashnikov Izhevsk State Technical University, Studencheskaya 7, Izhevsk 426069, Russia
| | - Olesya Severyukhina
- Modeling and Synthesis of Technological Structures Department, Institute of Mechanics, Udmurt Federal Research Centre, Ural Division, Russian Academy of Sciences, Baramzinoy 34, Izhevsk 426067, Russia
- Orel State University named after I.S. Turgenev, Komsomolskaya Str. 95, 302026, Orel, Russia
- Nanotechnology and Microsystems Department, Kalashnikov Izhevsk State Technical University, Studencheskaya 7, Izhevsk 426069, Russia
| | - Anatolie Sidorenko
- Orel State University named after I.S. Turgenev, Komsomolskaya Str. 95, 302026, Orel, Russia
- Institute of Electronic Engineering and Nanotechnologies of Technical University of Moldova, Academiei 3/3, Chisinau 2028, Moldova
| |
Collapse
|
2
|
Pancaldi M, Strüber C, Friedrich B, Pedersoli E, De Angelis D, Nikolov IP, Manfredda M, Foglia L, Yulin S, Spezzani C, Sacchi M, Eisebitt S, von Korff Schmising C, Capotondi F. The COMIX polarimeter: a compact device for XUV polarization analysis. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:969-977. [PMID: 35787562 PMCID: PMC9255573 DOI: 10.1107/s1600577522004027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45-90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research.
Collapse
Affiliation(s)
| | - Christian Strüber
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bertram Friedrich
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | | | | | | | - Laura Foglia
- Elettra-Sincrotrone Trieste SCpA, 34149 Basovizza, Italy
| | - Sergiy Yulin
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Carlo Spezzani
- Elettra-Sincrotrone Trieste SCpA, 34149 Basovizza, Italy
| | - Maurizio Sacchi
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Stefan Eisebitt
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | | | | |
Collapse
|
3
|
Matsuda I, Kubota Y. Recent Progress in Spectroscopies Using Soft X-ray Free-electron Lasers. CHEM LETT 2021. [DOI: 10.1246/cl.200881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Iwao Matsuda
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Trans-scale Quantum Science Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuya Kubota
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
4
|
Ellipsometer Equipped with Multiple Mirrors for Element-selective Soft X-ray Experiments. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2020. [DOI: 10.1380/ejssnt.2020.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Andreeva MA, Baulin RA, Repchenko YL. Standing wave approach in the theory of X-ray magnetic reflectivity. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:483-496. [PMID: 30855259 DOI: 10.1107/s1600577518018398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
An extension of the exact X-ray resonant magnetic reflectivity theory has been developed, taking into account the small value of the magnetic terms in the X-ray susceptibility tensor. It is shown that squared standing waves (fourth power of the total electric field) determine the output of the magnetic addition to the total reflectivity from a magnetic multilayer. The obtained generalized kinematical approach essentially speeds up the calculation of the asymmetry ratio in the magnetic reflectivity. The developed approach easily explains the peculiarities of the angular dependence of the reflectivity with the rotated polarization (such as the peak at the critical angle of the total external reflection). The revealed dependence of the magnetic part of the total reflectivity on the squared standing waves means that the selection of the reflectivity with the rotated polarization ensures higher sensitivity to the depth profiles of magnetization than the secondary radiation at the specular reflection condition.
Collapse
Affiliation(s)
- M A Andreeva
- Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - R A Baulin
- Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Yu L Repchenko
- National Research Centre `Kurchatov Institute', Pl. Kurchatova 1, Moscow 123182, Russian Federation
| |
Collapse
|
6
|
Malvestuto M, Ciprian R, Caretta A, Casarin B, Parmigiani F. Ultrafast magnetodynamics with free-electron lasers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:053002. [PMID: 29315080 DOI: 10.1088/1361-648x/aaa211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.
Collapse
Affiliation(s)
- Marco Malvestuto
- Elettra-Sincrotrone Trieste S.C.p.A. Strada Statale 14-km 163.5 in AREA Science Park 34149 Basovizza, Trieste, Italy
| | | | | | | | | |
Collapse
|
7
|
Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7070662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Carva K, Baláž P, Radu I. Laser-Induced Ultrafast Magnetic Phenomena. HANDBOOK OF MAGNETIC MATERIALS 2017. [DOI: 10.1016/bs.hmm.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|